From: morsch Date: Wed, 7 Jul 2004 16:13:42 +0000 (+0000) Subject: See previous. X-Git-Url: http://git.uio.no/git/?p=u%2Fmrichter%2FAliRoot.git;a=commitdiff_plain;h=83b8a854a855717acdb52b976c0da35ef7f9ccac See previous. --- diff --git a/TFluka/TFluka.cxx b/TFluka/TFluka.cxx deleted file mode 100644 index 73b7d7f2d8f..00000000000 --- a/TFluka/TFluka.cxx +++ /dev/null @@ -1,2201 +0,0 @@ -/************************************************************************** - * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * - * * - * Author: The ALICE Off-line Project. * - * Contributors are mentioned in the code where appropriate. * - * * - * Permission to use, copy, modify and distribute this software and its * - * documentation strictly for non-commercial purposes is hereby granted * - * without fee, provided that the above copyright notice appears in all * - * copies and that both the copyright notice and this permission notice * - * appear in the supporting documentation. The authors make no claims * - * about the suitability of this software for any purpose. It is * - * provided "as is" without express or implied warranty. * - **************************************************************************/ - -/* $Id$ */ - -#include - -#include "TClonesArray.h" -#include "TFluka.h" -#include "TCallf77.h" //For the fortran calls -#include "Fdblprc.h" //(DBLPRC) fluka common -#include "Fepisor.h" //(EPISOR) fluka common -#include "Ffinuc.h" //(FINUC) fluka common -#include "Fiounit.h" //(IOUNIT) fluka common -#include "Fpaprop.h" //(PAPROP) fluka common -#include "Fpart.h" //(PART) fluka common -#include "Ftrackr.h" //(TRACKR) fluka common -#include "Fpaprop.h" //(PAPROP) fluka common -#include "Ffheavy.h" //(FHEAVY) fluka common - -#include "TVirtualMC.h" -#include "TG4GeometryManager.h" //For the geometry management -#include "TG4DetConstruction.h" //For the detector construction - -#include "FGeometryInit.hh" -#include "TLorentzVector.h" -#include "FlukaVolume.h" - -// Fluka methods that may be needed. -#ifndef WIN32 -# define flukam flukam_ -# define fluka_openinp fluka_openinp_ -# define fluka_closeinp fluka_closeinp_ -# define mcihad mcihad_ -# define mpdgha mpdgha_ -#else -# define flukam FLUKAM -# define fluka_openinp FLUKA_OPENINP -# define fluka_closeinp FLUKA_CLOSEINP -# define mcihad MCIHAD -# define mpdgha MPDGHA -#endif - -extern "C" -{ - // - // Prototypes for FLUKA functions - // - void type_of_call flukam(const int&); - void type_of_call fluka_openinp(const int&, DEFCHARA); - void type_of_call fluka_closeinp(const int&); - int type_of_call mcihad(const int&); - int type_of_call mpdgha(const int&); -} - -// -// Class implementation for ROOT -// -ClassImp(TFluka) - -// -//---------------------------------------------------------------------------- -// TFluka constructors and destructors. -//____________________________________________________________________________ -TFluka::TFluka() - :TVirtualMC(), - fVerbosityLevel(0), - sInputFileName(""), - fDetector(0), - fCurrentFlukaRegion(-1) -{ - // - // Default constructor - // -} - -TFluka::TFluka(const char *title, Int_t verbosity, Bool_t isRootGeometrySupported) - :TVirtualMC("TFluka",title, isRootGeometrySupported), - fVerbosityLevel(verbosity), - sInputFileName(""), - fTrackIsEntering(0), - fTrackIsExiting(0), - fTrackIsNew(0), - fDetector(0), - fCurrentFlukaRegion(-1) -{ - if (fVerbosityLevel >=3) - cout << "==> TFluka::TFluka(" << title << ") constructor called." << endl; - - - // create geometry manager - if (fVerbosityLevel >=2) - cout << "\t* Creating G4 Geometry manager..." << endl; - fGeometryManager = new TG4GeometryManager(); - if (fVerbosityLevel >=2) - cout << "\t* Creating G4 Detector..." << endl; - fDetector = new TG4DetConstruction(); - FGeometryInit* geominit = FGeometryInit::GetInstance(); - if (geominit) - geominit->setDetConstruction(fDetector); - else { - cerr << "ERROR: Could not create FGeometryInit!" << endl; - cerr << " Exiting!!!" << endl; - abort(); - } - - if (fVerbosityLevel >=3) - cout << "<== TFluka::TFluka(" << title << ") constructor called." << endl; - - fVolumeMediaMap = new TClonesArray("FlukaVolume",1000); - fNVolumes = 0; - fMediaByRegion = 0; -} - -TFluka::~TFluka() { - if (fVerbosityLevel >=3) - cout << "==> TFluka::~TFluka() destructor called." << endl; - - delete fGeometryManager; - fVolumeMediaMap->Delete(); - delete fVolumeMediaMap; - - - if (fVerbosityLevel >=3) - cout << "<== TFluka::~TFluka() destructor called." << endl; -} - -// -//_____________________________________________________________________________ -// TFluka control methods -//____________________________________________________________________________ -void TFluka::Init() { - - FGeometryInit* geominit = FGeometryInit::GetInstance(); - if (fVerbosityLevel >=3) - cout << "==> TFluka::Init() called." << endl; - - cout << "\t* InitPhysics() - Prepare input file to be called" << endl; - geominit->Init(); - // now we have G4 geometry created and we have to patch alice.inp - // with the material mapping file FlukaMat.inp - InitPhysics(); // prepare input file with the current physics settings - cout << "\t* InitPhysics() - Prepare input file was called" << endl; - - if (fVerbosityLevel >=2) - cout << "\t* Changing lfdrtr = (" << (GLOBAL.lfdrtr?'T':'F') - << ") in fluka..." << endl; - GLOBAL.lfdrtr = true; - - if (fVerbosityLevel >=2) - cout << "\t* Opening file " << sInputFileName << endl; - const char* fname = sInputFileName; - fluka_openinp(lunin, PASSCHARA(fname)); - - if (fVerbosityLevel >=2) - cout << "\t* Calling flukam..." << endl; - flukam(1); - - if (fVerbosityLevel >=2) - cout << "\t* Closing file " << sInputFileName << endl; - fluka_closeinp(lunin); - - FinishGeometry(); - - if (fVerbosityLevel >=3) - cout << "<== TFluka::Init() called." << endl; - -} - -void TFluka::FinishGeometry() { -// -// Build-up table with region to medium correspondance -// - char tmp[5]; - - if (fVerbosityLevel >=3) - cout << "==> TFluka::FinishGeometry() called." << endl; - -// fGeometryManager->Ggclos(); - - FGeometryInit* flugg = FGeometryInit::GetInstance(); - - fMediaByRegion = new Int_t[fNVolumes+2]; - for (Int_t i = 0; i < fNVolumes; i++) - { - FlukaVolume* vol = dynamic_cast((*fVolumeMediaMap)[i]); - TString volName = vol->GetName(); - Int_t media = vol->GetMedium(); - if (fVerbosityLevel >= 3) - printf("Finish Geometry: volName, media %d %s %d \n", i, volName.Data(), media); - strcpy(tmp, volName.Data()); - tmp[4] = '\0'; - flugg->SetMediumFromName(tmp, media, i+1); - fMediaByRegion[i] = media; - } - - flugg->BuildMediaMap(); - - if (fVerbosityLevel >=3) - cout << "<== TFluka::FinishGeometry() called." << endl; -} - -void TFluka::BuildPhysics() { - if (fVerbosityLevel >=3) - cout << "==> TFluka::BuildPhysics() called." << endl; - - - if (fVerbosityLevel >=3) - cout << "<== TFluka::BuildPhysics() called." << endl; -} - -void TFluka::ProcessEvent() { - if (fVerbosityLevel >=3) - cout << "==> TFluka::ProcessEvent() called." << endl; - fApplication->GeneratePrimaries(); - EPISOR.lsouit = true; - flukam(1); - if (fVerbosityLevel >=3) - cout << "<== TFluka::ProcessEvent() called." << endl; -} - - -void TFluka::ProcessRun(Int_t nevent) { - if (fVerbosityLevel >=3) - cout << "==> TFluka::ProcessRun(" << nevent << ") called." - << endl; - - if (fVerbosityLevel >=2) { - cout << "\t* GLOBAL.fdrtr = " << (GLOBAL.lfdrtr?'T':'F') << endl; - cout << "\t* Calling flukam again..." << endl; - } - fApplication->InitGeometry(); - fApplication->BeginEvent(); - ProcessEvent(); - fApplication->FinishEvent(); - if (fVerbosityLevel >=3) - cout << "<== TFluka::ProcessRun(" << nevent << ") called." - << endl; - -} - -//_____________________________________________________________________________ -// methods for building/management of geometry -//____________________________________________________________________________ -// functions from GCONS -void TFluka::Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z, - Float_t &dens, Float_t &radl, Float_t &absl, - Float_t* ubuf, Int_t& nbuf) { -// - fGeometryManager->Gfmate(imat, name, a, z, dens, radl, absl, ubuf, nbuf); -} - -void TFluka::Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z, - Double_t &dens, Double_t &radl, Double_t &absl, - Double_t* ubuf, Int_t& nbuf) { -// - fGeometryManager->Gfmate(imat, name, a, z, dens, radl, absl, ubuf, nbuf); -} - -// detector composition -void TFluka::Material(Int_t& kmat, const char* name, Double_t a, - Double_t z, Double_t dens, Double_t radl, Double_t absl, - Float_t* buf, Int_t nwbuf) { -// - fGeometryManager - ->Material(kmat, name, a, z, dens, radl, absl, buf, nwbuf); -} -void TFluka::Material(Int_t& kmat, const char* name, Double_t a, - Double_t z, Double_t dens, Double_t radl, Double_t absl, - Double_t* buf, Int_t nwbuf) { -// - fGeometryManager - ->Material(kmat, name, a, z, dens, radl, absl, buf, nwbuf); -} - -void TFluka::Mixture(Int_t& kmat, const char *name, Float_t *a, - Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat) { -// - fGeometryManager - ->Mixture(kmat, name, a, z, dens, nlmat, wmat); -} -void TFluka::Mixture(Int_t& kmat, const char *name, Double_t *a, - Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat) { -// - fGeometryManager - ->Mixture(kmat, name, a, z, dens, nlmat, wmat); -} - -void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat, - Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, - Double_t stemax, Double_t deemax, Double_t epsil, - Double_t stmin, Float_t* ubuf, Int_t nbuf) { - // - fGeometryManager - ->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax, - epsil, stmin, ubuf, nbuf); -} -void TFluka::Medium(Int_t& kmed, const char *name, Int_t nmat, - Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, - Double_t stemax, Double_t deemax, Double_t epsil, - Double_t stmin, Double_t* ubuf, Int_t nbuf) { - // - fGeometryManager - ->Medium(kmed, name, nmat, isvol, ifield, fieldm, tmaxfd, stemax, deemax, - epsil, stmin, ubuf, nbuf); -} - -void TFluka::Matrix(Int_t& krot, Double_t thetaX, Double_t phiX, - Double_t thetaY, Double_t phiY, Double_t thetaZ, - Double_t phiZ) { -// - fGeometryManager - ->Matrix(krot, thetaX, phiX, thetaY, phiY, thetaZ, phiZ); -} - -void TFluka::Gstpar(Int_t itmed, const char *param, Double_t parval) { -// - fGeometryManager->Gstpar(itmed, param, parval); -} - -// functions from GGEOM -Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed, - Float_t *upar, Int_t np) { -// -// fVolumeMediaMap[TString(name)] = nmed; - if (fVerbosityLevel >= 3) - printf("TFluka::Gsvolu() name = %s, nmed = %d\n", name, nmed); - - TClonesArray &lvols = *fVolumeMediaMap; - new(lvols[fNVolumes++]) - FlukaVolume(name, nmed); - return fGeometryManager->Gsvolu(name, shape, nmed, upar, np); -} -Int_t TFluka::Gsvolu(const char *name, const char *shape, Int_t nmed, - Double_t *upar, Int_t np) { -// - TClonesArray &lvols = *fVolumeMediaMap; - new(lvols[fNVolumes++]) - FlukaVolume(name, nmed); - - return fGeometryManager->Gsvolu(name, shape, nmed, upar, np); -} - -void TFluka::Gsdvn(const char *name, const char *mother, Int_t ndiv, - Int_t iaxis) { -// -// The medium of the daughter is the one of the mother - Int_t volid = TFluka::VolId(mother); - Int_t med = TFluka::VolId2Mate(volid); - TClonesArray &lvols = *fVolumeMediaMap; - new(lvols[fNVolumes++]) - FlukaVolume(name, med); - fGeometryManager->Gsdvn(name, mother, ndiv, iaxis); -} - -void TFluka::Gsdvn2(const char *name, const char *mother, Int_t ndiv, - Int_t iaxis, Double_t c0i, Int_t numed) { -// - TClonesArray &lvols = *fVolumeMediaMap; - new(lvols[fNVolumes++]) - FlukaVolume(name, numed); - fGeometryManager->Gsdvn2(name, mother, ndiv, iaxis, c0i, numed); -} - -void TFluka::Gsdvt(const char *name, const char *mother, Double_t step, - Int_t iaxis, Int_t numed, Int_t ndvmx) { -// - TClonesArray &lvols = *fVolumeMediaMap; - new(lvols[fNVolumes++]) - FlukaVolume(name, numed); - fGeometryManager->Gsdvt(name, mother, step, iaxis, numed, ndvmx); -} - -void TFluka::Gsdvt2(const char *name, const char *mother, Double_t step, - Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx) { -// - TClonesArray &lvols = *fVolumeMediaMap; - new(lvols[fNVolumes++]) - FlukaVolume(name, numed); - fGeometryManager->Gsdvt2(name, mother, step, iaxis, c0, numed, ndvmx); -} - -void TFluka::Gsord(const char *name, Int_t iax) { -// - fGeometryManager->Gsord(name, iax); -} - -void TFluka::Gspos(const char *name, Int_t nr, const char *mother, - Double_t x, Double_t y, Double_t z, Int_t irot, - const char *konly) { -// - fGeometryManager->Gspos(name, nr, mother, x, y, z, irot, konly); -} - -void TFluka::Gsposp(const char *name, Int_t nr, const char *mother, - Double_t x, Double_t y, Double_t z, Int_t irot, - const char *konly, Float_t *upar, Int_t np) { - // - fGeometryManager->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np); -} -void TFluka::Gsposp(const char *name, Int_t nr, const char *mother, - Double_t x, Double_t y, Double_t z, Int_t irot, - const char *konly, Double_t *upar, Int_t np) { - // - fGeometryManager->Gsposp(name, nr, mother, x, y, z, irot, konly, upar, np); -} - -void TFluka::Gsbool(const char* onlyVolName, const char* manyVolName) { -// - fGeometryManager->Gsbool(onlyVolName, manyVolName); -} - -void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Float_t *ppckov, - Float_t *absco, Float_t *effic, Float_t *rindex) { -// - fGeometryManager->SetCerenkov(itmed, npckov, ppckov, absco, effic, rindex); -} -void TFluka::SetCerenkov(Int_t itmed, Int_t npckov, Double_t *ppckov, - Double_t *absco, Double_t *effic, Double_t *rindex) { -// - fGeometryManager->SetCerenkov(itmed, npckov, ppckov, absco, effic, rindex); -} - -// Euclid -void TFluka::WriteEuclid(const char* fileName, const char* topVol, - Int_t number, Int_t nlevel) { -// - fGeometryManager->WriteEuclid(fileName, topVol, number, nlevel); -} - - - -//_____________________________________________________________________________ -// methods needed by the stepping -//____________________________________________________________________________ - -Int_t TFluka::GetMedium() const { -// -// Get the medium number for the current fluka region -// - FGeometryInit* flugg = FGeometryInit::GetInstance(); - return flugg->GetMedium(fCurrentFlukaRegion); -} - - - -//____________________________________________________________________________ -// particle table usage -// ID <--> PDG transformations -//_____________________________________________________________________________ -Int_t TFluka::IdFromPDG(Int_t pdg) const -{ - // - // Return Fluka code from PDG and pseudo ENDF code - - // Catch the feedback photons - if (pdg == 50000051) return (-1); - // MCIHAD() goes from pdg to fluka internal. - Int_t intfluka = mcihad(pdg); - // KPTOIP array goes from internal to official - return GetFlukaKPTOIP(intfluka); -} - -Int_t TFluka::PDGFromId(Int_t id) const -{ - // - // Return PDG code and pseudo ENDF code from Fluka code - - // IPTOKP array goes from official to internal - - if (id == -1) { -// Cerenkov photon - if (fVerbosityLevel >= 1) - printf("\n PDGFromId: Cerenkov Photon \n"); - return 50000050; - } -// Error id - if (id == 0) { - if (fVerbosityLevel >= 1) - printf("PDGFromId: Error id = 0\n"); - return -1; - } -// Good id - Int_t intfluka = GetFlukaIPTOKP(id); - if (intfluka == 0) { - if (fVerbosityLevel >= 1) - printf("PDGFromId: Error intfluka = 0: %d\n", id); - return -1; - } else if (intfluka < 0) { - if (fVerbosityLevel >= 1) - printf("PDGFromId: Error intfluka < 0: %d\n", id); - return -1; - } - if (fVerbosityLevel >= 3) - printf("mpdgha called with %d %d \n", id, intfluka); - // MPDGHA() goes from fluka internal to pdg. - return mpdgha(intfluka); -} - -//_____________________________________________________________________________ -// methods for physics management -//____________________________________________________________________________ -// -// set methods -// - -void TFluka::SetProcess(const char* flagName, Int_t flagValue) -{ - Int_t i; - if (iNbOfProc < 100) { - for (i=0; iGetLastMaterialIndex(); - printf(" last FLUKA material is %g\n", fLastMaterial); - -// construct file names - TString sAliceCoreInp = getenv("ALICE_ROOT"); - sAliceCoreInp +="/TFluka/input/"; - TString sAliceTmp = "flukaMat.inp"; - TString sAliceInp = GetInputFileName(); - sAliceCoreInp += GetCoreInputFileName(); -/* open files */ - if ((pAliceCoreInp = fopen(sAliceCoreInp.Data(),"r")) == NULL) { - printf("\nCannot open file %s\n",sAliceCoreInp.Data()); - exit(1); - } - if ((pAliceFlukaMat = fopen(sAliceTmp.Data(),"r")) == NULL) { - printf("\nCannot open file %s\n",sAliceTmp.Data()); - exit(1); - } - if ((pAliceInp = fopen(sAliceInp.Data(),"w")) == NULL) { - printf("\nCannot open file %s\n",sAliceInp.Data()); - exit(1); - } - -// copy core input file - Char_t sLine[255]; - Float_t fEventsPerRun; - - while ((fgets(sLine,255,pAliceCoreInp)) != NULL) { - if (strncmp(sLine,"GEOEND",6) != 0) - fprintf(pAliceInp,"%s",sLine); // copy until GEOEND card - else { - fprintf(pAliceInp,"GEOEND\n"); // add GEOEND card - goto flukamat; - } - } // end of while until GEOEND card - -flukamat: - while ((fgets(sLine,255,pAliceFlukaMat)) != NULL) { // copy flukaMat.inp file - fprintf(pAliceInp,"%s\n",sLine); - } - - while ((fgets(sLine,255,pAliceCoreInp)) != NULL) { - if (strncmp(sLine,"START",5) != 0) - fprintf(pAliceInp,"%s\n",sLine); - else { - sscanf(sLine+10,"%10f",&fEventsPerRun); - goto fin; - } - } //end of while until START card - -fin: -// in G3 the process control values meaning can be different for -// different processes, but for most of them is: -// 0 process is not activated -// 1 process is activated WITH generation of secondaries -// 2 process is activated WITHOUT generation of secondaries -// if process does not generate secondaries => 1 same as 2 -// -// Exceptions: -// MULS: also 3 -// LOSS: also 3, 4 -// RAYL: only 0,1 -// HADR: may be > 2 -// - -// Loop over number of SetProcess calls - fprintf(pAliceInp,"*----------------------------------------------------------------------------- \n"); - fprintf(pAliceInp,"*----- The following data are generated from SetProcess and SetCut calls ----- \n"); - fprintf(pAliceInp,"*----------------------------------------------------------------------------- \n"); - for (i=0; iSetProcess("ANNI",1); // EMFCUT -1. 