/**************************************************************************
* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
* *
* Author: The ALICE Off-line Project. *
* Contributors are mentioned in the code where appropriate. *
* *
* Permission to use, copy, modify and distribute this software and its *
* documentation strictly for non-commercial purposes is hereby granted *
* without fee, provided that the above copyright notice appears in all *
* copies and that both the copyright notice and this permission notice *
* appear in the supporting documentation. The authors make no claims *
* about the suitability of this software for any purpose. It is *
* provided "as is" without express or implied warranty. *
**************************************************************************/
/* $Id$ */
//_________________________________________________________________________
// Implementation version v1 of PHOS Manager class
//---
// Layout EMC + PPSD has name GPS2:
// Produces cumulated hits
//---
// Layout EMC + CPV has name IHEP:
// Produces hits for CPV, cumulated hits
//---
// Layout EMC + CPV + PPSD has name GPS:
// Produces hits for CPV, cumulated hits
//---
//*-- Author: Yves Schutz (SUBATECH)
// --- ROOT system ---
#include "TBRIK.h"
#include "TNode.h"
#include "TRandom.h"
#include "TTree.h"
// --- Standard library ---
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <strstream.h>
// --- AliRoot header files ---
#include "AliPHOSv1.h"
#include "AliPHOSHit.h"
#include "AliPHOSCPVDigit.h"
#include "AliRun.h"
#include "AliConst.h"
#include "AliMC.h"
#include "AliPHOSGeometry.h"
ClassImp(AliPHOSv1)
//____________________________________________________________________________
AliPHOSv1::AliPHOSv1():
AliPHOSv0()
{
// ctor
}
//____________________________________________________________________________
AliPHOSv1::AliPHOSv1(const char *name, const char *title):
AliPHOSv0(name,title)
{
// ctor : title is used to identify the layout
// GPS2 = 5 modules (EMC + PPSD)
// IHEP = 5 modules (EMC + CPV )
// MIXT = 4 modules (EMC + CPV ) and 1 module (EMC + PPSD)
//
// We store hits :
// - fHits (the "normal" one), which retains the hits associated with
// the current primary particle being tracked
// (this array is reset after each primary has been tracked).
//
// We do not want to save in TreeH the raw hits
// But save the cumulated hits instead (need to create the branch myself)
// It is put in the Digit Tree because the TreeH is filled after each primary
// and the TreeD at the end of the event (branch is set in FinishEvent() ).
fHits= new TClonesArray("AliPHOSHit",1000) ;
fNhits = 0 ;
fIshunt = 1 ; // All hits are associated with primary particles
}
//____________________________________________________________________________
// AliPHOSv1::AliPHOSv1(AliPHOSReconstructioner * Reconstructioner, const char *name, const char *title):
// AliPHOSv0(name,title)
// {
// // ctor : title is used to identify the layout
// // GPS2 = 5 modules (EMC + PPSD)
// fPinElectronicNoise = 0.010 ;
// // We do not want to save in TreeH the raw hits
// fDigits = 0 ;
// fHits= new TClonesArray("AliPHOSHit",1000) ;
// fNhits = 0 ;
// fIshunt = 1 ; // All hits are associated with primary particles
// // gets an instance of the geometry parameters class
// fGeom = AliPHOSGeometry::GetInstance(title, "") ;
// if (fGeom->IsInitialized() )
// cout << "AliPHOS" << Version() << " : PHOS geometry intialized for " << fGeom->GetName() << endl ;
// else
// cout << "AliPHOS" << Version() << " : PHOS geometry initialization failed !" << endl ;
// // Defining the PHOS Reconstructioner
// fReconstructioner = Reconstructioner ;
// }
//____________________________________________________________________________
AliPHOSv1::~AliPHOSv1()
{
// dtor
if ( fHits) {
fHits->Delete() ;
delete fHits ;
fHits = 0 ;
}
if ( fSDigits) {
fSDigits->Delete() ;
delete fSDigits ;
fSDigits = 0 ;
}
if ( fDigits) {
fDigits->Delete() ;
delete fDigits ;
fDigits = 0 ;
}
if ( fEmcRecPoints ) {
fEmcRecPoints->Delete() ;
delete fEmcRecPoints ;
fEmcRecPoints = 0 ;
}
if ( fPpsdRecPoints ) {
fPpsdRecPoints->Delete() ;
delete fPpsdRecPoints ;
fPpsdRecPoints = 0 ;
}
if ( fTrackSegments ) {
fTrackSegments->Delete() ;
delete fTrackSegments ;
fTrackSegments = 0 ;
}
}
//____________________________________________________________________________
void AliPHOSv1::AddHit(Int_t shunt, Int_t primary, Int_t tracknumber, Int_t Id, Float_t * hits)
{
// Add a hit to the hit list.
