/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ /* $Id$ */ //_________________________________________________________________________ // Implementation version v0 of PHOS Manager class // Layout EMC + PPSD has name GPS2 // //*-- Author: Yves Schutz (SUBATECH) // --- ROOT system --- #include "TBRIK.h" #include "TNode.h" #include "TRandom.h" // --- Standard library --- #include <cstdio> #include <cstring> #include <cstdlib> #include <strstream> #include <cassert> // --- AliRoot header files --- #include "AliPHOSv0.h" #include "AliPHOSHit.h" #include "AliPHOSDigit.h" #include "AliPHOSReconstructioner.h" #include "AliRun.h" #include "AliConst.h" ClassImp(AliPHOSv0) //____________________________________________________________________________ AliPHOSv0::AliPHOSv0() { // ctor fNTmpHits = 0 ; fTmpHits = 0 ; } //____________________________________________________________________________ AliPHOSv0::AliPHOSv0(const char *name, const char *title): AliPHOS(name,title) { // ctor : title is used to identify the layout // GPS2 = 5 modules (EMC + PPSD) // We use 2 arrays of hits : // // - fHits (the "normal" one), which retains the hits associated with // the current primary particle being tracked // (this array is reset after each primary has been tracked). // // - fTmpHits, which retains all the hits of the current event. It // is used for the digitization part. fPinElectronicNoise = 0.010 ; fDigitThreshold = 1. ; // 1 GeV fHits = new TClonesArray("AliPHOSHit",100) ; gAlice->AddHitList(fHits) ; fTmpHits= new TClonesArray("AliPHOSHit",100) ; fNTmpHits = fNhits = 0 ; fDigits = new TClonesArray("AliPHOSDigit",100) ; fIshunt = 1 ; // All hits are associated with primary particles // gets an instance of the geometry parameters class fGeom = AliPHOSGeometry::GetInstance(title, "") ; if (fGeom->IsInitialized() ) cout << "AliPHOSv0 : PHOS geometry intialized for " << fGeom->GetName() << endl ; else cout << "AliPHOSv0 : PHOS geometry initialization failed !" << endl ; } //____________________________________________________________________________ AliPHOSv0::AliPHOSv0(AliPHOSReconstructioner * Reconstructioner, const char *name, const char *title): AliPHOS(name,title) { // ctor : title is used to identify the layout // GPS2 = 5 modules (EMC + PPSD) // We use 2 arrays of hits : // // - fHits (the "normal" one), which retains the hits associated with // the current primary particle being tracked // (this array is reset after each primary has been tracked). // // - fTmpHits, which retains all the hits of the current event. It // is used for the digitization part. fPinElectronicNoise = 0.010 ; fHits = new TClonesArray("AliPHOSHit",100) ; fDigits = new TClonesArray("AliPHOSDigit",100) ; fTmpHits= new TClonesArray("AliPHOSHit",100) ; fNTmpHits = fNhits = 0 ; fIshunt = 1 ; // All hits are associated with primary particles // gets an instance of the geometry parameters class fGeom = AliPHOSGeometry::GetInstance(title, "") ; if (fGeom->IsInitialized() ) cout << "AliPHOSv0 : PHOS geometry intialized for " << fGeom->GetName() << endl ; else cout << "AliPHOSv0 : PHOS geometry initialization failed !" << endl ; // Defining the PHOS Reconstructioner fReconstructioner = Reconstructioner ; } //____________________________________________________________________________ AliPHOSv0::~AliPHOSv0() { // dtor fTmpHits->Delete() ; delete fTmpHits ; fTmpHits = 0 ; fEmcClusters->Delete() ; delete fEmcClusters ; fEmcClusters = 0 ; fPpsdClusters->Delete() ; delete fPpsdClusters ; fPpsdClusters = 0 ; fTrackSegments->Delete() ; delete fTrackSegments ; fTrackSegments = 0 ; } //____________________________________________________________________________ void AliPHOSv0::AddHit(Int_t primary, Int_t Id, Float_t * hits) { // Add