0. 0. 3. lastmat 0. ANNH-THR - if (strncmp(&sProcessFlag[i][0],"ANNI",4) == 0) { - if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { - fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for e+ annihilation - resets to default=0.\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('ANNI',1) or SetProcess('ANNI',2)\n"); - // -one = kinetic energy threshold (GeV) for e+ annihilation (resets to default=0) - // zero = not used - // zero = not used - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - // one = step length in assigning indices - // "ANNH-THR"; - fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fANNH-THR\n",-one,zero,zero,three,fLastMaterial,one); - } - else if (iProcessValue[i] == 0) { - fprintf(pAliceInp,"*\n*No annihilation - no FLUKA card generated\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('ANNI',0)\n"); - } - else { - fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('ANNI',?) call.\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - } - - // bremsstrahlung and pair production are both activated - // G3 default value: 1 - // G4 processes: G4eBremsstrahlung/G4IeBremsstrahlung, - // G4MuBremsstrahlung/G4IMuBremsstrahlung, - // G4LowEnergyBremstrahlung - // Particles: e-/e+; mu+/mu- - // Physics: EM - // flag = 0 no bremsstrahlung - // flag = 1 bremsstrahlung, photon processed - // flag = 2 bremsstrahlung, no photon stored - // gMC ->SetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat - // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR - // G3 default value: 1 - // G4 processes: G4GammaConversion, - // G4MuPairProduction/G4IMuPairProduction - // G4LowEnergyGammaConversion - // Particles: gamma, mu - // Physics: EM - // flag = 0 no delta rays - // flag = 1 delta rays, secondaries processed - // flag = 2 delta rays, no secondaries stored - // gMC ->SetProcess("PAIR",1); // PAIRBREM 1. 0. 0. 3. lastmat - // EMFCUT 0. 0. -1. 3. lastmat 0. PHOT-THR - else if ((strncmp(&sProcessFlag[i][0],"PAIR",4) == 0) && (iProcessValue[i] == 1 || iProcessValue[i] == 2)) { - for (j=0; jSetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons - fCut = 0.0; - for (k=0; kSetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung - fCut = 0.0; - for (k=0; kSetCut("PPCUTM",cut); // total energy cut for direct pair prod. by muons - // one = pair production by muons and charged hadrons is activated - // zero = e+, e- kinetic energy threshold (in GeV) for explicit pair production. - // zero = no explicit bremsstrahlung production is simulated - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - fprintf(pAliceInp,"PAIRBREM %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,three,fLastMaterial); - - // for e+ and e- - fprintf(pAliceInp,"*\n*Pair production by electrons is activated\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('PAIR',1) or SetProcess('PAIR',2)\n"); - fCut = -1.0; - for (j=0; jSetProcess("BREM",1); // PAIRBREM 2. 0. 0. 3. lastmat - // EMFCUT -1. 0. 0. 3. lastmat 0. ELPO-THR - else if (strncmp(&sProcessFlag[i][0],"BREM",4) == 0) { - for (j=0; jSetCut("BCUTM",cut); // cut for muon and hadron bremsstrahlung - fCut = 0.0; - for (j=0; jSetProcess("CKOV",1); // ??? Cerenkov photon generation - else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0) { - if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { - fprintf(pAliceInp,"*\n*Cerenkov photon generation\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('CKOV',1) or SetProcess('CKOV',2)\n"); - Double_t emin = 2.07e-9; // minimum Cerenkov photon emission energy (in GeV!). Default: 2.07E-9 GeV (corresponding to 600 nm) - Double_t emax = 4.96e-9; // maximum Cerenkov photon emission energy (in GeV!). Default: 4.96E-9 GeV (corresponding to 250 nm) - fprintf(pAliceInp,"OPT-PROD %10.4g%10.4g%10.1f%10.1f%10.1f%10.1fCERENKOV\n",emin,emax,zero,three,fLastMaterial,one); - } - else if (iProcessValue[i] == 0) { - fprintf(pAliceInp,"*\n*No Cerenkov photon generation\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('CKOV',0)\n"); - // zero = not used - // zero = not used - // zero = not used - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - // one = step length in assigning indices - //"CERE-OFF"; - fprintf(pAliceInp,"OPT-PROD %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fCERE-OFF\n",zero,zero,zero,three,fLastMaterial,one); - } - else { - fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('CKOV',?) call.\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - } // end of else if (strncmp(&sProcessFlag[i][0],"CKOV",4) == 0) - - - // Compton scattering - // G3 default value: 1 - // G4 processes: G4ComptonScattering, - // G4LowEnergyCompton, - // G4PolarizedComptonScattering - // Particles: gamma - // Physics: EM - // flag = 0 no Compton scattering - // flag = 1 Compton scattering, electron processed - // flag = 2 Compton scattering, no electron stored - // gMC ->SetProcess("COMP",1); // EMFCUT -1. 0. 0. 3. lastmat 0. PHOT-THR - else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0) { - if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { - fprintf(pAliceInp,"*\n*Energy threshold (GeV) for Compton scattering - resets to default=0.\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',1);\n"); - // - one = energy threshold (GeV) for Compton scattering - resets to default=0. - // zero = not used - // zero = not used - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - // one = step length in assigning indices - //"PHOT-THR"; - fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",-one,zero,zero,three,fLastMaterial,one); - } - else if (iProcessValue[i] == 0) { - fprintf(pAliceInp,"*\n*No Compton scattering - no FLUKA card generated\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('COMP',0)\n"); - } - else { - fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('COMP',?) call.\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - } // end of else if (strncmp(&sProcessFlag[i][0],"COMP",4) == 0) - - // decay - // G3 default value: 1 - // G4 process: G4Decay - // - // Particles: all which decay is applicable for - // Physics: General - // flag = 0 no decays - // flag = 1 decays, secondaries processed - // flag = 2 decays, no secondaries stored - //gMC ->SetProcess("DCAY",1); // not available - else if ((strncmp(&sProcessFlag[i][0],"DCAY",4) == 0) && iProcessValue[i] == 1) - cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not avaliable!" << endl; - - // delta-ray - // G3 default value: 2 - // !! G4 treats delta rays in different way - // G4 processes: G4eIonisation/G4IeIonization, - // G4MuIonisation/G4IMuIonization, - // G4hIonisation/G4IhIonisation - // Particles: charged - // Physics: EM - // flag = 0 no energy loss - // flag = 1 restricted energy loss fluctuations - // flag = 2 complete energy loss fluctuations - // flag = 3 same as 1 - // flag = 4 no energy loss fluctuations - // gMC ->SetProcess("DRAY",0); // DELTARAY 1.E+6 0. 0. 3. lastmat 0. - else if (strncmp(&sProcessFlag[i][0],"DRAY",4) == 0) { - if (iProcessValue[i] == 0 || iProcessValue[i] == 4) { - fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',0) or SetProcess('DRAY',4)\n"); - fprintf(pAliceInp,"*No delta ray production by muons - threshold set artificially high\n"); - Double_t emin = 1.0e+6; // kinetic energy threshold (GeV) for delta ray production (discrete energy transfer) - // zero = ignored - // zero = ignored - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - // one = step length in assigning indices - fprintf(pAliceInp,"DELTARAY %10.4g%10.1f%10.1f%10.1f%10.1f%10.1f\n",emin,zero,zero,three,fLastMaterial,one); - } - else if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) { - fprintf(pAliceInp,"*\n*Kinetic energy threshold (GeV) for delta ray production\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('DRAY',flag), flag=1,2,3\n"); - fprintf(pAliceInp,"*Delta ray production by muons switched on\n"); - fprintf(pAliceInp,"*Energy threshold set by call SetCut('DCUTM',cut) or set to 1.0e+6.\n"); - fCut = 1.0e+6; - for (j=0; jSetProcess("HADR",1); // ??? hadronic process - //Select pure GEANH (HADR 1) or GEANH/NUCRIN (HADR 3) ????? - else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0) { - if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { - fprintf(pAliceInp,"*\n*Hadronic interaction is ON by default in FLUKA\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - else if (iProcessValue[i] == 0) { - fprintf(pAliceInp,"*\n*Hadronic interaction is set OFF\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('HADR',0);\n"); - // zero = ignored - // three = multiple scattering for hadrons and muons is completely suppressed - // zero = no spin-relativistic corrections - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - fprintf(pAliceInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,zero,three,fLastMaterial); - - } - else { - fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('HADR',?) call.\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - } // end of else if (strncmp(&sProcessFlag[i][0],"HADR",4) == 0) - - - // energy loss - // G3 default value: 2 - // G4 processes: G4eIonisation/G4IeIonization, - // G4MuIonisation/G4IMuIonization, - // G4hIonisation/G4IhIonisation - // - // Particles: charged - // Physics: EM - // flag=0 no energy loss - // flag=1 restricted energy loss fluctuations - // flag=2 complete energy loss fluctuations - // flag=3 same as 1 - // flag=4 no energy loss fluctuations - // If the value ILOSS is changed, then (in G3) cross-sections and energy - // loss tables must be recomputed via the command 'PHYSI' - // gMC ->SetProcess("LOSS",2); // ??? IONFLUCT ? energy loss - else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0) { - if (iProcessValue[i] == 2) { // complete energy loss fluctuations - fprintf(pAliceInp,"*\n*Complete energy loss fluctuations do not exist in FLUKA\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',2);\n"); - fprintf(pAliceInp,"*flag=2=complete energy loss fluctuations\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - else if (iProcessValue[i] == 1 || iProcessValue[i] == 3) { // restricted energy loss fluctuations - fprintf(pAliceInp,"*\n*Restricted energy loss fluctuations\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('LOSS',1) or SetProcess('LOSS',3)\n"); - // one = restricted energy loss fluctuations (for hadrons and muons) switched on - // one = restricted energy loss fluctuations (for e+ and e-) switched on - // one = minimal accuracy - // three = lower bound of the material indices in which the respective thresholds apply - // upper bound of the material indices in which the respective thresholds apply - fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,three,fLastMaterial); - } - else if (iProcessValue[i] == 4) { // no energy loss fluctuations - fprintf(pAliceInp,"*\n*No energy loss fluctuations\n"); - fprintf(pAliceInp,"*\n*Generated from call: SetProcess('LOSS',4)\n"); - // - one = restricted energy loss fluctuations (for hadrons and muons) switched off - // - one = restricted energy loss fluctuations (for e+ and e-) switched off - // one = minimal accuracy - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,-one,one,three,fLastMaterial); - } - else { - fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('LOSS',?) call.\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - } // end of else if (strncmp(&sProcessFlag[i][0],"LOSS",4) == 0) - - - // multiple scattering - // G3 default value: 1 - // G4 process: G4MultipleScattering/G4IMultipleScattering - // - // Particles: charged - // Physics: EM - // flag = 0 no multiple scattering - // flag = 1 Moliere or Coulomb scattering - // flag = 2 Moliere or Coulomb scattering - // flag = 3 Gaussian scattering - // gMC ->SetProcess("MULS",1); // MULSOPT multiple scattering - else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0) { - if (iProcessValue[i] == 1 || iProcessValue[i] == 2 || iProcessValue[i] == 3) { - fprintf(pAliceInp,"*\n*Multiple scattering is ON by default for e+e- and for hadrons/muons\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - else if (iProcessValue[i] == 0) { - fprintf(pAliceInp,"*\n*Multiple scattering is set OFF\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('MULS',0);\n"); - // zero = ignored - // three = multiple scattering for hadrons and muons is completely suppressed - // three = multiple scattering for e+ and e- is completely suppressed - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - fprintf(pAliceInp,"MULSOPT %10.1f%10.1f%10.1f%10.1f%10.1f\n",zero,three,three,three,fLastMaterial); - } - else { - fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MULS',?) call.\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - } // end of else if (strncmp(&sProcessFlag[i][0],"MULS",4) == 0) - - - // muon nuclear interaction - // G3 default value: 0 - // G4 processes: G4MuNuclearInteraction, - // G4MuonMinusCaptureAtRest - // - // Particles: mu - // Physics: Not set - // flag = 0 no muon-nuclear interaction - // flag = 1 nuclear interaction, secondaries processed - // flag = 2 nuclear interaction, secondaries not processed - // gMC ->SetProcess("MUNU",1); // MUPHOTON 1. 0. 0. 3. lastmat - else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0) { - if (iProcessValue[i] == 1) { - fprintf(pAliceInp,"*\n*Muon nuclear interactions with production of secondary hadrons\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',1);\n"); - // one = full simulation of muon nuclear interactions and production of secondary hadrons - // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. - // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75. - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,three,fLastMaterial); - } - else if (iProcessValue[i] == 2) { - fprintf(pAliceInp,"*\n*Muon nuclear interactions without production of secondary hadrons\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',2);\n"); - // two = full simulation of muon nuclear interactions and production of secondary hadrons - // zero = ratio of longitudinal to transverse virtual photon cross-section - Default = 0.25. - // zero = fraction of rho-like interactions ( must be < 1) - Default = 0.75. - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - fprintf(pAliceInp,"MUPHOTON %10.1f%10.1f%10.1f%10.1f%10.1f\n",two,zero,zero,three,fLastMaterial); - } - else if (iProcessValue[i] == 0) { - fprintf(pAliceInp,"*\n*No muon nuclear interaction - no FLUKA card generated\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('MUNU',0)\n"); - } - else { - fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('MUNU',?) call.\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - } // end of else if (strncmp(&sProcessFlag[i][0],"MUNU",4) == 0) - - - // photofission - // G3 default value: 0 - // G4 process: ?? - // - // Particles: gamma - // Physics: ?? - // gMC ->SetProcess("PFIS",0); // PHOTONUC -1. 0. 0. 3. lastmat 0. - // flag = 0 no photon fission - // flag = 1 photon fission, secondaries processed - // flag = 2 photon fission, no secondaries stored - else if (strncmp(&sProcessFlag[i][0],"PFIS",4) == 0) { - if (iProcessValue[i] == 0) { - fprintf(pAliceInp,"*\n*No photonuclear interactions\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0);\n"); - // - one = no photonuclear interactions - // zero = not used - // zero = not used - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",-one,zero,zero,three,fLastMaterial); - } - else if (iProcessValue[i] == 1) { - fprintf(pAliceInp,"*\n*Photon nuclear interactions are activated at all energies\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',1);\n"); - // one = photonuclear interactions are activated at all energies - // zero = not used - // zero = not used - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - fprintf(pAliceInp,"PHOTONUC %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,zero,zero,three,fLastMaterial); - } - else if (iProcessValue[i] == 0) { - fprintf(pAliceInp,"*\n*No photofission - no FLUKA card generated\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('PFIS',0)\n"); - } - else { - fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PFIS',?) call.\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - } - - - // photo electric effect - // G3 default value: 1 - // G4 processes: G4PhotoElectricEffect - // G4LowEnergyPhotoElectric - // Particles: gamma - // Physics: EM - // flag = 0 no photo electric effect - // flag = 1 photo electric effect, electron processed - // flag = 2 photo electric effect, no electron stored - // gMC ->SetProcess("PHOT",1); // EMFCUT 0. -1. 0. 3. lastmat 0. PHOT-THR - else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0) { - if (iProcessValue[i] == 1 || iProcessValue[i] == 2) { - fprintf(pAliceInp,"*\n*Photo electric effect is activated\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',1);\n"); - // zero = ignored - // - one = resets to default=0. - // zero = ignored - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - // one = step length in assigning indices - //"PHOT-THR"; - fprintf(pAliceInp,"EMFCUT %10.1f%10.1f%10.1f%10.1f%10.1f%10.1fPHOT-THR\n",zero,-one,zero,three,fLastMaterial,one); - } - else if (iProcessValue[i] == 0) { - fprintf(pAliceInp,"*\n*No photo electric effect - no FLUKA card generated\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('PHOT',0)\n"); - } - else { - fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('PHOT',?) call.