// A PHOS hit is the sum of all hits in a single crystal
// or in a single PPSD gas cell
Int_t hitCounter ;
AliPHOSHit *newHit ;
AliPHOSHit *curHit ;
Bool_t deja = kFALSE ;
newHit = new AliPHOSHit(shunt, primary, tracknumber, Id, hits) ;
for ( hitCounter = fNhits-1 ; hitCounter >= 0 && !deja ; hitCounter-- ) {
curHit = (AliPHOSHit*) (*fHits)[hitCounter] ;
if(curHit->GetPrimary() != primary) break ; // We add hits with the same primary, while GEANT treats primaries consequently
if( *curHit == *newHit ) {
*curHit = *curHit + *newHit ;
deja = kTRUE ;
}
}
if ( !deja ) {
new((*fHits)[fNhits]) AliPHOSHit(*newHit) ;
fNhits++ ;
}
delete newHit;
}
//____________________________________________________________________________
//void AliPHOSv1::Hits2SDigits(){
// char * fileSDigits = 0 ;
// AliPHOSSDigitizer * sd = new AliPHOSSDigitizer(fileSDigits) ;
// sd->SetPedestalParameter(fDigitizeA) ;
// sd->SetSlopeParameter(fDigitizeB) ;
// sd->Exec("") ;
// delete sd ;
//}
//____________________________________________________________________________
//void AliPHOSv1::SDigits2Digits(){
// //Adds noise to the summable digits and removes everething below thresholds
// //Note, that sDigits should be SORTED in accordance with abs ID.
// gAlice->TreeS()->GetEvent(0) ;
// // First calculate noise induced by the PIN diode of the PbWO crystals
// Int_t iCurSDigit = 0 ;
// //we assume, that there is al least one EMC digit...
// if(fSDigits->GetEntries() == 0) {
// cout << "PHOS::SDigits2Digits> No SDigits !!! Do not produce Digits " << endl ;
// return ;
// }
// Int_t itrack ;
// for (itrack=0; itrack<gAlice->GetNtrack(); itrack++){
// //=========== Get the Hits Tree for the Primary track itrack
// gAlice->ResetHits();
// gAlice->TreeH()->GetEvent(itrack);
// Int_t i;
// for ( i = 0 ; i < hits->GetEntries() ; i++ ) {
// AliPHOSHit * hit = (AliPHOSHit*)fHits->At(i) ;
// AliPHOSDigit * newdigit ;
// // Assign primary number only if contribution is significant
// if( hit->GetEnergy() > fPrimThreshold)
// newdigit = new AliPHOSDigit( hit->GetPrimary(), hit->GetId(), Digitize( hit->GetEnergy() ) ) ;
// else
// newdigit = new AliPHOSDigit( -1 , hit->GetId(), Digitize( hit->GetEnergy() ) ) ;
// new((*sdigits)[nSdigits]) AliPHOSDigit(* newdigit) ;
// nSdigits++ ;
// delete newdigit ;
// }
// } // loop over tracks
// sdigits->Sort() ;
// nSdigits = sdigits->GetEntries() ;
// sdigits->Expand(nSdigits) ;
// Int_t i ;
// for (i = 0 ; i < nSdigits ; i++) {
// AliPHOSDigit * digit = (AliPHOSDigit *) sdigits->At(i) ;
