/**************************************************************************
* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
* *
* Author: The ALICE Off-line Project. *
* Contributors are mentioned in the code where appropriate. *
* *
* Permission to use, copy, modify and distribute this software and its *
* documentation strictly for non-commercial purposes is hereby granted *
* without fee, provided that the above copyright notice appears in all *
* copies and that both the copyright notice and this permission notice *
* appear in the supporting documentation. The authors make no claims *
* about the suitability of this software for any purpose. It is *
* provided "as is" without express or implied warranty. *
**************************************************************************/
/* $Id$ */
//_________________________________________________________________________
// Implementation version v0 of PHOS Manager class
// Layout EMC + PPSD has name GPS2
// Layout EMC + CPV has name IHEP
// An object of this class does not produce hits nor digits
// It is the one to use if you do not want to produce outputs in TREEH or TREED
//
//*-- Author: Yves Schutz (SUBATECH)
// --- ROOT system ---
#include "TBRIK.h"
#include "TNode.h"
#include "TRandom.h"
#include "TGeometry.h"
// --- Standard library ---
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <strstream.h>
// --- AliRoot header files ---
#include "AliPHOSv0.h"
#include "AliRun.h"
#include "AliConst.h"
#include "AliMC.h"
#include "AliPHOSGeometry.h"
ClassImp(AliPHOSv0)
//____________________________________________________________________________
AliPHOSv0::AliPHOSv0(const char *name, const char *title):
AliPHOS(name,title)
{
// ctor : title is used to identify the layout
// GPS2 = 5 modules (EMC + PPSD)
// IHEP = 5 modules (EMC + CPV)
// MIXT = 4 modules (EMC + CPV) and 1 module (EMC + PPSD)
// gets an instance of the geometry parameters class
if (strcmp(GetTitle(),"") != 0 )
fGeom = AliPHOSGeometry::GetInstance(GetTitle(), "") ;
}
//____________________________________________________________________________
void AliPHOSv0::BuildGeometry()
{
// Build the PHOS geometry for the ROOT display
//
/*
PHOS in ALICE displayed by root
- All Views
- Front View
- 3D View 1
- 3D View 2
*/
//
this->BuildGeometryforPHOS() ;
if (strcmp(fGeom->GetName(),"GPS2") == 0)
this->BuildGeometryforPPSD() ;
else if (strcmp(fGeom->GetName(),"IHEP") == 0)
this->BuildGeometryforCPV() ;
else if (strcmp(fGeom->GetName(),"MIXT") == 0) {
this->BuildGeometryforPPSD() ;
this->BuildGeometryforCPV() ;
}
else
cout << "AliPHOSv0::BuildGeometry : no charged particle identification system installed: "
<< "Geometry name = " << fGeom->GetName() << endl;
}
//____________________________________________________________________________
void AliPHOSv0::BuildGeometryforPHOS(void)
{
// Build the PHOS-EMC geometry for the ROOT display
const Int_t kColorPHOS = kRed ;
const Int_t kColorXTAL = kBlue ;
Double_t const kRADDEG = 180.0 / kPI ;
new TBRIK( "OuterBox", "PHOS box", "void", fGeom->GetOuterBoxSize(0)/2,
fGeom->GetOuterBoxSize(1)/2,
fGeom->GetOuterBoxSize(2)/2 );
// Textolit Wall box, position inside PHOS
new TBRIK( "TextolitBox", "PHOS Textolit box ", "void", fGeom->GetTextolitBoxSize(0)/2,
fGeom->GetTextolitBoxSize(1)/2,
fGeom->GetTextolitBoxSize(2)/2);
// Polystyrene Foam Plate
new TBRIK( "UpperFoamPlate", "PHOS Upper foam plate", "void", fGeom->GetTextolitBoxSize(0)/2,
fGeom->GetSecondUpperPlateThickness()/2,
fGeom->GetTextolitBoxSize(2)/2 ) ;
// Air Filled Box
new TBRIK( "AirFilledBox", "PHOS air filled box", "void", fGeom->GetAirFilledBoxSize(0)/2,
fGeom->GetAirFilledBoxSize(1)/2,
fGeom->GetAirFilledBoxSize(2)/2 );
// Crystals Box
Float_t xtlX = fGeom->GetCrystalSize(0) ;
Float_t xtlY = fGeom->GetCrystalSize(1) ;
Float_t xtlZ = fGeom->GetCrystalSize(2) ;
Float_t xl = fGeom->GetNPhi() * ( xtlX + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ;
Float_t yl = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0
+ fGeom->GetModuleBoxThickness() / 2.0 ;
Float_t zl = fGeom->GetNZ() * ( xtlZ + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ;
new TBRIK( "CrystalsBox", "PHOS crystals box", "void", xl, yl, zl ) ;
// position PHOS into ALICE
Float_t r = fGeom->GetIPtoOuterCoverDistance() + fGeom->GetOuterBoxSize(1) / 2.0 ;
Int_t number = 988 ;
Float_t pphi = TMath::ATan( fGeom->GetOuterBoxSize(0) / ( 2.0 * fGeom->GetIPtoOuterCoverDistance() ) ) ;
pphi *= kRADDEG ;
TNode * top = gAlice->GetGeometry()->GetNode("alice") ;
char * nodename = new char[20] ;
char * rotname = new char[20] ;
for( Int_t i = 1; i <= fGeom->GetNModules(); i++ ) {
Float_t angle = pphi * 2 * ( i - fGeom->GetNModules() / 2.0 - 0.5 ) ;
sprintf(rotname, "%s%d", "rot", number++) ;
new TRotMatrix(rotname, rotname, 90, angle, 90, 90 + angle, 0, 0);
top->cd();
sprintf(nodename,"%s%d", "Module", i) ;
Float_t x = r * TMath::Sin( angle / kRADDEG ) ;
Float_t y = -r * TMath::Cos( angle / kRADDEG ) ;
TNode * outerboxnode = new TNode(nodename, nodename, "OuterBox", x, y, 0, rotname ) ;
outerboxnode->SetLineColor(kColorPHOS) ;
fNodes->Add(outerboxnode) ;
outerboxnode->cd() ;
// now inside the outer box the textolit box
y = ( fGeom->GetOuterBoxThickness(1) - fGeom->GetUpperPlateThickness() ) / 2. ;
sprintf(nodename,"%s%d", "TexBox", i) ;
TNode * textolitboxnode = new TNode(nodename, nodename, "TextolitBox", 0, y, 0) ;
textolitboxnode->SetLineColor(kColorPHOS) ;
fNodes->Add(textolitboxnode) ;
// upper foam plate inside outre box
outerboxnode->cd() ;
sprintf(nodename, "%s%d", "UFPlate", i) ;
y = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetSecondUpperPlateThickness() ) / 2.0 ;
TNode * upperfoamplatenode = new TNode(nodename, nodename, "UpperFoamPlate", 0, y, 0) ;
upperfoamplatenode->SetLineColor(kColorPHOS) ;
fNodes->Add(upperfoamplatenode) ;
// air filled box inside textolit box (not drawn)
textolitboxnode->cd();
y = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetAirFilledBoxSize(1) ) / 2.0 - fGeom->GetSecondUpperPlateThickness() ;
sprintf(nodename, "%s%d", "AFBox", i) ;