\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - } // else if (strncmp(&sProcessFlag[i][0],"PHOT",4) == 0) - - - // Rayleigh scattering - // G3 default value: 0 - // G4 process: G4OpRayleigh - // - // Particles: optical photon - // Physics: Optical - // flag = 0 Rayleigh scattering off - // flag = 1 Rayleigh scattering on - //xx gMC ->SetProcess("RAYL",1); - else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0) { - if (iProcessValue[i] == 1) { - fprintf(pAliceInp,"*\n*Rayleigh scattering is ON by default in FLUKA\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - else if (iProcessValue[i] == 0) { - fprintf(pAliceInp,"*\n*Rayleigh scattering is set OFF\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('RAYL',0);\n"); - // - one = no Rayleigh scattering and no binding corrections for Compton - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - fprintf(pAliceInp,"EMFRAY %10.1f%10.1f%10.1f%10.1f\n",-one,three,three,fLastMaterial); - } - else { - fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('RAYL',?) call.\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - } // end of else if (strncmp(&sProcessFlag[i][0],"RAYL",4) == 0) - - - // synchrotron radiation in magnetic field - // G3 default value: 0 - // G4 process: G4SynchrotronRadiation - // - // Particles: ?? - // Physics: Not set - // flag = 0 no synchrotron radiation - // flag = 1 synchrotron radiation - //xx gMC ->SetProcess("SYNC",1); // synchrotron radiation generation - else if (strncmp(&sProcessFlag[i][0],"SYNC",4) == 0) { - fprintf(pAliceInp,"*\n*Synchrotron radiation generation is NOT implemented in FLUKA\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - - - // Automatic calculation of tracking medium parameters - // flag = 0 no automatic calculation - // flag = 1 automatic calculation - //xx gMC ->SetProcess("AUTO",1); // ??? automatic computation of the tracking medium parameters - else if (strncmp(&sProcessFlag[i][0],"AUTO",4) == 0) { - fprintf(pAliceInp,"*\n*Automatic calculation of tracking medium parameters is always ON in FLUKA\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - - - // To control energy loss fluctuation model - // flag = 0 Urban model - // flag = 1 PAI model - // flag = 2 PAI+ASHO model (not active at the moment) - //xx gMC ->SetProcess("STRA",1); // ??? energy fluctuation model - else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0) { - if (iProcessValue[i] == 0 || iProcessValue[i] == 2 || iProcessValue[i] == 3) { - fprintf(pAliceInp,"*\n*Ionization energy losses calculation is activated\n"); - fprintf(pAliceInp,"*Generated from call: SetProcess('STRA',n);, n=0,1,2\n"); - // one = restricted energy loss fluctuations (for hadrons and muons) switched on - // one = restricted energy loss fluctuations (for e+ and e-) switched on - // one = minimal accuracy - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - fprintf(pAliceInp,"IONFLUCT %10.1f%10.1f%10.1f%10.1f%10.1f\n",one,one,one,three,fLastMaterial); - } - else { - fprintf(pAliceInp,"*\n*Illegal flag value in SetProcess('STRA',?) call.\n"); - fprintf(pAliceInp,"*No FLUKA card generated\n"); - } - } // else if (strncmp(&sProcessFlag[i][0],"STRA",4) == 0) - - - - - else { // processes not yet treated - - // light photon absorption (Cerenkov photons) - // it is turned on when Cerenkov process is turned on - // G3 default value: 0 - // G4 process: G4OpAbsorption, G4OpBoundaryProcess - // - // Particles: optical photon - // Physics: Optical - // flag = 0 no absorption of Cerenkov photons - // flag = 1 absorption of Cerenkov photons - // gMC ->SetProcess("LABS",2); // ??? Cerenkov light absorption - - - - cout << "SetProcess for flag=" << &sProcessFlag[i][0] << " value=" << iProcessValue[i] << " not yet implemented!" << endl; - } - } //end of loop number of SetProcess calls - - -// Loop over number of SetCut calls - for (Int_t i=0; iSetCut("CUTGAM",cut); // cut for gammas - else if (strncmp(&sCutFlag[i][0],"CUTGAM",6) == 0) { - fprintf(pAliceInp,"*\n*Cut for gamma\n"); - fprintf(pAliceInp,"*Generated from call: SetCut('CUTGAM',cut);\n"); - // -fCutValue[i]; - // 7.0 = lower bound of the particle id-numbers to which the cut-off - fprintf(pAliceInp,"PART-THR %10.4g%10.1f\n",-fCutValue[i],7.0); - } - - // electrons - // G4 particles: "e-" - // ?? positrons - // G3 default value: 0.001 GeV - //gMC ->SetCut("CUTELE",cut); // cut for e+,e- - else if (strncmp(&sCutFlag[i][0],"CUTELE",6) == 0) { - fprintf(pAliceInp,"*\n*Cut for electrons\n"); - fprintf(pAliceInp,"*Generated from call: SetCut('CUTELE',cut);\n"); - // -fCutValue[i]; - // three = lower bound of the particle id-numbers to which the cut-off - // 4.0 = upper bound of the particle id-numbers to which the cut-off - // one = step length in assigning numbers - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],three,4.0,one); - } - - // neutral hadrons - // G4 particles: of type "baryon", "meson", "nucleus" with zero charge - // G3 default value: 0.01 GeV - //gMC ->SetCut("CUTNEU",cut); // cut for neutral hadrons - else if (strncmp(&sCutFlag[i][0],"CUTNEU",6) == 0) { - fprintf(pAliceInp,"*\n*Cut for neutral hadrons\n"); - fprintf(pAliceInp,"*Generated from call: SetCut('CUTNEU',cut);\n"); - - // 8.0 = Neutron - // 9.0 = Antineutron - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],8.0,9.0); - - // 12.0 = Kaon zero long - // 12.0 = Kaon zero long - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],12.0,12.0); - - // 17.0 = Lambda, 18.0 = Antilambda - // 19.0 = Kaon zero short - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],17.0,19.0); - - // 22.0 = Sigma zero, Pion zero, Kaon zero - // 25.0 = Antikaon zero - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],22.0,25.0); - - // 32.0 = Antisigma zero - // 32.0 = Antisigma zero - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],32.0,32.0); - - // 34.0 = Xi zero - // 35.0 = AntiXi zero - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],34.0,35.0); - - // 47.0 = D zero - // 48.0 = AntiD zero - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],47.0,48.0); - - // 53.0 = Xi_c zero - // 53.0 = Xi_c zero - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],53.0,53.0); - - // 55.0 = Xi'_c zero - // 56.0 = Omega_c zero - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],55.0,56.0); - - // 59.0 = AntiXi_c zero - // 59.0 = AntiXi_c zero - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],59.0,59.0); - - // 61.0 = AntiXi'_c zero - // 62.0 = AntiOmega_c zero - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],61.0,62.0); - } - - // charged hadrons - // G4 particles: of type "baryon", "meson", "nucleus" with non-zero charge - // G3 default value: 0.01 GeV - //gMC ->SetCut("CUTHAD",cut); // cut for charged hadrons - else if (strncmp(&sCutFlag[i][0],"CUTHAD",6) == 0) { - fprintf(pAliceInp,"*\n*Cut for charged hadrons\n"); - fprintf(pAliceInp,"*Generated from call: SetCut('CUTHAD',cut);\n"); - - // 1.0 = Proton - // 2.0 = Antiproton - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],1.0,2.0); - - // 13.0 = Positive Pion, Negative Pion, Positive Kaon - // 16.0 = Negative Kaon - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],13.0,16.0); - - // 20.0 = Negative Sigma - // 21.0 = Positive Sigma - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],20.0,21.0); - - // 31.0 = Antisigma minus - // 33.0 = Antisigma plus - // 2.0 = step length - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],31.0,33.0,2.0); - - // 36.0 = Negative Xi, Positive Xi, Omega minus - // 39.0 = Antiomega - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],36.0,39.0); - - // 45.0 = D plus - // 46.0 = D minus - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],45.0,46.0); - - // 49.0 = D_s plus, D_s minus, Lambda_c plus - // 52.0 = Xi_c plus - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],49.0,52.0); - - // 54.0 = Xi'_c plus - // 60.0 = AntiXi'_c minus - // 6.0 = step length - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f%10.1f\n",-fCutValue[i],54.0,60.0,6.0); - - // 57.0 = Antilambda_c minus - // 58.0 = AntiXi_c minus - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],57.0,58.0); - } - - // muons - // G4 particles: "mu+", "mu-" - // G3 default value: 0.01 GeV - //gMC ->SetCut("CUTMUO",cut); // cut for mu+, mu- - else if (strncmp(&sCutFlag[i][0],"CUTMUO",6) == 0) { - fprintf(pAliceInp,"*\n*Cut for muons\n"); - fprintf(pAliceInp,"*Generated from call: SetCut('CUTMUO',cut);\n"); - // 10.0 = Muon+ - // 11.0 = Muon- - fprintf(pAliceInp,"PART-THR %10.4g%10.1f%10.1f\n",-fCutValue[i],10.0,11.0); - } - - // delta-rays by electrons - // G4 particles: "e-" - // G3 default value: 10**4 GeV - // gMC ->SetCut("DCUTE",cut); // cut for deltarays by electrons ??????????????? - else if (strncmp(&sCutFlag[i][0],"DCUTE",5) == 0) { - fprintf(pAliceInp,"*\n*Cut for delta rays by electrons ????????????