// digit->SetIndexInList(i) ;
// }
// gAlice->TreeS()->Fill() ;
// gAlice->TreeS()->Write(0,TObject::kOverwrite) ;
// Int_t idCurSDigit = ((AliPHOSDigit *)fSDigits->At(0))->GetId() ;
// Int_t absID ;
// for(absID = 1; absID < fGeom->GetNModules()*fGeom->GetNPhi()*fGeom->GetNZ(); absID++){
// Float_t noise = gRandom->Gaus(0., fPinElectronicNoise) ;
// if(absID < idCurSDigit ){
// if(noise >fDigitThreshold ){
// new((*fDigits)[fNdigits]) AliPHOSDigit( -1,absID,Digitize(noise) ) ;
// fNdigits++ ;
// }
// }
// else{ //add noise and may be remove the true hit
// Float_t signal = noise + Calibrate(((AliPHOSDigit *)fSDigits->At(iCurSDigit))->GetAmp()) ;
// if( signal >fDigitThreshold ){
// AliPHOSDigit * digit = (AliPHOSDigit*) fSDigits->At(iCurSDigit) ;
// new((*fDigits)[fNdigits]) AliPHOSDigit( *digit ) ;
// ((AliPHOSDigit *)fDigits->At(fNdigits))->SetAmp(Digitize(signal));
// fNdigits++ ;
// }
// if(iCurSDigit < fSDigits->GetEntries()-1){
// iCurSDigit++ ;
// idCurSDigit = ((AliPHOSDigit*)fSDigits->At(iCurSDigit))->GetId() ;
// }
// else
// idCurSDigit = 10000000; //no real hits left
// }
// }
// //remove PPSD/CPV digits below thresholds
// Int_t idigit ;
// for(idigit = iCurSDigit; idigit < fSDigits->GetEntries() ; idigit++){ //loop over CPV/PPSD digits
// AliPHOSDigit * digit = (AliPHOSDigit *) fSDigits->At(idigit) ;
// Float_t ene = Calibrate(digit->GetAmp()) ;
// Int_t relid[4] ;
// fGeom->AbsToRelNumbering(digit->GetId(), relid) ;
// if ( relid[0] > fGeom->GetNCPVModules() ){ //ppsd
// if ( ( (relid[1] > 0) && (ene > fPpsdEnergyThreshold)) || //PPSD digit
// ( (relid[1] < 0) && (ene > fCpvEnergyThreshold ) ) ) //CPV digit
// new((*fDigits)[fNdigits]) AliPHOSDigit( *digit ) ;
// fNdigits++ ;
// }
// }
// fDigits->Compress() ;
// fNdigits = fDigits->GetEntries() ;
// fDigits->Expand(fNdigits) ;
// Int_t i ;
// for (i = 0 ; i < fNdigits ; i++) {
// AliPHOSDigit * digit = (AliPHOSDigit *) fDigits->At(i) ;
// digit->SetIndexInList(i) ;
// }
// gAlice->TreeD()->Fill() ;
// gAlice->TreeD()->Write(0,TObject::kOverwrite) ;
//}
//___________________________________________________________________________
void AliPHOSv1::MakeBranch(Option_t* opt, char *file)
{
const char *cH ;
// Create new branche in the current Root Tree in the digit Tree
AliDetector::MakeBranch(opt) ;
cH = strstr(opt,"S");
//Create a branch for SDigits
if( cH ){
char branchname[20];
sprintf(branchname,"%s",GetName());
if(fSDigits)
fSDigits->Clear();