TNode * airfilledboxnode = new TNode(nodename, nodename, "AirFilledBox", 0, y, 0) ;
fNodes->Add(airfilledboxnode) ;
// crystals box inside air filled box
airfilledboxnode->cd() ;
y = fGeom->GetAirFilledBoxSize(1) / 2.0 - yl
- ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetModuleBoxThickness()
- fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() ) ;
sprintf(nodename, "%s%d", "XTBox", i) ;
TNode * crystalsboxnode = new TNode(nodename, nodename, "CrystalsBox", 0, y, 0) ;
crystalsboxnode->SetLineColor(kColorXTAL) ;
fNodes->Add(crystalsboxnode) ;
}
delete[] rotname ;
delete[] nodename ;
}
//____________________________________________________________________________
void AliPHOSv0::BuildGeometryforPPSD(void)
{
// Build the PHOS-PPSD geometry for the ROOT display
//
/*
PPSD displayed by root
- Zoom on PPSD: Front View
- Zoom on PPSD: Perspective View
*/
//
Double_t const kRADDEG = 180.0 / kPI ;
const Int_t kColorPHOS = kRed ;
const Int_t kColorPPSD = kGreen ;
const Int_t kColorGas = kBlue ;
const Int_t kColorAir = kYellow ;
// Box for a full PHOS module
new TBRIK( "PPSDBox", "PPSD box", "void", fGeom->GetCPVBoxSize(0)/2,
fGeom->GetCPVBoxSize(1)/2,
fGeom->GetCPVBoxSize(2)/2 );
// Box containing one micromegas module
new TBRIK( "PPSDModule", "PPSD module", "void", fGeom->GetPPSDModuleSize(0)/2,
fGeom->GetPPSDModuleSize(1)/2,
fGeom->GetPPSDModuleSize(2)/2 );
// top lid
new TBRIK ( "TopLid", "Micromegas top lid", "void", fGeom->GetPPSDModuleSize(0)/2,
fGeom->GetLidThickness()/2,
fGeom->GetPPSDModuleSize(2)/2 ) ;
// composite panel (top and bottom)
new TBRIK ( "TopPanel", "Composite top panel", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2,
fGeom->GetCompositeThickness()/2,
( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ;
new TBRIK ( "BottomPanel", "Composite bottom panel", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2,
fGeom->GetCompositeThickness()/2,
( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ;
// gas gap (conversion and avalanche)
new TBRIK ( "GasGap", "gas gap", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2,
( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() )/2,
( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ;
// anode and cathode
new TBRIK ( "Anode", "Anode", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2,
fGeom->GetAnodeThickness()/2,
( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ;
new TBRIK ( "Cathode", "Cathode", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2,
fGeom->GetCathodeThickness()/2,
( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ;
// PC
new TBRIK ( "PCBoard", "Printed Circuit", "void", ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() )/2,
fGeom->GetPCThickness()/2,
( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() )/2 ) ;
// Gap between Lead and top micromegas
new TBRIK ( "LeadToM", "Air Gap top", "void", fGeom->GetCPVBoxSize(0)/2,
fGeom->GetMicro1ToLeadGap()/2,
fGeom->GetCPVBoxSize(2)/2 ) ;
// Gap between Lead and bottom micromegas
new TBRIK ( "MToLead", "Air Gap bottom", "void", fGeom->GetCPVBoxSize(0)/2,
fGeom->GetLeadToMicro2Gap()/2,
fGeom->GetCPVBoxSize(2)/2 ) ;
// Lead converter
new TBRIK ( "Lead", "Lead converter", "void", fGeom->GetCPVBoxSize(0)/2,
fGeom->GetLeadConverterThickness()/2,
fGeom->GetCPVBoxSize(2)/2 ) ;
// position PPSD into ALICE
char * nodename = new char[20] ;
char * rotname = new char[20] ;
Float_t r = fGeom->GetIPtoTopLidDistance() + fGeom->GetCPVBoxSize(1) / 2.0 ;
Int_t number = 988 ;
TNode * top = gAlice->GetGeometry()->GetNode("alice") ;
Int_t firstModule = 0 ;
if (strcmp(fGeom->GetName(),"GPS2") == 0)
firstModule = 1;
else if (strcmp(fGeom->GetName(),"MIXT") == 0)
firstModule = fGeom->GetNModules() - fGeom->GetNPPSDModules() + 1;
for( Int_t i = firstModule; i <= fGeom->GetNModules(); i++ ) { // the number of PHOS modules
Float_t angle = fGeom->GetPHOSAngle(i) ;
sprintf(rotname, "%s%d", "rotg", number+i) ;
new TRotMatrix(rotname, rotname, 90, angle, 90, 90 + angle, 0, 0);
top->cd();
sprintf(nodename, "%s%d", "Moduleg", i) ;
Float_t x = r * TMath::Sin( angle / kRADDEG ) ;
Float_t y = -r * TMath::Cos( angle / kRADDEG ) ;
TNode * ppsdboxnode = new TNode(nodename , nodename ,"PPSDBox", x, y, 0, rotname ) ;
ppsdboxnode->SetLineColor(kColorPPSD) ;
fNodes->Add(ppsdboxnode) ;
ppsdboxnode->cd() ;
// inside the PPSD box:
// 1. fNumberOfModulesPhi x fNumberOfModulesZ top micromegas
x = ( fGeom->GetCPVBoxSize(0) - fGeom->GetPPSDModuleSize(0) ) / 2. ;
{
for ( Int_t iphi = 1; iphi <= fGeom->GetNumberOfModulesPhi(); iphi++ ) { // the number of micromegas modules in phi per PHOS module
Float_t z = ( fGeom->GetCPVBoxSize(2) - fGeom->GetPPSDModuleSize(2) ) / 2. ;
TNode * micro1node ;
for ( Int_t iz = 1; iz <= fGeom->GetNumberOfModulesZ(); iz++ ) { // the number of micromegas modules in z per PHOS module
y = ( fGeom->GetCPVBoxSize(1) - fGeom->GetMicromegas1Thickness() ) / 2. ;
sprintf(nodename, "%s%d%d%d", "Mic1", i, iphi, iz) ;
micro1node = new TNode(nodename, nodename, "PPSDModule", x, y, z) ;
micro1node->SetLineColor(kColorPPSD) ;
fNodes->Add(micro1node) ;
// inside top micromegas
micro1node->cd() ;
// a. top lid
y = ( fGeom->GetMicromegas1Thickness() - fGeom->GetLidThickness() ) / 2. ;
sprintf(nodename, "%s%d%d%d", "Lid", i, iphi, iz) ;
TNode * toplidnode = new TNode(nodename, nodename, "TopLid", 0, y, 0) ;
toplidnode->SetLineColor(kColorPPSD) ;
fNodes->Add(toplidnode) ;
// b. composite panel
y = y - fGeom->GetLidThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
sprintf(nodename, "%s%d%d%d", "CompU", i, iphi, iz) ;
TNode * compupnode = new TNode(nodename, nodename, "TopPanel", 0, y, 0) ;
compupnode->SetLineColor(kColorPPSD) ;
fNodes->Add(compupnode) ;
// c. anode
y = y - fGeom->GetCompositeThickness() / 2. - fGeom->GetAnodeThickness() / 2. ;
sprintf(nodename, "%s%d%d%d", "Ano", i, iphi, iz) ;
TNode * anodenode = new TNode(nodename, nodename, "Anode", 0, y, 0) ;
anodenode->SetLineColor(kColorPHOS) ;
fNodes->Add(anodenode) ;
// d. gas
y = y - fGeom->GetAnodeThickness() / 2. - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. ;