\n"); - fprintf(pAliceInp,"*Generated from call: SetCut('DCUTE',cut);\n"); - // -fCutValue[i]; - // zero = ignored - // zero = ignored - // three = lower bound of the material indices in which the respective thresholds apply - // fLastMaterial = upper bound of the material indices in which the respective thresholds apply - fprintf(pAliceInp,"EMFCUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",-fCutValue[i],zero,zero,three,fLastMaterial); - } - - // - // time of flight cut in seconds - // G4 particles: all - // G3 default value: 0.01 GeV - //gMC ->SetCut("TOFMAX",tofmax); // time of flight cuts in seconds - else if (strncmp(&sCutFlag[i][0],"TOFMAX",6) == 0) { - fprintf(pAliceInp,"*\n*Time of flight cuts in seconds\n"); - fprintf(pAliceInp,"*Generated from call: SetCut('TOFMAX',tofmax);\n"); - // zero = ignored - // zero = ignored - // -6.0 = lower bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied - // 64.0 = upper bound of the particle numbers for which the transport time cut-off and/or the start signal is to be applied - fprintf(pAliceInp,"TIME-CUT %10.4g%10.1f%10.1f%10.1f%10.1f\n",fCutValue[i]*1.e9,zero,zero,-6.0,64.0); - } - - else { - cout << "SetCut for flag=" << &sCutFlag[i][0] << " value=" << fCutValue[i] << " not yet implemented!" << endl; - } - } //end of loop over SetCut calls - -// Add START and STOP card - fprintf(pAliceInp,"START %10.1f\n",fEventsPerRun); - fprintf(pAliceInp,"STOP \n"); - -} // end of InitPhysics - - -void TFluka::SetMaxStep(Double_t) -{ -// SetMaxStep is dummy procedure in TFluka ! - if (fVerbosityLevel >=3) - cout << "SetMaxStep is dummy procedure in TFluka !" << endl; -} - -void TFluka::SetMaxNStep(Int_t) -{ -// SetMaxNStep is dummy procedure in TFluka ! - if (fVerbosityLevel >=3) - cout << "SetMaxNStep is dummy procedure in TFluka !" << endl; -} - -void TFluka::SetUserDecay(Int_t) -{ -// SetUserDecay is dummy procedure in TFluka ! - if (fVerbosityLevel >=3) - cout << "SetUserDecay is dummy procedure in TFluka !" << endl; -} - -// -// dynamic properties -// -void TFluka::TrackPosition(TLorentzVector& position) const -{ -// Return the current position in the master reference frame of the -// track being transported -// TRACKR.atrack = age of the particle -// TRACKR.xtrack = x-position of the last point -// TRACKR.ytrack = y-position of the last point -// TRACKR.ztrack = z-position of the last point - Int_t caller = GetCaller(); - if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw - position.SetX(GetXsco()); - position.SetY(GetYsco()); - position.SetZ(GetZsco()); - position.SetT(TRACKR.atrack); - } - else if (caller == 4) { // mgdraw - position.SetX(TRACKR.xtrack[TRACKR.ntrack]); - position.SetY(TRACKR.ytrack[TRACKR.ntrack]); - position.SetZ(TRACKR.ztrack[TRACKR.ntrack]); - position.SetT(TRACKR.atrack); - } - else if (caller == 5) { // sodraw - position.SetX(TRACKR.xtrack[TRACKR.ntrack]); - position.SetY(TRACKR.ytrack[TRACKR.ntrack]); - position.SetZ(TRACKR.ztrack[TRACKR.ntrack]); - position.SetT(0); - } - else - Warning("TrackPosition","position not available"); -} - -// -void TFluka::TrackPosition(Double_t& x, Double_t& y, Double_t& z) const -{ -// Return the current position in the master reference frame of the -// track being transported -// TRACKR.atrack = age of the particle -// TRACKR.xtrack = x-position of the last point -// TRACKR.ytrack = y-position of the last point -// TRACKR.ztrack = z-position of the last point - Int_t caller = GetCaller(); - if (caller == 3 || caller == 6 || caller == 11 || caller == 12) { //bxdraw,endraw,usdraw - x = GetXsco(); - y = GetYsco(); - z = GetZsco(); - } - else if (caller == 4 || caller == 5) { // mgdraw, sodraw - x = TRACKR.xtrack[TRACKR.ntrack]; - y = TRACKR.ytrack[TRACKR.ntrack]; - z = TRACKR.ztrack[TRACKR.ntrack]; - } - else - Warning("TrackPosition","position not available"); -} - -void TFluka::TrackMomentum(TLorentzVector& momentum) const -{ -// Return the direction and the momentum (GeV/c) of the track -// currently being transported -// TRACKR.ptrack = momentum of the particle (not always defined, if -// < 0 must be obtained from etrack) -// TRACKR.cx,y,ztrck = direction cosines of the current particle -// TRACKR.etrack = total energy of the particle -// TRACKR.jtrack = identity number of the particle -// PAPROP.am[TRACKR.jtrack] = particle mass in gev - Int_t caller = GetCaller(); - if (caller != 2) { // not eedraw - if (TRACKR.ptrack >= 0) { - momentum.SetPx(TRACKR.ptrack*TRACKR.cxtrck); - momentum.SetPy(TRACKR.ptrack*TRACKR.cytrck); - momentum.SetPz(TRACKR.ptrack*TRACKR.cztrck); - momentum.SetE(TRACKR.etrack); - return; - } - else { - Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]); - momentum.SetPx(p*TRACKR.cxtrck); - momentum.SetPy(p*TRACKR.cytrck); - momentum.SetPz(p*TRACKR.cztrck); - momentum.SetE(TRACKR.etrack); - return; - } - } - else - Warning("TrackMomentum","momentum not available"); -} - -void TFluka::TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const -{ -// Return the direction and the momentum (GeV/c) of the track -// currently being transported -// TRACKR.ptrack = momentum of the particle (not always defined, if -// < 0 must be obtained from etrack) -// TRACKR.cx,y,ztrck = direction cosines of the current particle -// TRACKR.etrack = total energy of the particle -// TRACKR.jtrack = identity number of the particle -// PAPROP.am[TRACKR.jtrack] = particle mass in gev - Int_t caller = GetCaller(); - if (caller != 2) { // not eedraw - if (TRACKR.ptrack >= 0) { - px = TRACKR.ptrack*TRACKR.cxtrck; - py = TRACKR.ptrack*TRACKR.cytrck; - pz = TRACKR.ptrack*TRACKR.cztrck; - e = TRACKR.etrack; - return; - } - else { - Double_t p = sqrt(TRACKR.etrack*TRACKR.etrack - PAPROP.am[TRACKR.jtrack+6]*PAPROP.am[TRACKR.jtrack+6]); - px = p*TRACKR.cxtrck; - py = p*TRACKR.cytrck; - pz = p*TRACKR.cztrck; - e = TRACKR.etrack; - return; - } - } - else - Warning("TrackMomentum","momentum not available"); -} - -Double_t TFluka::TrackStep() const -{ -// Return the length in centimeters of the current step -// TRACKR.ctrack = total curved path - Int_t caller = GetCaller(); - if (caller == 11 || caller==12 || caller == 3 || caller == 6) //bxdraw,endraw,usdraw - return 0.0; - else if (caller == 4) //mgdraw - return TRACKR.ctrack; - else - return -1.0; -} - -Double_t TFluka::TrackLength() const -{ -// TRACKR.cmtrck = cumulative curved path since particle birth - Int_t caller = GetCaller(); - if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw - return TRACKR.cmtrck; - else - return -1.0; -} - -Double_t TFluka::TrackTime() const -{ -// Return the current time of flight of the track being transported -// TRACKR.atrack = age of the particle - Int_t caller = GetCaller(); - if (caller == 11 || caller==12 || caller == 3 || caller == 4 || caller == 6) //bxdraw,endraw,mgdraw,usdraw - return TRACKR.atrack; - else - return -1; -} - -Double_t TFluka::Edep() const -{ -// Energy deposition -// if TRACKR.ntrack = 0, TRACKR.mtrack = 0: -// -->local energy deposition (the value and the point are not recorded in TRACKR) -// but in the variable "rull" of the procedure "endraw.cxx" -// if TRACKR.ntrack > 0, TRACKR.mtrack = 0: -// -->no energy loss along the track -// if TRACKR.ntrack > 0, TRACKR.mtrack > 0: -// -->energy loss distributed along the track -// TRACKR.dtrack = energy deposition of the jth deposition even - - // If coming from bxdraw we have 2 steps of 0 length and 0 edep - Int_t caller = GetCaller(); - if (caller == 11 || caller==12) return 0.0; - Double_t sum = 0; - for ( Int_t j=0;j= 3) - printf("VolId2Mate %d %d\n", id, fMediaByRegion[id-1]); - return fMediaByRegion[id-1]; -} - -const char* TFluka::VolName(Int_t id) const -{ -// -// Returns the volume name for a given volume ID -// - FlukaVolume* vol = dynamic_cast((*fVolumeMediaMap)[id-1]); - const char* name = vol->GetName(); - if (fVerbosityLevel >= 3) - printf("VolName %d %s \n", id, name); - return name; -} - -Int_t TFluka::VolId(const Text_t* volName) const -{ -// -// Converts from volume name to volume ID. -// Time consuming. (Only used during set-up) -// Could be replaced by hash-table -// - char tmp[5]; - Int_t i =0; - for (i = 0; i < fNVolumes; i++) - { - FlukaVolume* vol = dynamic_cast((*fVolumeMediaMap)[i]); - TString name = vol->GetName(); - strcpy(tmp, name.Data()); - tmp[4] = '\0'; - if (!strcmp(tmp, volName)) break; - } - i++; - - return i; -} - - -Int_t TFluka::CurrentVolID(Int_t& copyNo) const -{ -// -// Return the logical id and copy number corresponding to the current fluka region -// - int ir = fCurrentFlukaRegion; - int id = (FGeometryInit::GetInstance())->CurrentVolID(ir, copyNo); - copyNo++; - if (fVerbosityLevel >= 3) - printf("CurrentVolID: %d %d %d \n", ir, id, copyNo); - return id; -} - -Int_t TFluka::CurrentVolOffID(Int_t off, Int_t& copyNo) const -{ -// -// Return the logical id and copy number of off'th mother -// corresponding to the current fluka region -// - if (off == 0) - return CurrentVolID(copyNo); - - int ir = fCurrentFlukaRegion; - int id = (FGeometryInit::GetInstance())->CurrentVolOffID(ir, off, copyNo); - copyNo++; - if (fVerbosityLevel >= 3) - printf("CurrentVolOffID: %d %d %d \n", ir, id, copyNo); - if (id == -1) - if (fVerbosityLevel >= 0) - printf("CurrentVolOffID: Warning Mother not found !!!