gAlice->MakeBranchInTree(gAlice->TreeS(),branchname,&fSDigits,fBufferSize,file);
}
cH = strstr(opt,"D");
//Create a branch for Digits
if( cH ){
char branchname[20];
sprintf(branchname,"%s",GetName());
if(fDigits)
fDigits->Clear();
gAlice->MakeBranchInTree(gAlice->TreeD(),branchname,&fDigits,fBufferSize,file);
}
cH = strstr(opt,"R");
//Create a branch for Reconstruction
if( cH ){
char branchname[20];
Int_t splitlevel = 0 ;
if(fEmcRecPoints)
fEmcRecPoints->Delete() ;
if ( fEmcRecPoints && gAlice->TreeR() ) {
sprintf(branchname,"%sEmcRP",GetName()) ;
gAlice->MakeBranchInTree(gAlice->TreeR(),branchname,"TObjArray",&fEmcRecPoints, fBufferSize, splitlevel,file);
}
if(fPpsdRecPoints)
fPpsdRecPoints->Delete() ;
if ( fPpsdRecPoints && gAlice->TreeR() ) {
sprintf(branchname,"%sPpsdRP",GetName()) ;
gAlice->MakeBranchInTree(gAlice->TreeR(),branchname,"TObjArray",&fPpsdRecPoints, fBufferSize, splitlevel,file);
}
if(fTrackSegments)
fTrackSegments->Clear() ;
if ( fTrackSegments && gAlice->TreeR() ) {
sprintf(branchname,"%sTS",GetName()) ;
gAlice->MakeBranchInTree(gAlice->TreeR(),branchname,&fTrackSegments,fBufferSize,file);
}
if(fRecParticles)
fRecParticles->Clear() ;
if ( fRecParticles && gAlice->TreeR() ) {
sprintf(branchname,"%sRP",GetName()) ;
gAlice->MakeBranchInTree(gAlice->TreeR(),branchname,&fRecParticles,fBufferSize,file);
}
}
}
//_____________________________________________________________________________
//void AliPHOSv1::Reconstruction(AliPHOSReconstructioner * Reconstructioner)
//{
// // 1. Reinitializes the existing RecPoint, TrackSegment, and RecParticles Lists and
// // 2. Creates TreeR with a branch for each list
// // 3. Steers the reconstruction processes
// // 4. Saves the 3 lists in TreeR
// // 5. Write the Tree to File
// fReconstructioner = Reconstructioner ;
// // 1.
// // gAlice->MakeTree("R") ;
// MakeBranch("R") ;
// // 3.
// fReconstructioner->Make(fDigits, fEmcRecPoints, fPpsdRecPoints, fTrackSegments, fRecParticles);
// printf("Reconstruction: %d %d %d %dn",
// fEmcRecPoints->GetEntries(),fPpsdRecPoints->GetEntries(),
// fTrackSegments->GetEntries(),fRecParticles->GetEntries());
// // 4. Expand or Shrink the arrays to the proper size
// Int_t size ;
// size = fEmcRecPoints->GetEntries() ;
// fEmcRecPoints->Expand(size) ;
// size = fPpsdRecPoints->GetEntries() ;
// fPpsdRecPoints->Expand(size) ;
// size = fTrackSegments->GetEntries() ;
// fTrackSegments->Expand(size) ;
// size = fRecParticles->GetEntries() ;
// fRecParticles->Expand(size) ;
// gAlice->TreeR()->Fill() ;
// // 5.