sprintf(nodename, "%s%d%d%d", "GGap", i, iphi, iz) ;
TNode * ggapnode = new TNode(nodename, nodename, "GasGap", 0, y, 0) ;
ggapnode->SetLineColor(kColorGas) ;
fNodes->Add(ggapnode) ;
// f. cathode
y = y - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. - fGeom->GetCathodeThickness() / 2. ;
sprintf(nodename, "%s%d%d%d", "Cathode", i, iphi, iz) ;
TNode * cathodenode = new TNode(nodename, nodename, "Cathode", 0, y, 0) ;
cathodenode->SetLineColor(kColorPHOS) ;
fNodes->Add(cathodenode) ;
// g. printed circuit
y = y - fGeom->GetCathodeThickness() / 2. - fGeom->GetPCThickness() / 2. ;
sprintf(nodename, "%s%d%d%d", "PC", i, iphi, iz) ;
TNode * pcnode = new TNode(nodename, nodename, "PCBoard", 0, y, 0) ;
pcnode->SetLineColor(kColorPPSD) ;
fNodes->Add(pcnode) ;
// h. composite panel
y = y - fGeom->GetPCThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
sprintf(nodename, "%s%d%d%d", "CompDown", i, iphi, iz) ;
TNode * compdownnode = new TNode(nodename, nodename, "BottomPanel", 0, y, 0) ;
compdownnode->SetLineColor(kColorPPSD) ;
fNodes->Add(compdownnode) ;
z = z - fGeom->GetPPSDModuleSize(2) ;
ppsdboxnode->cd() ;
} // end of Z module loop
x = x - fGeom->GetPPSDModuleSize(0) ;
ppsdboxnode->cd() ;
} // end of phi module loop
}
// 2. air gap
ppsdboxnode->cd() ;
y = ( fGeom->GetCPVBoxSize(1) - 2 * fGeom->GetMicromegas1Thickness() - fGeom->GetMicro1ToLeadGap() ) / 2. ;
sprintf(nodename, "%s%d", "GapUp", i) ;
TNode * gapupnode = new TNode(nodename, nodename, "LeadToM", 0, y, 0) ;
gapupnode->SetLineColor(kColorAir) ;
fNodes->Add(gapupnode) ;
// 3. lead converter
y = y - fGeom->GetMicro1ToLeadGap() / 2. - fGeom->GetLeadConverterThickness() / 2. ;
sprintf(nodename, "%s%d", "LeadC", i) ;
TNode * leadcnode = new TNode(nodename, nodename, "Lead", 0, y, 0) ;
leadcnode->SetLineColor(kColorPPSD) ;
fNodes->Add(leadcnode) ;
// 4. air gap
y = y - fGeom->GetLeadConverterThickness() / 2. - fGeom->GetLeadToMicro2Gap() / 2. ;
sprintf(nodename, "%s%d", "GapDown", i) ;
TNode * gapdownnode = new TNode(nodename, nodename, "MToLead", 0, y, 0) ;
gapdownnode->SetLineColor(kColorAir) ;
fNodes->Add(gapdownnode) ;
// 5. fNumberOfModulesPhi x fNumberOfModulesZ bottom micromegas
x = ( fGeom->GetCPVBoxSize(0) - fGeom->GetPPSDModuleSize(0) ) / 2. - fGeom->GetPhiDisplacement() ;
{
for ( Int_t iphi = 1; iphi <= fGeom->GetNumberOfModulesPhi(); iphi++ ) {
Float_t z = ( fGeom->GetCPVBoxSize(2) - fGeom->GetPPSDModuleSize(2) ) / 2. - fGeom->GetZDisplacement() ;;
TNode * micro2node ;
for ( Int_t iz = 1; iz <= fGeom->GetNumberOfModulesZ(); iz++ ) {
y = - ( fGeom->GetCPVBoxSize(1) - fGeom->GetMicromegas2Thickness() ) / 2. ;
sprintf(nodename, "%s%d%d%d", "Mic2", i, iphi, iz) ;
micro2node = new TNode(nodename, nodename, "PPSDModule", x, y, z) ;
micro2node->SetLineColor(kColorPPSD) ;
fNodes->Add(micro2node) ;
// inside bottom micromegas
micro2node->cd() ;
// a. top lid
y = ( fGeom->GetMicromegas2Thickness() - fGeom->GetLidThickness() ) / 2. ;
sprintf(nodename, "%s%d", "Lidb", i) ;
TNode * toplidbnode = new TNode(nodename, nodename, "TopLid", 0, y, 0) ;
toplidbnode->SetLineColor(kColorPPSD) ;
fNodes->Add(toplidbnode) ;
// b. composite panel
y = y - fGeom->GetLidThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
sprintf(nodename, "%s%d", "CompUb", i) ;
TNode * compupbnode = new TNode(nodename, nodename, "TopPanel", 0, y, 0) ;
compupbnode->SetLineColor(kColorPPSD) ;
fNodes->Add(compupbnode) ;
// c. anode
y = y - fGeom->GetCompositeThickness() / 2. - fGeom->GetAnodeThickness() / 2. ;
sprintf(nodename, "%s%d", "Anob", i) ;
TNode * anodebnode = new TNode(nodename, nodename, "Anode", 0, y, 0) ;
anodebnode->SetLineColor(kColorPPSD) ;
fNodes->Add(anodebnode) ;
// d. conversion gas
y = y - fGeom->GetAnodeThickness() / 2. - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. ;
sprintf(nodename, "%s%d", "GGapb", i) ;
TNode * ggapbnode = new TNode(nodename, nodename, "GasGap", 0, y, 0) ;
ggapbnode->SetLineColor(kColorGas) ;
fNodes->Add(ggapbnode) ;
// f. cathode
y = y - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. - fGeom->GetCathodeThickness() / 2. ;
sprintf(nodename, "%s%d", "Cathodeb", i) ;
TNode * cathodebnode = new TNode(nodename, nodename, "Cathode", 0, y, 0) ;
cathodebnode->SetLineColor(kColorPPSD) ;
fNodes->Add(cathodebnode) ;
// g. printed circuit
y = y - fGeom->GetCathodeThickness() / 2. - fGeom->GetPCThickness() / 2. ;
sprintf(nodename, "%s%d", "PCb", i) ;
TNode * pcbnode = new TNode(nodename, nodename, "PCBoard", 0, y, 0) ;
pcbnode->SetLineColor(kColorPPSD) ;
fNodes->Add(pcbnode) ;
// h. composite pane
y = y - fGeom->GetPCThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
sprintf(nodename, "%s%d", "CompDownb", i) ;
TNode * compdownbnode = new TNode(nodename, nodename, "BottomPanel", 0, y, 0) ;
compdownbnode->SetLineColor(kColorPPSD) ;
fNodes->Add(compdownbnode) ;
z = z - fGeom->GetPPSDModuleSize(2) ;
ppsdboxnode->cd() ;
} // end of Z module loop
x = x - fGeom->GetPPSDModuleSize(0) ;
ppsdboxnode->cd() ;
} // end of phi module loop
}
} // PHOS modules
delete[] rotname ;
delete[] nodename ;
}
//____________________________________________________________________________
void AliPHOSv0::BuildGeometryforCPV(void)
{
// Build the PHOS-CPV geometry for the ROOT display
// Author: Yuri Kharlov 11 September 2000
//
//
/*
CPV displayed by root
CPV perspective view |
CPV front view |
|
|
*/
//
const Double_t kRADDEG = 180.0 / kPI ;
const Int_t kColorCPV = kGreen ;
const Int_t kColorFrame = kYellow ;
const Int_t kColorGassiplex = kRed;
const Int_t kColorPCB = kCyan;
// Box for a full PHOS module
new TBRIK ("CPVBox", "CPV box", "void", fGeom->GetCPVBoxSize(0)/2,
fGeom->GetCPVBoxSize(1)/2,
fGeom->GetCPVBoxSize(2)/2 );
new TBRIK ("CPVFrameLR", "CPV frame Left-Right", "void", fGeom->GetCPVFrameSize(0)/2,
fGeom->GetCPVFrameSize(1)/2,
fGeom->GetCPVBoxSize(2)/2 );
new TBRIK ("CPVFrameUD", "CPV frame Up-Down", "void", fGeom->GetCPVBoxSize(0)/2 - fGeom->GetCPVFrameSize(0),
fGeom->GetCPVFrameSize(1)/2,
fGeom->GetCPVFrameSize(2)/2);
new TBRIK ("CPVPCB", "CPV PCB", "void", fGeom->GetCPVActiveSize(0)/2,