\n"); - return id; -} - - -const char* TFluka::CurrentVolName() const -{ -// -// Return the current volume name -// - Int_t copy; - Int_t id = TFluka::CurrentVolID(copy); - const char* name = TFluka::VolName(id); - if (fVerbosityLevel >= 3) - printf("CurrentVolumeName: %d %s \n", fCurrentFlukaRegion, name); - return name; -} - -const char* TFluka::CurrentVolOffName(Int_t off) const -{ -// -// Return the volume name of the off'th mother of the current volume -// - Int_t copy; - Int_t id = TFluka::CurrentVolOffID(off, copy); - const char* name = TFluka::VolName(id); - if (fVerbosityLevel >= 3) - printf("CurrentVolumeOffName: %d %s \n", fCurrentFlukaRegion, name); - return name; -} - -Int_t TFluka::CurrentMaterial(Float_t & /*a*/, Float_t & /*z*/, - Float_t & /*dens*/, Float_t & /*radl*/, Float_t & /*absl*/) const -{ -// -// Return the current medium number -// - Int_t copy; - Int_t id = TFluka::CurrentVolID(copy); - Int_t med = TFluka::VolId2Mate(id); - if (fVerbosityLevel >= 3) - printf("CurrentMaterial: %d %d \n", fCurrentFlukaRegion, med); - return med; -} - -void TFluka::Gmtod(Float_t* xm, Float_t* xd, Int_t iflag) - { -// Transforms a position from the world reference frame -// to the current volume reference frame. -// -// Geant3 desription: -// ================== -// Computes coordinates XD (in DRS) -// from known coordinates XM in MRS -// The local reference system can be initialized by -// - the tracking routines and GMTOD used in GUSTEP -// - a call to GMEDIA(XM,NUMED) -// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER) -// (inverse routine is GDTOM) -// -// If IFLAG=1 convert coordinates -// IFLAG=2 convert direction cosinus -// -// --- - Double_t xmD[3], xdD[3]; - xmD[0] = xm[0]; xmD[1] = xm[1]; xmD[2] = xm[2]; - (FGeometryInit::GetInstance())->Gmtod(xmD, xdD, iflag); - xd[0] = xdD[0]; xd[1] = xdD[1]; xd[2] = xdD[2]; - } - - -void TFluka::Gmtod(Double_t* xm, Double_t* xd, Int_t iflag) - { -// Transforms a position from the world reference frame -// to the current volume reference frame. -// -// Geant3 desription: -// ================== -// Computes coordinates XD (in DRS) -// from known coordinates XM in MRS -// The local reference system can be initialized by -// - the tracking routines and GMTOD used in GUSTEP -// - a call to GMEDIA(XM,NUMED) -// - a call to GLVOLU(NLEVEL,NAMES,NUMBER,IER) -// (inverse routine is GDTOM) -// -// If IFLAG=1 convert coordinates -// IFLAG=2 convert direction cosinus -// -// --- - (FGeometryInit::GetInstance())->Gmtod(xm, xd, iflag); - } - -void TFluka::Gdtom(Float_t* xd, Float_t* xm, Int_t iflag) - { -// Transforms a position from the current volume reference frame -// to the world reference frame. -// -// Geant3 desription: -// ================== -// Computes coordinates XM (Master Reference System -// knowing the coordinates XD (Detector Ref System) -// The local reference system can be initialized by -// - the tracking routines and GDTOM used in GUSTEP -// - a call to GSCMED(NLEVEL,NAMES,NUMBER) -// (inverse routine is GMTOD) -// -// If IFLAG=1 convert coordinates -// IFLAG=2 convert direction cosinus -// -// --- - Double_t xmD[3], xdD[3]; - xdD[0] = xd[0]; xdD[1] = xd[1]; xdD[2] = xd[2]; - (FGeometryInit::GetInstance())->Gdtom(xdD, xmD, iflag); - xm[0] = xmD[0]; xm[1] = xmD[1]; xm[2] = xmD[2]; - } -void TFluka::Gdtom(Double_t* xd, Double_t* xm, Int_t iflag) - { -// Transforms a position from the current volume reference frame -// to the world reference frame. -// -// Geant3 desription: -// ================== -// Computes coordinates XM (Master Reference System -// knowing the coordinates XD (Detector Ref System) -// The local reference system can be initialized by -// - the tracking routines and GDTOM used in GUSTEP -// - a call to GSCMED(NLEVEL,NAMES,NUMBER) -// (inverse routine is GMTOD) -// -// If IFLAG=1 convert coordinates -// IFLAG=2 convert direction cosinus -// -// --- - - (FGeometryInit::GetInstance())->Gdtom(xd, xm, iflag); - } - -// =============================================================== diff --git a/TFluka/TFluka.h b/TFluka/TFluka.h deleted file mode 100644 index c8dec479c86..00000000000 --- a/TFluka/TFluka.h +++ /dev/null @@ -1,374 +0,0 @@ -#ifndef TFLUKA -#define TFLUKA -/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * - * See cxx source for full Copyright notice */ - -/* $Id$ */ - -/////////////////////////////////////////////////////////////////////////////// -// // -// // -// FLUKA implementation of the VirtualMC Interface // -// // -// // -/////////////////////////////////////////////////////////////////////////////// - - -#include "TVirtualMC.h" -#include "TMCProcess.h" - -#include -#include - -//Forward declaration -class TG4GeometryManager; -class TG4DetConstruction; -class TClonesArray; -class TGeoMaterial; - - -class TFluka : public TVirtualMC { - - public: - TFluka(const char *title, Int_t verbosity = 0, Bool_t isRootGeometrySupported = 0); - TFluka(); - virtual ~TFluka(); - - // - // methods for building/management of geometry - // ------------------------------------------------ - // - - // functions from GCONS - virtual void Gfmate(Int_t imat, char *name, Float_t &a, Float_t &z, - Float_t &dens, Float_t &radl, Float_t &absl, - Float_t* ubuf, Int_t& nbuf); - virtual void Gfmate(Int_t imat, char *name, Double_t &a, Double_t &z, - Double_t &dens, Double_t &radl, Double_t &absl, - Double_t* ubuf, Int_t& nbuf); - - // detector composition - virtual void Material(Int_t& kmat, const char* name, Double_t a, - Double_t z, Double_t dens, Double_t radl, Double_t absl, - Float_t* buf, Int_t nwbuf); - virtual void Material(Int_t& kmat, const char* name, Double_t a, - Double_t z, Double_t dens, Double_t radl, Double_t absl, - Double_t* buf, Int_t nwbuf); - virtual void Mixture(Int_t& kmat, const char *name, Float_t *a, - Float_t *z, Double_t dens, Int_t nlmat, Float_t *wmat); - virtual void Mixture(Int_t& kmat, const char *name, Double_t *a, - Double_t *z, Double_t dens, Int_t nlmat, Double_t *wmat); - virtual void Medium(Int_t& kmed, const char *name, Int_t nmat, - Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, - Double_t stemax, Double_t deemax, Double_t epsil, - Double_t stmin, Float_t* ubuf, Int_t nbuf); - virtual void Medium(Int_t& kmed, const char *name, Int_t nmat, - Int_t isvol, Int_t ifield, Double_t fieldm, Double_t tmaxfd, - Double_t stemax, Double_t deemax, Double_t epsil, - Double_t stmin, Double_t* ubuf, Int_t nbuf); - virtual void Matrix(Int_t& krot, Double_t thetaX, Double_t phiX, - Double_t thetaY, Double_t phiY, Double_t thetaZ, - Double_t phiZ); - virtual void Gstpar(Int_t itmed, const char *param, Double_t parval); - - // functions from GGEOM - virtual Int_t Gsvolu(const char *name, const char *shape, Int_t nmed, - Float_t *upar, Int_t np); - virtual Int_t Gsvolu(const char *name, const char *shape, Int_t nmed, - Double_t *upar, Int_t np); - virtual void Gsdvn(const char *name, const char *mother, Int_t ndiv, - Int_t iaxis); - virtual void Gsdvn2(const char *name, const char *mother, Int_t ndiv, - Int_t iaxis, Double_t c0i, Int_t numed); - virtual void Gsdvt(const char *name, const char *mother, Double_t step, - Int_t iaxis, Int_t numed, Int_t ndvmx); - virtual void Gsdvt2(const char *name, const char *mother, Double_t step, - Int_t iaxis, Double_t c0, Int_t numed, Int_t ndvmx); - virtual void Gsord(const char *name, Int_t iax); - virtual void Gspos(const char *name, Int_t nr, const char *mother, - Double_t x, Double_t y, Double_t z, Int_t irot, - const char *konly="ONLY"); - virtual void Gsposp(const char *name, Int_t nr, const char *mother, - Double_t x, Double_t y, Double_t z, Int_t irot, - const char *konly, Float_t *upar, Int_t np); - virtual void Gsposp(const char *name, Int_t nr, const char *mother, - Double_t x, Double_t y, Double_t z, Int_t irot, - const char *konly, Double_t *upar, Int_t np); - virtual void Gsbool(const char* onlyVolName, const char* manyVolName); - - virtual void SetCerenkov(Int_t itmed, Int_t npckov, Float_t *ppckov, - Float_t *absco, Float_t *effic, Float_t *rindex); - virtual void SetCerenkov(Int_t itmed, Int_t npckov, Double_t *ppckov, - Double_t *absco, Double_t *effic, Double_t *rindex); - - - // functions for drawing - virtual void DrawOneSpec(const char* /*name*/) - {printf("WARNING: DrawOneSpec not yet implemented !\n");} - virtual void Gsatt(const char* /*name*/, const char* /*att*/, Int_t /*val*/) - {printf("WARNING: Gsatt not yet implemented !\n");} - virtual void Gdraw(const char*,Double_t /*theta = 30*/, Double_t /*phi = 30*/, - Double_t /*psi = 0*/, Double_t /*u0 = 10*/, Double_t /*v0 = 10*/, - Double_t /*ul = 0.01*/, Double_t /*vl = 0.01*/) - {printf("WARNING: Gdraw not yet implemented !\n");} - - // Euclid - virtual void WriteEuclid(const char*, const char*, Int_t, Int_t); - - // get methods - virtual Int_t VolId(const Text_t* volName) const; - virtual const char* VolName(Int_t id) const; - virtual Int_t NofVolumes() const {return fNVolumes;} - virtual Int_t VolId2Mate(Int_t id) const; - // - // methods for physics management - // ------------------------------------------------ - // - - // set methods - virtual void SetProcess(const char* flagName, Int_t flagValue); - virtual void SetCut(const char* cutName, Double_t cutValue); - virtual Double_t Xsec(char*, Double_t, Int_t, Int_t); - - // particle table usage - virtual Int_t IdFromPDG(Int_t id) const; - virtual Int_t PDGFromId(Int_t pdg) const; - virtual void DefineParticles() - {printf("WARNING: DefineParticles not yet implemented !