// gAlice->TreeR()->Write(0,TObject::kOverwrite) ;
// // Deleting reconstructed objects
// ResetReconstruction();
//}
// //____________________________________________________________________________
// void AliPHOSv1::ResetReconstruction()
// {
// // Deleting reconstructed objects
// if ( fEmcRecPoints ) fEmcRecPoints ->Delete();
// if ( fPpsdRecPoints ) fPpsdRecPoints->Delete();
// if ( fTrackSegments ) fTrackSegments->Delete();
// if ( fRecParticles ) fRecParticles ->Delete();
// }
//____________________________________________________________________________
void AliPHOSv1::StepManager(void)
{
// Accumulates hits as long as the track stays in a single crystal or PPSD gas Cell
Int_t relid[4] ; // (box, layer, row, column) indices
Int_t absid ; // absolute cell ID number
Float_t xyze[4]={0,0,0,0} ; // position wrt MRS and energy deposited
TLorentzVector pos ; // Lorentz vector of the track current position
Int_t copy ;
Int_t tracknumber = gAlice->CurrentTrack() ;
Int_t primary = gAlice->GetPrimary( gAlice->CurrentTrack() );
TString name = fGeom->GetName() ;
if ( name == "GPS2" || name == "MIXT" ) { // ======> CPV is a GPS' PPSD
if( gMC->CurrentVolID(copy) == gMC->VolId("GCEL") ) // We are inside a gas cell
{
gMC->TrackPosition(pos) ;
xyze[0] = pos[0] ;
xyze[1] = pos[1] ;
xyze[2] = pos[2] ;
xyze[3] = gMC->Edep() ;
if ( xyze[3] != 0 ) { // there is deposited energy
gMC->CurrentVolOffID(5, relid[0]) ; // get the PHOS Module number
if ( name == "MIXT" && strcmp(gMC->CurrentVolOffName(5),"PHO1") == 0 ){
relid[0] += fGeom->GetNModules() - fGeom->GetNPPSDModules();
}
gMC->CurrentVolOffID(3, relid[1]) ; // get the Micromegas Module number
// 1-> fGeom->GetNumberOfModulesPhi() * fGeom->GetNumberOfModulesZ() upper
// > fGeom->GetNumberOfModulesPhi() * fGeom->GetNumberOfModulesZ() lower
gMC->CurrentVolOffID(1, relid[2]) ; // get the row number of the cell
gMC->CurrentVolID(relid[3]) ; // get the column number
// get the absolute Id number
fGeom->RelToAbsNumbering(relid, absid) ;
// add current hit to the hit list
AddHit(fIshunt, primary, tracknumber, absid, xyze);
} // there is deposited energy
} // We are inside the gas of the CPV
} // GPS2 configuration
if ( name == "IHEP" || name == "MIXT" ) { // ======> CPV is a IHEP's one
// Yuri Kharlov, 28 September 2000
if( gMC->CurrentVolID(copy) == gMC->VolId("CPVQ") &&
(gMC->IsTrackEntering() ) &&
gMC->TrackCharge() != 0) {
gMC -> TrackPosition(pos);
Float_t xyzm[3], xyzd[3] ;
Int_t i;
for (i=0; i<3; i++) xyzm[i] = pos[i];
gMC -> Gmtod (xyzm, xyzd, 1); // transform coordinate from master to daughter system
Float_t xyd[3]={0,0,0} ; //local posiiton of the entering
xyd[0] = xyzd[0];
xyd[1] =-xyzd[1];
xyd[2] =-xyzd[2];
// Current momentum of the hit's track in the local ref. system
TLorentzVector pmom ; //momentum of the particle initiated hit
gMC -> TrackMomentum(pmom);
Float_t pm[3], pd[3];
for (i=0; i<3; i++) pm[i] = pmom[i];
gMC -> Gmtod (pm, pd, 2); // transform 3-momentum from master to daughter system
pmom[0] = pd[0];
pmom[1] =-pd[1];
pmom[2] =-pd[2];
// Digitize the current CPV hit:
// 1. find pad response and
Int_t moduleNumber;
gMC->CurrentVolOffID(3,moduleNumber);