fGeom->GetCPVTextoliteThickness()/2,
fGeom->GetCPVActiveSize(1)/2);
new TBRIK ("CPVGassiplex", "CPV Gassiplex PCB", "void", fGeom->GetGassiplexChipSize(0)/2,
fGeom->GetGassiplexChipSize(1)/2,
fGeom->GetGassiplexChipSize(2)/2);
// position CPV into ALICE
char * nodename = new char[25] ;
char * rotname = new char[25] ;
Float_t r = fGeom->GetIPtoCPVDistance() + fGeom->GetCPVBoxSize(1) / 2.0 ;
Int_t number = 988 ;
TNode * top = gAlice->GetGeometry()->GetNode("alice") ;
Int_t lastModule = 0 ;
if (strcmp(fGeom->GetName(),"IHEP") == 0)
lastModule = fGeom->GetNModules();
else if (strcmp(fGeom->GetName(),"MIXT") == 0)
lastModule = fGeom->GetNModules() - fGeom->GetNPPSDModules();
for( Int_t i = 1; i <= lastModule; i++ ) { // the number of PHOS modules
// One CPV module
Float_t angle = fGeom->GetPHOSAngle(i) ;
sprintf(rotname, "%s%d", "rotg", number+i) ;
new TRotMatrix(rotname, rotname, 90, angle, 90, 90 + angle, 0, 0);
top->cd();
sprintf(nodename, "%s%d", "CPVModule", i) ;
Float_t x = r * TMath::Sin( angle / kRADDEG ) ;
Float_t y = -r * TMath::Cos( angle / kRADDEG ) ;
Float_t z;
TNode * cpvBoxNode = new TNode(nodename , nodename ,"CPVBox", x, y, 0, rotname ) ;
cpvBoxNode->SetLineColor(kColorCPV) ;
fNodes->Add(cpvBoxNode) ;
cpvBoxNode->cd() ;
// inside each CPV box:
// Frame around CPV
Int_t j;
for (j=0; j<=1; j++) {
sprintf(nodename, "CPVModule%d Frame%d", i, j+1) ;
x = TMath::Sign(1,2*j-1) * (fGeom->GetCPVBoxSize(0) - fGeom->GetCPVFrameSize(0)) / 2;
TNode * cpvFrameNode = new TNode(nodename , nodename ,"CPVFrameLR", x, 0, 0) ;
cpvFrameNode->SetLineColor(kColorFrame) ;
fNodes->Add(cpvFrameNode) ;
sprintf(nodename, "CPVModule%d Frame%d", i, j+3) ;
z = TMath::Sign(1,2*j-1) * (fGeom->GetCPVBoxSize(2) - fGeom->GetCPVFrameSize(2)) / 2;
cpvFrameNode = new TNode(nodename , nodename ,"CPVFrameUD", 0, 0, z) ;
cpvFrameNode->SetLineColor(kColorFrame) ;
fNodes->Add(cpvFrameNode) ;
}
// 4 printed circuit boards
for (j=0; j<4; j++) {
sprintf(nodename, "CPVModule%d PCB%d", i, j+1) ;
y = fGeom->GetCPVFrameSize(1) / 2 - fGeom->GetFTPosition(j) + fGeom->GetCPVTextoliteThickness()/2;
TNode * cpvPCBNode = new TNode(nodename , nodename ,"CPVPCB", 0, y, 0) ;
cpvPCBNode->SetLineColor(kColorPCB) ;
fNodes->Add(cpvPCBNode) ;
}
// Gassiplex chips
Float_t xStep = fGeom->GetCPVActiveSize(0) / (fGeom->GetNumberOfCPVChipsPhi() + 1);
Float_t zStep = fGeom->GetCPVActiveSize(1) / (fGeom->GetNumberOfCPVChipsZ() + 1);
y = fGeom->GetCPVFrameSize(1)/2 - fGeom->GetFTPosition(0) +
fGeom->GetCPVTextoliteThickness() / 2 + fGeom->GetGassiplexChipSize(1) / 2 + 0.1;
for (Int_t ix=0; ix<fGeom->GetNumberOfCPVChipsPhi(); ix++) {
x = xStep * (ix+1) - fGeom->GetCPVActiveSize(0)/2;
for (Int_t iz=0; iz<fGeom->GetNumberOfCPVChipsZ(); iz++) {
z = zStep * (iz+1) - fGeom->GetCPVActiveSize(1)/2;
sprintf(nodename, "CPVModule%d Chip(%dx%d)", i, ix+1,iz+1) ;
TNode * cpvGassiplexNode = new TNode(nodename , nodename ,"CPVGassiplex", x, y, z) ;
cpvGassiplexNode->SetLineColor(kColorGassiplex) ;
fNodes->Add(cpvGassiplexNode) ;
}
}
} // PHOS modules
delete[] rotname ;
delete[] nodename ;
}
//____________________________________________________________________________
void AliPHOSv0::CreateGeometry()
{
// Create the PHOS geometry for Geant
AliPHOSv0 *phostmp = (AliPHOSv0*)gAlice->GetModule("PHOS") ;
if ( phostmp == NULL ) {
fprintf(stderr, "PHOS detector not found!n") ;
return;
}
// Get pointer to the array containing media indeces
Int_t *idtmed = fIdtmed->GetArray() - 699 ;
// Create a box a PHOS module.
// In case of MIXT geometry 2 different boxes are needed
Float_t bigbox[3] ;
bigbox[0] = fGeom->GetOuterBoxSize(0) / 2.0 ;
bigbox[1] = ( fGeom->GetOuterBoxSize(1) + fGeom->GetCPVBoxSize(1) ) / 2.0 ;
bigbox[2] = fGeom->GetOuterBoxSize(2) / 2.0 ;
gMC->Gsvolu("PHOS", "BOX ", idtmed[798], bigbox, 3) ;
if ( strcmp( fGeom->GetName(),"MIXT") == 0 && fGeom->GetNPPSDModules() > 0)
gMC->Gsvolu("PHO1", "BOX ", idtmed[798], bigbox, 3) ;
this->CreateGeometryforPHOS() ;
if ( strcmp( fGeom->GetName(), "GPS2") == 0 )
this->CreateGeometryforPPSD() ;
else if ( strcmp( fGeom->GetName(), "IHEP") == 0 )
this->CreateGeometryforCPV() ;
else if ( strcmp( fGeom->GetName(), "MIXT") == 0 ) {
this->CreateGeometryforPPSD() ;
this->CreateGeometryforCPV() ;
}
else
cout << "AliPHOSv0::CreateGeometry : no charged particle identification system installed" << endl;
this->CreateGeometryforSupport() ;
// --- Position PHOS mdules in ALICE setup ---
Int_t idrotm[99] ;
Double_t const kRADDEG = 180.0 / kPI ;
Int_t lastModule;
if (strcmp(fGeom->GetName(),"MIXT") == 0)
lastModule = fGeom->GetNModules() - fGeom->GetNPPSDModules();
else
lastModule = fGeom->GetNModules();
Int_t i;
for( i = 1; i <= lastModule ; i++ ) {
Float_t angle = fGeom->GetPHOSAngle(i) ;
AliMatrix(idrotm[i-1], 90.0, angle, 90.0, 90.0+angle, 0.0, 0.0) ;
Float_t r = fGeom->GetIPtoOuterCoverDistance() + ( fGeom->GetOuterBoxSize(1) + fGeom->GetCPVBoxSize(1) ) / 2.0 ;
Float_t xP1 = r * TMath::Sin( angle / kRADDEG ) ;
Float_t yP1 = -r * TMath::Cos( angle / kRADDEG ) ;
gMC->Gspos("PHOS", i, "ALIC", xP1, yP1, 0.0, idrotm[i-1], "ONLY") ;
} // for GetNModules
for( i = lastModule+1; i <= fGeom->GetNModules(); i++ ) {
Float_t angle = fGeom->GetPHOSAngle(i) ;
AliMatrix(idrotm[i-1], 90.0, angle, 90.0, 90.0+angle, 0.0, 0.0) ;
Float_t r = fGeom->GetIPtoOuterCoverDistance() + ( fGeom->GetOuterBoxSize(1) + fGeom->GetCPVBoxSize(1) ) / 2.0 ;
Float_t xP1 = r * TMath::Sin( angle / kRADDEG ) ;
Float_t yP1 = -r * TMath::Cos( angle / kRADDEG ) ;
gMC->Gspos("PHO1", i-lastModule, "ALIC", xP1, yP1, 0.0, idrotm[i-1], "ONLY") ;
} // for GetNModules
}
//____________________________________________________________________________
void AliPHOSv0::CreateGeometryforPHOS()
{
// Create the PHOS-EMC geometry for GEANT
//
/*
Geant3 geometry tree of PHOS-EMC in ALICE
*/
//
// Get pointer to the array containing media indexes
Int_t *idtmed = fIdtmed->GetArray() - 699 ;
// ---
// --- Define PHOS box volume, fPUFPill with thermo insulating foam ---
// --- Foam Thermo Insulating outer cover dimensions ---
// --- Put it in bigbox = PHOS
Float_t dphos[3] ;