\n");} - - // - // methods for step management - // ------------------------------------------------ - // - - // action methods - virtual void StopTrack() - {printf("WARNING: StopTrack not yet implemented !\n");} - virtual void StopEvent() - {printf("WARNING: StopEvent not yet implemented !\n");} - - // set methods - virtual void SetMaxStep(Double_t); - virtual void SetMaxNStep(Int_t); - virtual void SetUserDecay(Int_t); - - // get methods - // tracking volume(s) - virtual Int_t CurrentVolID(Int_t& copyNo) const; - virtual Int_t CurrentVolOffID(Int_t off, Int_t& copyNo) const; - virtual const char* CurrentVolName() const; - virtual const char* CurrentVolOffName(Int_t off) const; - virtual Int_t CurrentMaterial(Float_t &a, Float_t &z, - Float_t &dens, Float_t &radl, Float_t &absl) const; - virtual Int_t CurrentEvent() const - {printf("WARNING: CurrentEvent not yet implemented !\n"); return -1;} - virtual void Gmtod(Float_t* xm, Float_t* xd, Int_t iflag); - - virtual void Gmtod(Double_t* xm, Double_t* xd, Int_t iflag); - - virtual void Gdtom(Float_t* xd, Float_t* xm, Int_t iflag); - - virtual void Gdtom(Double_t* xd, Double_t* xm, Int_t iflag); - - virtual Double_t MaxStep() const - {printf("WARNING: MaxStep not yet implemented !\n"); return -1.;} - virtual Int_t GetMaxNStep() const - {printf("WARNING: GetMaxNStep not yet implemented !\n"); return -1;} - virtual Int_t GetMedium() const; - - // tracking particle - // dynamic properties - virtual void TrackPosition(TLorentzVector& position) const; - virtual void TrackPosition(Double_t& x, Double_t& y, Double_t& z) const; - virtual void TrackMomentum(TLorentzVector& momentum) const; - virtual void TrackMomentum(Double_t& px, Double_t& py, Double_t& pz, Double_t& e) const; - virtual Double_t TrackStep() const; - virtual Double_t TrackLength() const; - virtual Double_t TrackTime() const; - virtual Double_t Edep() const; - // static properties - virtual Int_t TrackPid() const; - virtual Double_t TrackCharge() const; - virtual Double_t TrackMass() const; - virtual Double_t Etot() const; - // track status - virtual Bool_t IsNewTrack() const; - virtual Bool_t IsTrackInside() const; - virtual Bool_t IsTrackEntering() const; - virtual Bool_t IsTrackExiting() const; - virtual Bool_t IsTrackOut() const; - virtual Bool_t IsTrackDisappeared() const; - virtual Bool_t IsTrackStop() const; - virtual Bool_t IsTrackAlive() const; - - // secondaries - virtual Int_t NSecondaries() const ; - virtual void GetSecondary(Int_t isec, Int_t& particleId, - TLorentzVector& position, TLorentzVector& momentum); - virtual TMCProcess ProdProcess(Int_t iproc) const ; - virtual Int_t StepProcesses(TArrayI &/*proc*/) const - {printf("WARNING: StepProcesses not yet implemented !\n"); return -1;} - - - // - // Geant3 specific methods - // !!! need to be transformed to common interface - // - virtual void Gdopt(const char*,const char*) - {printf("WARNING: Gdopt not yet implemented !\n");} - virtual void SetClipBox(const char*,Double_t=-9999,Double_t=0, Double_t=-9999, - Double_t=0,Double_t=-9999,Double_t=0) - {printf("WARNING: SetClipBox not yet implemented !\n");} - virtual void DefaultRange() - {printf("WARNING: DefaultRange not yet implemented !\n");} - virtual void Gdhead(Int_t, const char*, Double_t=0) - {printf("WARNING: Gdhead not yet implemented !\n");} - virtual void Gdman(Double_t, Double_t, const char*) - {printf("WARNING: Gdman not yet implemented !\n");} - virtual void SetColors() - {printf("WARNING: SetColors not yet implemented !\n");} - virtual void Gtreve() - {printf("WARNING: Gtreve not yet implemented !\n");} - virtual void GtreveRoot() - {printf("WARNING: GtreveRoot not yet implemented !\n");} - virtual void Gckmat(Int_t, char*) - {printf("WARNING: Gckmat not yet implemented !\n");} - virtual void InitLego() - {printf("WARNING: InitLego not yet implemented !\n");} - virtual void Gfpart(Int_t, char*, Int_t&, Float_t&, Float_t&, Float_t&) - {printf("WARNING: Gfpart not yet implemented !\n");} - virtual void Gspart(Int_t, const char*, Int_t, Double_t, Double_t, Double_t) - {printf("WARNING: Gspart not yet implemented !\n");} - - // Dummy methods - virtual void DefineParticle(int, const char*, TMCParticleType, double, double, double){;} - virtual void DefineIon(const char*, int, int, int, double, double){;} - virtual TString ParticleName(int) const {return "";} - virtual Double_t ParticleMass(int) const {return 0.;} - virtual Double_t ParticleCharge(int) const {return 0.;} - virtual Double_t ParticleLifeTime(int) const {return 0.;} - virtual TMCParticleType ParticleMCType(int) const {return (TMCParticleType) 0;} - void SetDummyBoundary(Int_t mode) {fDummyBoundary = mode;} - Int_t GetDummyBoundary() const {return fDummyBoundary;} - // - // control methods - // ------------------------------------------------ - // - - virtual void Init(); - virtual void InitPhysics(); - virtual void FinishGeometry(); - virtual void BuildPhysics(); - virtual void ProcessEvent(); - virtual void ProcessRun(Int_t nevent); - - - // - //New Getter and Setters - // ------------------------------------------------ - // - // - Core input file name - TString GetCoreInputFileName() const {return sCoreInputFileName;} - void SetCoreInputFileName(const char* n) {sCoreInputFileName = n;} - - // - Input file name - TString GetInputFileName() const {return sInputFileName;} - void SetInputFileName(const char* n) {sInputFileName = n;} - - // - SetProcess and SetCut - Int_t GetProcessNb() const {return iNbOfProc;} - void SetProcessNb(Int_t l) {iNbOfProc = l;} - Int_t GetCutNb() const {return iNbOfProc;} - void SetCutNb(Int_t l) {iNbOfCut = l;} - - // - Verbosity level - Int_t GetVerbosityLevel() const {return fVerbosityLevel;} - void SetVerbosityLevel(Int_t l) {fVerbosityLevel = l;} - - // - Fluka Draw procedures identifiers - // bxdraw = 1 inside - // bxdraw = 11 entering - // bxdraw = 12 exiting - // eedraw = 2 - // endraw = 3 - // mgdraw = 4 - // sodraw = 5 - // usdraw = 6 - Int_t GetCaller() const {return fCaller;} - void SetCaller(Int_t l) {fCaller = l;} - - // - Fluka Draw procedures formal parameters - Int_t GetIcode() const {return fIcode;} - void SetIcode(Int_t l) {fIcode = l;} - // in the case of sodraw fIcode=0 - - Int_t GetMreg() const {return fCurrentFlukaRegion;} - void SetMreg(Int_t l) {fCurrentFlukaRegion = l;} - - Int_t GetNewreg() const {return iNewreg;} - void SetNewreg(Int_t l) {iNewreg = l;} - - Double_t GetRull() const {return fRull;} - void SetRull(Double_t r) {fRull = r;} - - Double_t GetXsco() const {return fXsco;} - void SetXsco(Double_t x) {fXsco = x;} - - Double_t GetYsco() const {return fYsco;} - void SetYsco(Double_t y) {fYsco = y;} - - Double_t GetZsco() const {return fZsco;} - void SetZsco(Double_t z) {fZsco = z;} - - void SetCurrentFlukaRegion(Int_t reg) {fCurrentFlukaRegion=reg;} - Int_t GetCurrentFlukaRegion() const {return fCurrentFlukaRegion;} - - void SetTrackIsEntering(){fTrackIsEntering = kTRUE; fTrackIsExiting = kFALSE;} - void SetTrackIsExiting() {fTrackIsExiting = kTRUE; fTrackIsEntering = kFALSE;} - void SetTrackIsInside() {fTrackIsExiting = kFALSE; fTrackIsEntering = kFALSE;} - void SetTrackIsNew(Bool_t flag=kTRUE) {fTrackIsNew = flag;} - - private: - TFluka(const TFluka &mc): TVirtualMC(mc) {;} - TFluka & operator=(const TFluka &) {return (*this);} - - protected: - Int_t fVerbosityLevel; //Verbosity level (0 lowest - 3 highest) - - TString sInputFileName; //Name of the real input file (e.g. alice.inp) - TString sCoreInputFileName; //Name of the input file (e.g. corealice.inp) - - Int_t fCaller; //Parameter to indicate who is the caller of the Fluka Draw - Int_t fIcode; //Fluka Draw procedures formal parameter - Int_t iNewreg; //Fluka Draw procedures formal parameter - Double_t fRull; //Fluka Draw procedures formal parameter - Double_t fXsco; //Fluka Draw procedures formal parameter - Double_t fYsco; //Fluka Draw procedures formal parameter - Double_t fZsco; //Fluka Draw procedures formal parameter - Bool_t fTrackIsEntering; // Flag for track entering - Bool_t fTrackIsExiting; // Flag for track exiting - Bool_t fTrackIsNew; // Flag for new track - - //variables for SetProcess and SetCut - Int_t iNbOfProc; - Int_t iProcessValue[100]; - Char_t sProcessFlag[100][5]; - Int_t iNbOfCut; - Double_t fCutValue[100]; - Char_t sCutFlag[100][7]; - Int_t fDummyBoundary; - - //Geometry through Geant4 for the time being!!! - TG4GeometryManager* fGeometryManager; //Geometry manager - TG4DetConstruction* fDetector; //Detector - - TClonesArray* fVolumeMediaMap; //!Transient list of volumes - - Int_t fNVolumes; //!Current number of volumes - Int_t* fMediaByRegion; //!Media by Fluka region - Int_t fCurrentFlukaRegion; //Index of fluka region at each step - ClassDef(TFluka,1) //C++ interface to Fluka montecarlo -}; - -#endif //TFLUKA -