moduleNumber--;
TClonesArray *cpvDigits = new TClonesArray("AliPHOSCPVDigit",0); // array of digits for current hit
CPVDigitize(pmom,xyd,moduleNumber,cpvDigits);
Float_t xmean = 0;
Float_t zmean = 0;
Float_t qsum = 0;
Int_t idigit,ndigits;
// 2. go through the current digit list and sum digits in pads
ndigits = cpvDigits->GetEntriesFast();
for (idigit=0; idigit<ndigits-1; idigit++) {
AliPHOSCPVDigit *cpvDigit1 = (AliPHOSCPVDigit*) cpvDigits->UncheckedAt(idigit);
Float_t x1 = cpvDigit1->GetXpad() ;
Float_t z1 = cpvDigit1->GetYpad() ;
for (Int_t jdigit=idigit+1; jdigit<ndigits; jdigit++) {
AliPHOSCPVDigit *cpvDigit2 = (AliPHOSCPVDigit*) cpvDigits->UncheckedAt(jdigit);
Float_t x2 = cpvDigit2->GetXpad() ;
Float_t z2 = cpvDigit2->GetYpad() ;
if (x1==x2 && z1==z2) {
Float_t qsum = cpvDigit1->GetQpad() + cpvDigit2->GetQpad() ;
cpvDigit2->SetQpad(qsum) ;
cpvDigits->RemoveAt(idigit) ;
}
}
}
cpvDigits->Compress() ;
// 3. add digits to temporary hit list fTmpHits
ndigits = cpvDigits->GetEntriesFast();
for (idigit=0; idigit<ndigits; idigit++) {
AliPHOSCPVDigit *cpvDigit = (AliPHOSCPVDigit*) cpvDigits->UncheckedAt(idigit);
relid[0] = moduleNumber + 1 ; // CPV (or PHOS) module number
relid[1] =-1 ; // means CPV
relid[2] = cpvDigit->GetXpad() ; // column number of a pad
relid[3] = cpvDigit->GetYpad() ; // row number of a pad
// get the absolute Id number
fGeom->RelToAbsNumbering(relid, absid) ;
// add current digit to the temporary hit list
xyze[0] = 0. ;
xyze[1] = 0. ;
xyze[2] = 0. ;
xyze[3] = cpvDigit->GetQpad() ; // amplitude in a pad
primary = -1; // No need in primary for CPV
AddHit(fIshunt, primary, tracknumber, absid, xyze);
if (cpvDigit->GetQpad() > 0.02) {
xmean += cpvDigit->GetQpad() * (cpvDigit->GetXpad() + 0.5);
zmean += cpvDigit->GetQpad() * (cpvDigit->GetYpad() + 0.5);
qsum += cpvDigit->GetQpad();
}
}
delete cpvDigits;
}
} // end of IHEP configuration
if(gMC->CurrentVolID(copy) == gMC->VolId("PXTL") ) { // We are inside a PBWO crystal
gMC->TrackPosition(pos) ;
xyze[0] = pos[0] ;
xyze[1] = pos[1] ;
xyze[2] = pos[2] ;
xyze[3] = gMC->Edep() ;
if ( xyze[3] != 0 ) { // Track is inside the crystal and deposits some energy
gMC->CurrentVolOffID(10, relid[0]) ; // get the PHOS module number ;
if ( name == "MIXT" && strcmp(gMC->CurrentVolOffName(10),"PHO1") == 0 )
relid[0] += fGeom->GetNModules() - fGeom->GetNPPSDModules();
relid[1] = 0 ; // means PBW04
gMC->CurrentVolOffID(4, relid[2]) ; // get the row number inside the module
gMC->CurrentVolOffID(3, relid[3]) ; // get the cell number inside the module
// get the absolute Id number
fGeom->RelToAbsNumbering(relid, absid) ;
// add current hit to the hit list
AddHit(fIshunt, primary,tracknumber, absid, xyze);
} // there is deposited energy
} // we are inside a PHOS Xtal
}
//____________________________________________________________________________
void AliPHOSv1::CPVDigitize (TLorentzVector p, Float_t *zxhit, Int_t moduleNumber, TClonesArray *cpvDigits)
{
// ------------------------------------------------------------------------
// Digitize one CPV hit:
// On input take exact 4-momentum p and position zxhit of the hit,