dphos[0] = fGeom->GetOuterBoxSize(0) / 2.0 ;
dphos[1] = fGeom->GetOuterBoxSize(1) / 2.0 ;
dphos[2] = fGeom->GetOuterBoxSize(2) / 2.0 ;
gMC->Gsvolu("PEMC", "BOX ", idtmed[706], dphos, 3) ;
Float_t yO = - fGeom->GetCPVBoxSize(1) / 2.0 ;
gMC->Gspos("PEMC", 1, "PHOS", 0.0, yO, 0.0, 0, "ONLY") ;
if ( strcmp( fGeom->GetName(),"MIXT") == 0 && fGeom->GetNPPSDModules() > 0)
gMC->Gspos("PEMC", 1, "PHO1", 0.0, yO, 0.0, 0, "ONLY") ;
// ---
// --- Define Textolit Wall box, position inside PEMC ---
// --- Textolit Wall box dimentions ---
Float_t dptxw[3];
dptxw[0] = fGeom->GetTextolitBoxSize(0) / 2.0 ;
dptxw[1] = fGeom->GetTextolitBoxSize(1) / 2.0 ;
dptxw[2] = fGeom->GetTextolitBoxSize(2) / 2.0 ;
gMC->Gsvolu("PTXW", "BOX ", idtmed[707], dptxw, 3);
yO = ( fGeom->GetOuterBoxThickness(1) - fGeom->GetUpperPlateThickness() ) / 2. ;
gMC->Gspos("PTXW", 1, "PEMC", 0.0, yO, 0.0, 0, "ONLY") ;
// ---
// --- Define Upper Polystyrene Foam Plate, place inside PTXW ---
// --- immediately below Foam Thermo Insulation Upper plate ---
// --- Upper Polystyrene Foam plate thickness ---
Float_t dpufp[3] ;
dpufp[0] = fGeom->GetTextolitBoxSize(0) / 2.0 ;
dpufp[1] = fGeom->GetSecondUpperPlateThickness() / 2. ;
dpufp[2] = fGeom->GetTextolitBoxSize(2) /2.0 ;
gMC->Gsvolu("PUFP", "BOX ", idtmed[703], dpufp, 3) ;
yO = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetSecondUpperPlateThickness() ) / 2.0 ;
gMC->Gspos("PUFP", 1, "PTXW", 0.0, yO, 0.0, 0, "ONLY") ;
// ---
// --- Define air-filled box, place inside PTXW ---
// --- Inner AIR volume dimensions ---
Float_t dpair[3] ;
dpair[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ;
dpair[1] = fGeom->GetAirFilledBoxSize(1) / 2.0 ;
dpair[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ;
gMC->Gsvolu("PAIR", "BOX ", idtmed[798], dpair, 3) ;
yO = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetAirFilledBoxSize(1) ) / 2.0 - fGeom->GetSecondUpperPlateThickness() ;
gMC->Gspos("PAIR", 1, "PTXW", 0.0, yO, 0.0, 0, "ONLY") ;
// --- Dimensions of PbWO4 crystal ---
Float_t xtlX = fGeom->GetCrystalSize(0) ;
Float_t xtlY = fGeom->GetCrystalSize(1) ;
Float_t xtlZ = fGeom->GetCrystalSize(2) ;
Float_t dptcb[3] ;
dptcb[0] = fGeom->GetNPhi() * ( xtlX + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ;
dptcb[1] = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0
+ fGeom->GetModuleBoxThickness() / 2.0 ;
dptcb[2] = fGeom->GetNZ() * ( xtlZ + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ;
gMC->Gsvolu("PTCB", "BOX ", idtmed[706], dptcb, 3) ;
yO = fGeom->GetAirFilledBoxSize(1) / 2.0 - dptcb[1]
- ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetModuleBoxThickness()
- fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() ) ;
gMC->Gspos("PTCB", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ;
// ---
// --- Define Crystal BLock filled with air, position it inside PTCB ---
Float_t dpcbl[3] ;
dpcbl[0] = fGeom->GetNPhi() * ( xtlX + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 ;
dpcbl[1] = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 ;
dpcbl[2] = fGeom->GetNZ() * ( xtlZ + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 ;
gMC->Gsvolu("PCBL", "BOX ", idtmed[798], dpcbl, 3) ;
// --- Divide PCBL in X (phi) and Z directions --
gMC->Gsdvn("PROW", "PCBL", Int_t (fGeom->GetNPhi()), 1) ;
gMC->Gsdvn("PCEL", "PROW", Int_t (fGeom->GetNZ()), 3) ;
yO = -fGeom->GetModuleBoxThickness() / 2.0 ;
gMC->Gspos("PCBL", 1, "PTCB", 0.0, yO, 0.0, 0, "ONLY") ;
// ---
// --- Define STeel (actually, it's titanium) Cover volume, place inside PCEL
Float_t dpstc[3] ;
dpstc[0] = ( xtlX + 2 * fGeom->GetCrystalWrapThickness() ) / 2.0 ;
dpstc[1] = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 ;
dpstc[2] = ( xtlZ + 2 * fGeom->GetCrystalWrapThickness() + 2 * fGeom->GetCrystalHolderThickness() ) / 2.0 ;
gMC->Gsvolu("PSTC", "BOX ", idtmed[704], dpstc, 3) ;
gMC->Gspos("PSTC", 1, "PCEL", 0.0, 0.0, 0.0, 0, "ONLY") ;
// ---
// --- Define Tyvek volume, place inside PSTC ---
Float_t dppap[3] ;
dppap[0] = xtlX / 2.0 + fGeom->GetCrystalWrapThickness() ;
dppap[1] = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 ;
dppap[2] = xtlZ / 2.0 + fGeom->GetCrystalWrapThickness() ;
gMC->Gsvolu("PPAP", "BOX ", idtmed[702], dppap, 3) ;
yO = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0
- ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 ;
gMC->Gspos("PPAP", 1, "PSTC", 0.0, yO, 0.0, 0, "ONLY") ;
// ---
// --- Define PbWO4 crystal volume, place inside PPAP ---
Float_t dpxtl[3] ;
dpxtl[0] = xtlX / 2.0 ;
dpxtl[1] = xtlY / 2.0 ;
dpxtl[2] = xtlZ / 2.0 ;
gMC->Gsvolu("PXTL", "BOX ", idtmed[699], dpxtl, 3) ;
yO = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 - xtlY / 2.0 - fGeom->GetCrystalWrapThickness() ;
gMC->Gspos("PXTL", 1, "PPAP", 0.0, yO, 0.0, 0, "ONLY") ;
// ---
// --- Define crystal support volume, place inside PPAP ---
Float_t dpsup[3] ;
dpsup[0] = xtlX / 2.0 + fGeom->GetCrystalWrapThickness() ;
dpsup[1] = fGeom->GetCrystalSupportHeight() / 2.0 ;
dpsup[2] = xtlZ / 2.0 + fGeom->GetCrystalWrapThickness() ;
gMC->Gsvolu("PSUP", "BOX ", idtmed[798], dpsup, 3) ;
yO = fGeom->GetCrystalSupportHeight() / 2.0 - ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 ;
gMC->Gspos("PSUP", 1, "PPAP", 0.0, yO, 0.0, 0, "ONLY") ;
// ---
// --- Define PIN-diode volume and position it inside crystal support ---
// --- right behind PbWO4 crystal
// --- PIN-diode dimensions ---
Float_t dppin[3] ;
dppin[0] = fGeom->GetPinDiodeSize(0) / 2.0 ;
dppin[1] = fGeom->GetPinDiodeSize(1) / 2.0 ;
dppin[2] = fGeom->GetPinDiodeSize(2) / 2.0 ;
gMC->Gsvolu("PPIN", "BOX ", idtmed[705], dppin, 3) ;
yO = fGeom->GetCrystalSupportHeight() / 2.0 - fGeom->GetPinDiodeSize(1) / 2.0 ;
gMC->Gspos("PPIN", 1, "PSUP", 0.0, yO, 0.0, 0, "ONLY") ;
// ---
// --- Define Upper Cooling Panel, place it on top of PTCB ---
Float_t dpucp[3] ;
// --- Upper Cooling Plate thickness ---
dpucp[0] = dptcb[0] ;
dpucp[1] = fGeom->GetUpperCoolingPlateThickness() ;
dpucp[2] = dptcb[2] ;
gMC->Gsvolu("PUCP", "BOX ", idtmed[701], dpucp,3) ;
yO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetUpperCoolingPlateThickness() ) / 2.
- ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetModuleBoxThickness()
- fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() - fGeom->GetUpperCoolingPlateThickness() ) ;
gMC->Gspos("PUCP", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ;
// ---
// --- Define Al Support Plate, position it inside PAIR ---
// --- right beneath PTCB ---
// --- Al Support Plate thickness ---
Float_t dpasp[3] ;
dpasp[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ;
dpasp[1] = fGeom->GetSupportPlateThickness() / 2.0 ;
dpasp[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ;
gMC->Gsvolu("PASP", "BOX ", idtmed[701], dpasp, 3) ;
yO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetSupportPlateThickness() ) / 2.
- ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance()
- fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() + dpcbl[1] * 2 ) ;
gMC->Gspos("PASP", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ;
// ---
// --- Define Thermo Insulating Plate, position it inside PAIR ---
// --- right beneath PASP ---
// --- Lower Thermo Insulating Plate thickness ---
Float_t dptip[3] ;
dptip[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ;
dptip[1] = fGeom->GetLowerThermoPlateThickness() / 2.0 ;
dptip[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ;
gMC->Gsvolu("PTIP", "BOX ", idtmed[706], dptip, 3) ;
yO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetLowerThermoPlateThickness() ) / 2.
- ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetUpperPlateThickness()
- fGeom->GetSecondUpperPlateThickness() + dpcbl[1] * 2 + fGeom->GetSupportPlateThickness() ) ;
gMC->Gspos("PTIP", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ;
// ---
// --- Define Textolit Plate, position it inside PAIR ---
// --- right beneath PTIP ---
// --- Lower Textolit Plate thickness ---
Float_t dptxp[3] ;
dptxp[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ;
dptxp[1] = fGeom->GetLowerTextolitPlateThickness() / 2.0 ;
dptxp[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ;
gMC->Gsvolu("PTXP", "BOX ", idtmed[707], dptxp, 3) ;
yO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetLowerTextolitPlateThickness() ) / 2.
- ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetUpperPlateThickness()
- fGeom->GetSecondUpperPlateThickness() + dpcbl[1] * 2 + fGeom->GetSupportPlateThickness()
+ fGeom->GetLowerThermoPlateThickness() ) ;
gMC->Gspos("PTXP", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ;
}
//____________________________________________________________________________
void AliPHOSv0::CreateGeometryforPPSD()
{
// Create the PHOS-PPSD geometry for GEANT
//
/*
Geant3 geometry tree of PHOS-PPSD in ALICE
*/
//
// Get pointer to the array containing media indexes
Int_t *idtmed = fIdtmed->GetArray() - 699 ;
// The box containing all ppsd's for one PHOS module filled with air
Float_t ppsd[3] ;
ppsd[0] = fGeom->GetCPVBoxSize(0) / 2.0 ;
ppsd[1] = fGeom->GetCPVBoxSize(1) / 2.0 ;
ppsd[2] = fGeom->GetCPVBoxSize(2) / 2.0 ;
gMC->Gsvolu("PPSD", "BOX ", idtmed[798], ppsd, 3) ;
Float_t yO = fGeom->GetOuterBoxSize(1) / 2.0 ;
if ( strcmp( fGeom->GetName(),"MIXT") == 0 && fGeom->GetNPPSDModules() > 0)
gMC->Gspos("PPSD", 1, "PHO1", 0.0, yO, 0.0, 0, "ONLY") ;
else
gMC->Gspos("PPSD", 1, "PHOS", 0.0, yO, 0.0, 0, "ONLY") ;
// Now we build a micromegas module
// The box containing the whole module filled with epoxy (FR4)
Float_t mppsd[3] ;
mppsd[0] = fGeom->GetPPSDModuleSize(0) / 2.0 ;
mppsd[1] = fGeom->GetPPSDModuleSize(1) / 2.0 ;
mppsd[2] = fGeom->GetPPSDModuleSize(2) / 2.0 ;
gMC->Gsvolu("PMPP", "BOX ", idtmed[708], mppsd, 3) ;
// Inside mppsd :
// 1. The Top Lid made of epoxy (FR4)
Float_t tlppsd[3] ;
tlppsd[0] = fGeom->GetPPSDModuleSize(0) / 2.0 ;
tlppsd[1] = fGeom->GetLidThickness() / 2.0 ;
tlppsd[2] = fGeom->GetPPSDModuleSize(2) / 2.0 ;
gMC->Gsvolu("PTLP", "BOX ", idtmed[708], tlppsd, 3) ;
Float_t y0 = ( fGeom->GetMicromegas1Thickness() - fGeom->GetLidThickness() ) / 2. ;
gMC->Gspos("PTLP", 1, "PMPP", 0.0, y0, 0.0, 0, "ONLY") ;
// 2. the upper panel made of composite material
Float_t upppsd[3] ;
upppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
upppsd[1] = fGeom->GetCompositeThickness() / 2.0 ;
upppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
gMC->Gsvolu("PUPP", "BOX ", idtmed[709], upppsd, 3) ;
y0 = y0 - fGeom->GetLidThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
gMC->Gspos("PUPP", 1, "PMPP", 0.0, y0, 0.0, 0, "ONLY") ;
// 3. the anode made of Copper
Float_t anppsd[3] ;
anppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
anppsd[1] = fGeom->GetAnodeThickness() / 2.0 ;
anppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
gMC->Gsvolu("PANP", "BOX ", idtmed[710], anppsd, 3) ;
y0 = y0 - fGeom->GetCompositeThickness() / 2. - fGeom->GetAnodeThickness() / 2. ;
gMC->Gspos("PANP", 1, "PMPP", 0.0, y0, 0.0, 0, "ONLY") ;
// 4. the conversion gap + avalanche gap filled with gas
Float_t ggppsd[3] ;
ggppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
ggppsd[1] = ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2.0 ;
ggppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
gMC->Gsvolu("PGGP", "BOX ", idtmed[715], ggppsd, 3) ;
// --- Divide GGPP in X (phi) and Z directions --
gMC->Gsdvn("PROW", "PGGP", fGeom->GetNumberOfPadsPhi(), 1) ;
gMC->Gsdvn("PCEL", "PROW", fGeom->GetNumberOfPadsZ() , 3) ;
y0 = y0 - fGeom->GetAnodeThickness() / 2. - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. ;
gMC->Gspos("PGGP", 1, "PMPP", 0.0, y0, 0.0, 0, "ONLY") ;
// 6. the cathode made of Copper
Float_t cappsd[3] ;
cappsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
cappsd[1] = fGeom->GetCathodeThickness() / 2.0 ;
cappsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
gMC->Gsvolu("PCAP", "BOX ", idtmed[710], cappsd, 3) ;
y0 = y0 - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. - fGeom->GetCathodeThickness() / 2. ;