// find the pad response around this hit and
// put the amplitudes in the pads into array digits
//
// Author: Yuri Kharlov (after Serguei Sadovsky)
// 2 October 2000
// ------------------------------------------------------------------------
const Float_t kCelWr = fGeom->GetPadSizePhi()/2; // Distance between wires (2 wires above 1 pad)
const Float_t kDetR = 0.1; // Relative energy fluctuation in track for 100 e-
const Float_t kdEdx = 4.0; // Average energy loss in CPV;
const Int_t kNgamz = 5; // Ionization size in Z
const Int_t kNgamx = 9; // Ionization size in Phi
const Float_t kNoise = 0.03; // charge noise in one pad
Float_t rnor1,rnor2;
// Just a reminder on axes notation in the CPV module:
// axis Z goes along the beam
// axis X goes across the beam in the module plane
// axis Y is a normal to the module plane showing from the IP
Float_t hitX = zxhit[0];
Float_t hitZ =-zxhit[1];
Float_t pX = p.Px();
Float_t pZ =-p.Pz();
Float_t pNorm = p.Py();
Float_t eloss = kdEdx;
// cout << "CPVDigitize: YVK : "<<hitX<<" "<<hitZ<<" | "<<pX<<" "<<pZ<<" "<<pNorm<<endl;
Float_t dZY = pZ/pNorm * fGeom->GetCPVGasThickness();
Float_t dXY = pX/pNorm * fGeom->GetCPVGasThickness();
gRandom->Rannor(rnor1,rnor2);
eloss *= (1 + kDetR*rnor1) *
TMath::Sqrt((1 + ( pow(dZY,2) + pow(dXY,2) ) / pow(fGeom->GetCPVGasThickness(),2)));
Float_t zhit1 = hitZ + fGeom->GetCPVActiveSize(1)/2 - dZY/2;
Float_t xhit1 = hitX + fGeom->GetCPVActiveSize(0)/2 - dXY/2;
Float_t zhit2 = zhit1 + dZY;
Float_t xhit2 = xhit1 + dXY;
Int_t iwht1 = (Int_t) (xhit1 / kCelWr); // wire (x) coordinate "in"
Int_t iwht2 = (Int_t) (xhit2 / kCelWr); // wire (x) coordinate "out"
Int_t nIter;
Float_t zxe[3][5];
if (iwht1==iwht2) { // incline 1-wire hit
nIter = 2;
zxe[0][0] = (zhit1 + zhit2 - dZY*0.57735) / 2;
zxe[1][0] = (iwht1 + 0.5) * kCelWr;
zxe[2][0] = eloss/2;
zxe[0][1] = (zhit1 + zhit2 + dZY*0.57735) / 2;
zxe[1][1] = (iwht1 + 0.5) * kCelWr;
zxe[2][1] = eloss/2;
}
else if (TMath::Abs(iwht1-iwht2) != 1) { // incline 3-wire hit
nIter = 3;
Int_t iwht3 = (iwht1 + iwht2) / 2;
Float_t xwht1 = (iwht1 + 0.5) * kCelWr; // wire 1
Float_t xwht2 = (iwht2 + 0.5) * kCelWr; // wire 2
Float_t xwht3 = (iwht3 + 0.5) * kCelWr; // wire 3
Float_t xwr13 = (xwht1 + xwht3) / 2; // center 13
Float_t xwr23 = (xwht2 + xwht3) / 2; // center 23
Float_t dxw1 = xhit1 - xwr13;
Float_t dxw2 = xhit2 - xwr23;
Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
Float_t egm3 = kCelWr / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
zxe[0][0] = (dXY*(xwr13-xwht1)/dXY + zhit1 + zhit1) / 2;
zxe[1][0] = xwht1;
zxe[2][0] = eloss * egm1;
zxe[0][1] = (dXY*(xwr23-xwht1)/dXY + zhit1 + zhit2) / 2;
zxe[1][1] = xwht2;
zxe[2][1] = eloss * egm2;
zxe[0][2] = dXY*(xwht3-xwht1)/dXY + zhit1;
zxe[1][2] = xwht3;
zxe[2][2] = eloss * egm3;
}
else { // incline 2-wire hit
nIter = 2;
Float_t xwht1 = (iwht1 + 0.5) * kCelWr;
Float_t xwht2 = (iwht2 + 0.5) * kCelWr;
Float_t xwr12 = (xwht1 + xwht2) / 2;
Float_t dxw1 = xhit1 - xwr12;
Float_t dxw2 = xhit2 - xwr12;
Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
zxe[0][0] = (zhit1 + zhit2 - dZY*egm1) / 2;
zxe[1][0] = xwht1;
zxe[2][0] = eloss * egm1;
zxe[0][1] = (zhit1 + zhit2 + dZY*egm2) / 2;