gMC->Gspos("PCAP", 1, "PMPP", 0.0, y0, 0.0, 0, "ONLY") ;
// 7. the printed circuit made of G10
Float_t pcppsd[3] ;
pcppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2,.0 ;
pcppsd[1] = fGeom->GetPCThickness() / 2.0 ;
pcppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
gMC->Gsvolu("PCPS", "BOX ", idtmed[711], cappsd, 3) ;
y0 = y0 - fGeom->GetCathodeThickness() / 2. - fGeom->GetPCThickness() / 2. ;
gMC->Gspos("PCPS", 1, "PMPP", 0.0, y0, 0.0, 0, "ONLY") ;
// 8. the lower panel made of composite material
Float_t lpppsd[3] ;
lpppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
lpppsd[1] = fGeom->GetCompositeThickness() / 2.0 ;
lpppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
gMC->Gsvolu("PLPP", "BOX ", idtmed[709], lpppsd, 3) ;
y0 = y0 - fGeom->GetPCThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
gMC->Gspos("PLPP", 1, "PMPP", 0.0, y0, 0.0, 0, "ONLY") ;
// Position the fNumberOfModulesPhi x fNumberOfModulesZ modules (mppsd) inside PPSD to cover a PHOS module
// the top and bottom one's (which are assumed identical) :
Float_t yt = ( fGeom->GetCPVBoxSize(1) - fGeom->GetMicromegas1Thickness() ) / 2. ;
Float_t yb = - ( fGeom->GetCPVBoxSize(1) - fGeom->GetMicromegas2Thickness() ) / 2. ;
Int_t copyNumbertop = 0 ;
Int_t copyNumberbot = fGeom->GetNumberOfModulesPhi() * fGeom->GetNumberOfModulesZ() ;
Float_t x = ( fGeom->GetCPVBoxSize(0) - fGeom->GetPPSDModuleSize(0) ) / 2. ;
for ( Int_t iphi = 1; iphi <= fGeom->GetNumberOfModulesPhi(); iphi++ ) { // the number of micromegas modules in phi per PHOS module
Float_t z = ( fGeom->GetCPVBoxSize(2) - fGeom->GetPPSDModuleSize(2) ) / 2. ;
for ( Int_t iz = 1; iz <= fGeom->GetNumberOfModulesZ(); iz++ ) { // the number of micromegas modules in z per PHOS module
gMC->Gspos("PMPP", ++copyNumbertop, "PPSD", x, yt, z, 0, "ONLY") ;
gMC->Gspos("PMPP", ++copyNumberbot, "PPSD", x, yb, z, 0, "ONLY") ;
z = z - fGeom->GetPPSDModuleSize(2) ;
} // end of Z module loop
x = x - fGeom->GetPPSDModuleSize(0) ;
} // end of phi module loop
// The Lead converter between two air gaps
// 1. Upper air gap
Float_t uappsd[3] ;
uappsd[0] = fGeom->GetCPVBoxSize(0) / 2.0 ;
uappsd[1] = fGeom->GetMicro1ToLeadGap() / 2.0 ;
uappsd[2] = fGeom->GetCPVBoxSize(2) / 2.0 ;
gMC->Gsvolu("PUAPPS", "BOX ", idtmed[798], uappsd, 3) ;
y0 = ( fGeom->GetCPVBoxSize(1) - 2 * fGeom->GetMicromegas1Thickness() - fGeom->GetMicro1ToLeadGap() ) / 2. ;
gMC->Gspos("PUAPPS", 1, "PPSD", 0.0, y0, 0.0, 0, "ONLY") ;
// 2. Lead converter
Float_t lcppsd[3] ;
lcppsd[0] = fGeom->GetCPVBoxSize(0) / 2.0 ;
lcppsd[1] = fGeom->GetLeadConverterThickness() / 2.0 ;
lcppsd[2] = fGeom->GetCPVBoxSize(2) / 2.0 ;
gMC->Gsvolu("PLCPPS", "BOX ", idtmed[712], lcppsd, 3) ;
y0 = y0 - fGeom->GetMicro1ToLeadGap() / 2. - fGeom->GetLeadConverterThickness() / 2. ;
gMC->Gspos("PLCPPS", 1, "PPSD", 0.0, y0, 0.0, 0, "ONLY") ;
// 3. Lower air gap
Float_t lappsd[3] ;
lappsd[0] = fGeom->GetCPVBoxSize(0) / 2.0 ;
lappsd[1] = fGeom->GetLeadToMicro2Gap() / 2.0 ;
lappsd[2] = fGeom->GetCPVBoxSize(2) / 2.0 ;
gMC->Gsvolu("PLAPPS", "BOX ", idtmed[798], lappsd, 3) ;
y0 = y0 - fGeom->GetLeadConverterThickness() / 2. - fGeom->GetLeadToMicro2Gap() / 2. ;
gMC->Gspos("PLAPPS", 1, "PPSD", 0.0, y0, 0.0, 0, "ONLY") ;
}
//____________________________________________________________________________
void AliPHOSv0::CreateGeometryforCPV()
{
// Create the PHOS-CPV geometry for GEANT
// Author: Yuri Kharlov 11 September 2000
//
/*
Geant3 geometry of PHOS-CPV in ALICE
CPV perspective view |
CPV front view |
|
|
One CPV module, perspective view |
One CPV module, front view (extended in vertical direction) |
 |
 |
Geant3 geometry tree of PHOS-CPV in ALICE
*/
//
Float_t par[3], x,y,z;
// Get pointer to the array containing media indexes
Int_t *idtmed = fIdtmed->GetArray() - 699 ;
// The box containing all CPV for one PHOS module filled with air
par[0] = fGeom->GetCPVBoxSize(0) / 2.0 ;
par[1] = fGeom->GetCPVBoxSize(1) / 2.0 ;
par[2] = fGeom->GetCPVBoxSize(2) / 2.0 ;
gMC->Gsvolu("PCPV", "BOX ", idtmed[798], par, 3) ;
y = fGeom->GetOuterBoxSize(1) / 2.0 ;
gMC->Gspos("PCPV", 1, "PHOS", 0.0, y, 0.0, 0, "ONLY") ;
// Gassiplex board
par[0] = fGeom->GetGassiplexChipSize(0)/2.;
par[1] = fGeom->GetGassiplexChipSize(1)/2.;
par[2] = fGeom->GetGassiplexChipSize(2)/2.;
gMC->Gsvolu("PCPC","BOX ",idtmed[707],par,3);
// Cu+Ni foil covers Gassiplex board
par[1] = fGeom->GetCPVCuNiFoilThickness()/2;
gMC->Gsvolu("PCPD","BOX ",idtmed[710],par,3);
y = -(fGeom->GetGassiplexChipSize(1)/2 - par[1]);
gMC->Gspos("PCPD",1,"PCPC",0,y,0,0,"ONLY");
// Position of the chip inside CPV
Float_t xStep = fGeom->GetCPVActiveSize(0) / (fGeom->GetNumberOfCPVChipsPhi() + 1);
Float_t zStep = fGeom->GetCPVActiveSize(1) / (fGeom->GetNumberOfCPVChipsZ() + 1);
Int_t copy = 0;
y = fGeom->GetCPVFrameSize(1)/2 - fGeom->GetFTPosition(0) +
fGeom->GetCPVTextoliteThickness() / 2 + fGeom->GetGassiplexChipSize(1) / 2 + 0.1;
for (Int_t ix=0; ix<fGeom->GetNumberOfCPVChipsPhi(); ix++) {
x = xStep * (ix+1) - fGeom->GetCPVActiveSize(0)/2;
for (Int_t iz=0; iz<fGeom->GetNumberOfCPVChipsZ(); iz++) {
copy++;
z = zStep * (iz+1) - fGeom->GetCPVActiveSize(1)/2;
gMC->Gspos("PCPC",copy,"PCPV",x,y,z,0,"ONLY");
}
}
// Foiled textolite (1 mm of textolite + 50 mkm of Cu + 6 mkm of Ni)
par[0] = fGeom->GetCPVActiveSize(0) / 2;
par[1] = fGeom->GetCPVTextoliteThickness() / 2;
par[2] = fGeom->GetCPVActiveSize(1) / 2;
gMC->Gsvolu("PCPF","BOX ",idtmed[707],par,3);
// Argon gas volume
par[1] = (fGeom->GetFTPosition(2) - fGeom->GetFTPosition(1) - fGeom->GetCPVTextoliteThickness()) / 2;
gMC->Gsvolu("PCPG","BOX ",idtmed[715],par,3);
for (Int_t i=0; i<4; i++) {
y = fGeom->GetCPVFrameSize(1) / 2 - fGeom->GetFTPosition(i) + fGeom->GetCPVTextoliteThickness()/2;
gMC->Gspos("PCPF",i+1,"PCPV",0,y,0,0,"ONLY");
if(i==1){
y-= (fGeom->GetFTPosition(2) - fGeom->GetFTPosition(1)) / 2;
gMC->Gspos("PCPG",1,"PCPV ",0,y,0,0,"ONLY");
}
}
// Dummy sensitive plane in the middle of argone gas volume