zxe[1][1] = xwht2;
zxe[2][1] = eloss * egm2;
}
// Finite size of ionization region
Int_t nCellZ = fGeom->GetNumberOfCPVPadsZ();
Int_t nCellX = fGeom->GetNumberOfCPVPadsPhi();
Int_t nz3 = (kNgamz+1)/2;
Int_t nx3 = (kNgamx+1)/2;
cpvDigits->Expand(nIter*kNgamx*kNgamz);
TClonesArray &ldigits = *(TClonesArray *)cpvDigits;
for (Int_t iter=0; iter<nIter; iter++) {
Float_t zhit = zxe[0][iter];
Float_t xhit = zxe[1][iter];
Float_t qhit = zxe[2][iter];
Float_t zcell = zhit / fGeom->GetPadSizeZ();
Float_t xcell = xhit / fGeom->GetPadSizePhi();
if ( zcell<=0 || xcell<=0 ||
zcell>=nCellZ || xcell>=nCellX) return;
Int_t izcell = (Int_t) zcell;
Int_t ixcell = (Int_t) xcell;
Float_t zc = zcell - izcell - 0.5;
Float_t xc = xcell - ixcell - 0.5;
for (Int_t iz=1; iz<=kNgamz; iz++) {
Int_t kzg = izcell + iz - nz3;
if (kzg<=0 || kzg>nCellZ) continue;
Float_t zg = (Float_t)(iz-nz3) - zc;
for (Int_t ix=1; ix<=kNgamx; ix++) {
Int_t kxg = ixcell + ix - nx3;
if (kxg<=0 || kxg>nCellX) continue;
Float_t xg = (Float_t)(ix-nx3) - xc;
// Now calculate pad response
Float_t qpad = CPVPadResponseFunction(qhit,zg,xg);
qpad += kNoise*rnor2;
if (qpad<0) continue;
// Fill the array with pad response ID and amplitude
new(ldigits[cpvDigits->GetEntriesFast()]) AliPHOSCPVDigit(kxg,kzg,qpad);
}
}
}
}
//____________________________________________________________________________
Float_t AliPHOSv1::CPVPadResponseFunction(Float_t qhit, Float_t zhit, Float_t xhit) {
// ------------------------------------------------------------------------
// Calculate the amplitude in one CPV pad using the
// cumulative pad response function
// Author: Yuri Kharlov (after Serguei Sadovski)
// 3 October 2000
// ------------------------------------------------------------------------
Double_t dz = fGeom->GetPadSizeZ() / 2;
Double_t dx = fGeom->GetPadSizePhi() / 2;
Double_t z = zhit * fGeom->GetPadSizeZ();
Double_t x = xhit * fGeom->GetPadSizePhi();
Double_t amplitude = qhit *
(CPVCumulPadResponse(z+dz,x+dx) - CPVCumulPadResponse(z+dz,x-dx) -
CPVCumulPadResponse(z-dz,x+dx) + CPVCumulPadResponse(z-dz,x-dx));
return (Float_t)amplitude;
}
//____________________________________________________________________________
Double_t AliPHOSv1::CPVCumulPadResponse(Double_t x, Double_t y) {
// ------------------------------------------------------------------------
// Cumulative pad response function
// It includes several terms from the CF decomposition in electrostatics
// Note: this cumulative function is wrong since omits some terms
// but the cell amplitude obtained with it is correct because
// these omitting terms cancel
// Author: Yuri Kharlov (after Serguei Sadovski)
// 3 October 2000
// ------------------------------------------------------------------------
const Double_t kA=1.0;
const Double_t kB=0.7;
Double_t r2 = x*x + y*y;
Double_t xy = x*y;
Double_t cumulPRF = 0;
for (Int_t i=0; i<=4; i++) {
Double_t b1 = (2*i + 1) * kB;
cumulPRF += TMath::Power(-1,i) * TMath::ATan( xy / (b1*TMath::Sqrt(b1*b1 + r2)) );
}
cumulPRF *= kA/(2*TMath::Pi());
return cumulPRF;
}
ROOT page - Class index - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.