par[1]=0.001;
gMC->Gsvolu("PCPQ","BOX ",idtmed[715],par,3);
gMC->Gspos ("PCPQ",1,"PCPG",0,0,0,0,"ONLY");
// Cu+Ni foil covers textolite
par[1] = fGeom->GetCPVCuNiFoilThickness() / 2;
gMC->Gsvolu("PCP1","BOX ",idtmed[710],par,3);
y = fGeom->GetCPVTextoliteThickness()/2 - par[1];
gMC->Gspos ("PCP1",1,"PCPF",0,y,0,0,"ONLY");
// Aluminum frame around CPV
par[0] = fGeom->GetCPVFrameSize(0)/2;
par[1] = fGeom->GetCPVFrameSize(1)/2;
par[2] = fGeom->GetCPVBoxSize(2) /2;
gMC->Gsvolu("PCF1","BOX ",idtmed[701],par,3);
par[0] = fGeom->GetCPVBoxSize(0)/2 - fGeom->GetCPVFrameSize(0);
par[1] = fGeom->GetCPVFrameSize(1)/2;
par[2] = fGeom->GetCPVFrameSize(2)/2;
gMC->Gsvolu("PCF2","BOX ",idtmed[701],par,3);
for (Int_t j=0; j<=1; j++) {
x = TMath::Sign(1,2*j-1) * (fGeom->GetCPVBoxSize(0) - fGeom->GetCPVFrameSize(0)) / 2;
gMC->Gspos("PCF1",j+1,"PCPV", x,0,0,0,"ONLY");
z = TMath::Sign(1,2*j-1) * (fGeom->GetCPVBoxSize(2) - fGeom->GetCPVFrameSize(2)) / 2;
gMC->Gspos("PCF2",j+1,"PCPV",0, 0,z,0,"ONLY");
}
}
//____________________________________________________________________________
void AliPHOSv0::CreateGeometryforSupport()
{
// Create the PHOS' support geometry for GEANT
//
/*
Geant3 geometry of the PHOS's support
*/
//
Float_t par[5], x0,y0,z0 ;
Int_t i,j,copy;
// Get pointer to the array containing media indexes
Int_t *idtmed = fIdtmed->GetArray() - 699 ;
// --- Dummy box containing two rails on which PHOS support moves
// --- Put these rails to the bottom of the L3 magnet
par[0] = fGeom->GetRailRoadSize(0) / 2.0 ;
par[1] = fGeom->GetRailRoadSize(1) / 2.0 ;
par[2] = fGeom->GetRailRoadSize(2) / 2.0 ;
gMC->Gsvolu("PRRD", "BOX ", idtmed[798], par, 3) ;
y0 = -(fGeom->GetRailsDistanceFromIP() - fGeom->GetRailRoadSize(1) / 2.0) ;
gMC->Gspos("PRRD", 1, "ALIC", 0.0, y0, 0.0, 0, "ONLY") ;
// --- Dummy box containing one rail
par[0] = fGeom->GetRailOuterSize(0) / 2.0 ;
par[1] = fGeom->GetRailOuterSize(1) / 2.0 ;
par[2] = fGeom->GetRailOuterSize(2) / 2.0 ;
gMC->Gsvolu("PRAI", "BOX ", idtmed[798], par, 3) ;
for (i=0; i<2; i++) {
x0 = (2*i-1) * fGeom->GetDistanceBetwRails() / 2.0 ;
gMC->Gspos("PRAI", i, "PRRD", x0, 0.0, 0.0, 0, "ONLY") ;
}
// --- Upper and bottom steel parts of the rail
par[0] = fGeom->GetRailPart1(0) / 2.0 ;
par[1] = fGeom->GetRailPart1(1) / 2.0 ;
par[2] = fGeom->GetRailPart1(2) / 2.0 ;
gMC->Gsvolu("PRP1", "BOX ", idtmed[716], par, 3) ;
y0 = - (fGeom->GetRailOuterSize(1) - fGeom->GetRailPart1(1)) / 2.0 ;
gMC->Gspos("PRP1", 1, "PRAI", 0.0, y0, 0.0, 0, "ONLY") ;
y0 = (fGeom->GetRailOuterSize(1) - fGeom->GetRailPart1(1)) / 2.0 - fGeom->GetRailPart3(1);
gMC->Gspos("PRP1", 2, "PRAI", 0.0, y0, 0.0, 0, "ONLY") ;
// --- The middle vertical steel parts of the rail
par[0] = fGeom->GetRailPart2(0) / 2.0 ;
par[1] = fGeom->GetRailPart2(1) / 2.0 ;
par[2] = fGeom->GetRailPart2(2) / 2.0 ;
gMC->Gsvolu("PRP2", "BOX ", idtmed[716], par, 3) ;
y0 = - fGeom->GetRailPart3(1) / 2.0 ;
gMC->Gspos("PRP2", 1, "PRAI", 0.0, y0, 0.0, 0, "ONLY") ;
// --- The most upper steel parts of the rail
par[0] = fGeom->GetRailPart3(0) / 2.0 ;
par[1] = fGeom->GetRailPart3(1) / 2.0 ;
par[2] = fGeom->GetRailPart3(2) / 2.0 ;
gMC->Gsvolu("PRP3", "BOX ", idtmed[716], par, 3) ;
y0 = (fGeom->GetRailOuterSize(1) - fGeom->GetRailPart3(1)) / 2.0 ;
gMC->Gspos("PRP3", 1, "PRAI", 0.0, y0, 0.0, 0, "ONLY") ;
// --- The wall of the cradle
// --- The wall is empty: steel thin walls and air inside
par[1] = TMath::Sqrt(
TMath::Power((fGeom->GetIPtoOuterCoverDistance() + fGeom->GetOuterBoxSize(1)),2) +
TMath::Power((fGeom->GetOuterBoxSize(0)/2),2)) + 10.;
par[0] = par[1] - fGeom->GetCradleWall(1) ;
par[2] = fGeom->GetCradleWall(2) / 2.0 ;
par[3] = fGeom->GetCradleWall(3) ;
par[4] = fGeom->GetCradleWall(4) ;
gMC->Gsvolu("PCRA", "TUBS", idtmed[716], par, 5) ;
par[0] -= fGeom->GetCradleWallThickness() ;
par[1] -= fGeom->GetCradleWallThickness() ;
par[2] -= fGeom->GetCradleWallThickness() ;
gMC->Gsvolu("PCRE", "TUBS", idtmed[798], par, 5) ;
gMC->Gspos ("PCRE", 1, "PCRA", 0.0, 0.0, 0.0, 0, "ONLY") ;
for (i=0; i<2; i++) {
z0 = (2*i-1) * (fGeom->GetOuterBoxSize(2) + fGeom->GetCradleWall(2)) / 2.0 ;
gMC->Gspos("PCRA", i, "ALIC", 0.0, 0.0, z0, 0, "ONLY") ;
}
// --- The "wheels" of the cradle
par[0] = fGeom->GetCradleWheel(0) / 2;
par[1] = fGeom->GetCradleWheel(1) / 2;
par[2] = fGeom->GetCradleWheel(2) / 2;
gMC->Gsvolu("PWHE", "BOX ", idtmed[716], par, 3) ;
y0 = -(fGeom->GetRailsDistanceFromIP() - fGeom->GetRailRoadSize(1) -
fGeom->GetCradleWheel(1)/2) ;
for (i=0; i<2; i++) {
z0 = (2*i-1) * ((fGeom->GetOuterBoxSize(2) + fGeom->GetCradleWheel(2)) / 2.0 +
fGeom->GetCradleWall(2));
for (j=0; j<2; j++) {
copy = 2*i + j;
x0 = (2*j-1) * fGeom->GetDistanceBetwRails() / 2.0 ;
gMC->Gspos("PWHE", copy, "ALIC", x0, y0, z0, 0, "ONLY") ;
}
}
}
//____________________________________________________________________________
Float_t AliPHOSv0::ZMin(void) const
{
// Overall dimension of the PHOS (min)
// Take it twice more than the PHOS module size
return -fGeom->GetOuterBoxSize(2);
}
//____________________________________________________________________________
Float_t AliPHOSv0::ZMax(void) const
{
// Overall dimension of the PHOS (max)
// Take it twice more than the PHOS module size
return fGeom->GetOuterBoxSize(2);
}
//____________________________________________________________________________
void AliPHOSv0::Init(void)
{
// Just prints an information message
Int_t i;
printf("n");
for(i=0;i<35;i++) printf("*");
printf(" PHOS_INIT ");
for(i=0;i<35;i++) printf("*");
printf("n");
// Here the PHOS initialisation code (if any!)
if (fGeom!=0)
cout << "AliPHOS" << Version() << " : PHOS geometry intialized for " << fGeom->GetName() << endl ;
else
cout << "AliPHOS" << Version() << " : PHOS geometry initialization failed !" << endl ;
for(i=0;i<80;i++) printf("*");
printf("n");
}
ROOT page - Class index - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.