a hit to the hit list. // A PHOS hit is the sum of all hits in a single crystal // or in a single PPSD gas cell Int_t hitCounter ; TClonesArray <mphits = *fTmpHits ; AliPHOSHit *newHit ; AliPHOSHit *curHit ; Bool_t deja = kFALSE ; // In any case, fills the fTmpHit TClonesArray (with "accumulated hits") newHit = new AliPHOSHit(primary, Id, hits) ; for ( hitCounter = 0 ; hitCounter < fNTmpHits && !deja ; hitCounter++ ) { curHit = (AliPHOSHit*) ltmphits[hitCounter] ; if( *curHit == *newHit ) { *curHit = *curHit + *newHit ; deja = kTRUE ; } } if ( !deja ) { new(ltmphits[fNTmpHits]) AliPHOSHit(*newHit) ; fNTmpHits++ ; } // Please note that the fTmpHits array must survive up to the // end of the events, so it does not appear e.g. in ResetHits() ( // which is called at the end of each primary). // if (IsTreeSelected('H')) { // And, if we really want raw hits tree, have the fHits array filled also // TClonesArray &lhits = *fHits; // new(lhits[fNhits]) AliPHOSHit(*newHit) ; // fNhits++ ; // } delete newHit; } //____________________________________________________________________________ void AliPHOSv0::BuildGeometry() { // Build the PHOS geometry for the ROOT display // /*PHOS in ALICE displayed by root
*/ // // Get pointer to the array containing media indexes Int_t *idtmed = fIdtmed->GetArray() - 699 ; // --- // --- Define PHOS box volume, fPUFPill with thermo insulating foam --- // --- Foam Thermo Insulating outer cover dimensions --- // --- Put it in bigbox = PHOS Float_t dphos[3] ; dphos[0] = fGeom->GetOuterBoxSize(0) / 2.0 ; dphos[1] = fGeom->GetOuterBoxSize(1) / 2.0 ; dphos[2] = fGeom->GetOuterBoxSize(2) / 2.0 ; gMC->Gsvolu("EMCA", "BOX ", idtmed[706], dphos, 3) ; Float_t yO = - fGeom->GetPPSDBoxSize(1) / 2.0 ; gMC->Gspos("EMCA", 1, "PHOS", 0.0, yO, 0.0, 0, "ONLY") ; // --- // --- Define Textolit Wall box, position inside EMCA --- // --- Textolit Wall box dimentions --- Float_t dptxw[3]; dptxw[0] = fGeom->GetTextolitBoxSize(0) / 2.0 ; dptxw[1] = fGeom->GetTextolitBoxSize(1) / 2.0 ; dptxw[2] = fGeom->GetTextolitBoxSize(2) / 2.0 ; gMC->Gsvolu("PTXW", "BOX ", idtmed[707], dptxw, 3); yO = ( fGeom->GetOuterBoxThickness(1) - fGeom->GetUpperPlateThickness() ) / 2. ; gMC->Gspos("PTXW", 1, "EMCA", 0.0, yO, 0.0, 0, "ONLY") ; // --- // --- Define Upper Polystyrene Foam Plate, place inside PTXW --- // --- immediately below Foam Thermo Insulation Upper plate --- // --- Upper Polystyrene Foam plate thickness --- Float_t dpufp[3] ; dpufp[0] = fGeom->GetTextolitBoxSize(0) / 2.0 ; dpufp[1] = fGeom->GetSecondUpperPlateThickness() / 2. ; dpufp[2] = fGeom->GetTextolitBoxSize(2) /2.0 ; gMC->Gsvolu("PUFP", "BOX ", idtmed[703], dpufp, 3) ; yO = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetSecondUpperPlateThickness() ) / 2.0 ; gMC->Gspos("PUFP", 1, "PTXW", 0.0, yO, 0.0, 0, "ONLY") ; // --- // --- Define air-filled box, place inside PTXW --- // --- Inner AIR volume dimensions --- Float_t dpair[3] ; dpair[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ; dpair[1] = fGeom->GetAirFilledBoxSize(1) / 2.0 ; dpair[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ; gMC->Gsvolu("PAIR", "BOX ", idtmed[798], dpair, 3) ; yO = ( fGeom->GetTextolitBoxSize(1) - fGeom->GetAirFilledBoxSize(1) ) / 2.0 - fGeom->GetSecondUpperPlateThickness() ; gMC->Gspos("PAIR", 1, "PTXW", 0.0, yO, 0.0, 0, "ONLY") ; // --- Dimensions of PbWO4 crystal --- Float_t xtlX = fGeom->GetCrystalSize(0) ; Float_t xtlY = fGeom->GetCrystalSize(1) ; Float_t xtlZ = fGeom->GetCrystalSize(2) ; Float_t dptcb[3] ; dptcb[0] = fGeom->GetNPhi() * ( xtlX + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ; dptcb[1] = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 + fGeom->GetModuleBoxThickness() / 2.0 ; dptcb[2] = fGeom->GetNZ() * ( xtlZ + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 + fGeom->GetModuleBoxThickness() ; gMC->Gsvolu("PTCB", "BOX ", idtmed[706], dptcb, 3) ; yO = fGeom->GetAirFilledBoxSize(1) / 2.0 - dptcb[1] - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetModuleBoxThickness() - fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() ) ; gMC->Gspos("PTCB", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ; // --- // --- Define Crystal BLock filled with air, position it inside PTCB --- Float_t dpcbl[3] ; dpcbl[0] = fGeom->GetNPhi() * ( xtlX + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 ; dpcbl[1] = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 ; dpcbl[2] = fGeom->GetNZ() * ( xtlZ + 2 * fGeom->GetGapBetweenCrystals() ) / 2.0 ; gMC->Gsvolu("PCBL", "BOX ", idtmed[798], dpcbl, 3) ; // --- Divide PCBL in X (phi) and Z directions -- gMC->Gsdvn("PROW", "PCBL", Int_t (fGeom->GetNPhi()), 1) ; gMC->Gsdvn("PCEL", "PROW", Int_t (fGeom->GetNZ()), 3) ; yO = -fGeom->GetModuleBoxThickness() / 2.0 ; gMC->Gspos("PCBL", 1, "PTCB", 0.0, yO, 0.0, 0, "ONLY") ; // --- // --- Define STeel (actually, it's titanium) Cover volume, place inside PCEL Float_t dpstc[3] ; dpstc[0] = ( xtlX + 2 * fGeom->GetCrystalWrapThickness() ) / 2.0 ; dpstc[1] = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 ; dpstc[2] = ( xtlZ + 2 * fGeom->GetCrystalWrapThickness() + 2 * fGeom->GetCrystalHolderThickness() ) / 2.0 ; gMC->Gsvolu("PSTC", "BOX ", idtmed[704], dpstc, 3) ; gMC->Gspos("PSTC", 1, "PCEL", 0.0, 0.0, 0.0, 0, "ONLY") ; // --- // --- Define Tyvek volume, place inside PSTC --- Float_t dppap[3] ; dppap[0] = xtlX / 2.0 + fGeom->GetCrystalWrapThickness() ; dppap[1] = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 ; dppap[2] = xtlZ / 2.0 + fGeom->GetCrystalWrapThickness() ; gMC->Gsvolu("PPAP", "BOX ", idtmed[702], dppap, 3) ; yO = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 - ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() + fGeom->GetCrystalHolderThickness() ) / 2.0 ; gMC->Gspos("PPAP", 1, "PSTC", 0.0, yO, 0.0, 0, "ONLY") ; // --- // --- Define PbWO4 crystal volume, place inside PPAP --- Float_t dpxtl[3] ; dpxtl[0] = xtlX / 2.0 ; dpxtl[1] = xtlY / 2.0 ; dpxtl[2] = xtlZ / 2.0 ; gMC->Gsvolu("PXTL", "BOX ", idtmed[699], dpxtl, 3) ; yO = ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 - xtlY / 2.0 - fGeom->GetCrystalWrapThickness() ; gMC->Gspos("PXTL", 1, "PPAP", 0.0, yO, 0.0, 0, "ONLY") ; // --- // --- Define crystal support volume, place inside PPAP --- Float_t dpsup[3] ; dpsup[0] = xtlX / 2.0 + fGeom->GetCrystalWrapThickness() ; dpsup[1] = fGeom->GetCrystalSupportHeight() / 2.0 ; dpsup[2] = xtlZ / 2.0 + fGeom->GetCrystalWrapThickness() ; gMC->Gsvolu("PSUP", "BOX ", idtmed[798], dpsup, 3) ; yO = fGeom->GetCrystalSupportHeight() / 2.0 - ( xtlY + fGeom->GetCrystalSupportHeight() + fGeom->GetCrystalWrapThickness() ) / 2.0 ; gMC->Gspos("PSUP", 1, "PPAP", 0.0, yO, 0.0, 0, "ONLY") ; // --- // --- Define PIN-diode volume and position it inside crystal support --- // --- right behind PbWO4 crystal // --- PIN-diode dimensions --- Float_t dppin[3] ; dppin[0] = fGeom->GetPinDiodeSize(0) / 2.0 ; dppin[1] = fGeom->GetPinDiodeSize(1) / 2.0 ; dppin[2] = fGeom->GetPinDiodeSize(2) / 2.0 ; gMC->Gsvolu("PPIN", "BOX ", idtmed[705], dppin, 3) ; yO = fGeom->GetCrystalSupportHeight() / 2.0 - fGeom->GetPinDiodeSize(1) / 2.0 ; gMC->Gspos("PPIN", 1, "PSUP", 0.0, yO, 0.0, 0, "ONLY") ; // --- // --- Define Upper Cooling Panel, place it on top of PTCB --- Float_t dpucp[3] ; // --- Upper Cooling Plate thickness --- dpucp[0] = dptcb[0] ; dpucp[1] = fGeom->GetUpperCoolingPlateThickness() ; dpucp[2] = dptcb[2] ; gMC->Gsvolu("PUCP", "BOX ", idtmed[701], dpucp,3) ; yO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetUpperCoolingPlateThickness() ) / 2. - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetModuleBoxThickness() - fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() - fGeom->GetUpperCoolingPlateThickness() ) ; gMC->Gspos("PUCP", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ; // --- // --- Define Al Support Plate, position it inside PAIR --- // --- right beneath PTCB --- // --- Al Support Plate thickness --- Float_t dpasp[3] ; dpasp[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ; dpasp[1] = fGeom->GetSupportPlateThickness() / 2.0 ; dpasp[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ; gMC->Gsvolu("PASP", "BOX ", idtmed[701], dpasp, 3) ; yO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetSupportPlateThickness() ) / 2. - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() + dpcbl[1] * 2 ) ; gMC->Gspos("PASP", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ; // --- // --- Define Thermo Insulating Plate, position it inside PAIR --- // --- right beneath PASP --- // --- Lower Thermo Insulating Plate thickness --- Float_t dptip[3] ; dptip[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ; dptip[1] = fGeom->GetLowerThermoPlateThickness() / 2.0 ; dptip[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ; gMC->Gsvolu("PTIP", "BOX ", idtmed[706], dptip, 3) ; yO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetLowerThermoPlateThickness() ) / 2. - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() + dpcbl[1] * 2 + fGeom->GetSupportPlateThickness() ) ; gMC->Gspos("PTIP", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ; // --- // --- Define Textolit Plate, position it inside PAIR --- // --- right beneath PTIP --- // --- Lower Textolit Plate thickness --- Float_t dptxp[3] ; dptxp[0] = fGeom->GetAirFilledBoxSize(0) / 2.0 ; dptxp[1] = fGeom->GetLowerTextolitPlateThickness() / 2.0 ; dptxp[2] = fGeom->GetAirFilledBoxSize(2) / 2.0 ; gMC->Gsvolu("PTXP", "BOX ", idtmed[707], dptxp, 3) ; yO = ( fGeom->GetAirFilledBoxSize(1) - fGeom->GetLowerTextolitPlateThickness() ) / 2. - ( fGeom->GetIPtoCrystalSurface() - fGeom->GetIPtoOuterCoverDistance() - fGeom->GetUpperPlateThickness() - fGeom->GetSecondUpperPlateThickness() + dpcbl[1] * 2 + fGeom->GetSupportPlateThickness() + fGeom->GetLowerThermoPlateThickness() ) ; gMC->Gspos("PTXP", 1, "PAIR", 0.0, yO, 0.0, 0, "ONLY") ; } //____________________________________________________________________________ void AliPHOSv0::CreateGeometryforPPSD() { // Create the PHOS-PPSD geometry for GEANT // /*
*/
//
// Get pointer to the array containing media indexes
Int_t *idtmed = fIdtmed->GetArray() - 699 ;
// The box containing all ppsd's for one PHOS module filled with air
Float_t ppsd[3] ;
ppsd[0] = fGeom->GetPPSDBoxSize(0) / 2.0 ;
ppsd[1] = fGeom->GetPPSDBoxSize(1) / 2.0 ;
ppsd[2] = fGeom->GetPPSDBoxSize(2) / 2.0 ;
gMC->Gsvolu("PPSD", "BOX ", idtmed[798], ppsd, 3) ;
Float_t yO = fGeom->GetOuterBoxSize(1) / 2.0 ;
gMC->Gspos("PPSD", 1, "PHOS", 0.0, yO, 0.0, 0, "ONLY") ;
// Now we build a micromegas module
// The box containing the whole module filled with epoxy (FR4)
Float_t mppsd[3] ;
mppsd[0] = fGeom->GetPPSDModuleSize(0) / 2.0 ;
mppsd[1] = fGeom->GetPPSDModuleSize(1) / 2.0 ;
mppsd[2] = fGeom->GetPPSDModuleSize(2) / 2.0 ;
gMC->Gsvolu("MPPS", "BOX ", idtmed[708], mppsd, 3) ;
// Inside mppsd :
// 1. The Top Lid made of epoxy (FR4)
Float_t tlppsd[3] ;
tlppsd[0] = fGeom->GetPPSDModuleSize(0) / 2.0 ;
tlppsd[1] = fGeom->GetLidThickness() / 2.0 ;
tlppsd[2] = fGeom->GetPPSDModuleSize(2) / 2.0 ;
gMC->Gsvolu("TLPS", "BOX ", idtmed[708], tlppsd, 3) ;
Float_t y0 = ( fGeom->GetMicromegas1Thickness() - fGeom->GetLidThickness() ) / 2. ;
gMC->Gspos("TLPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ;
// 2. the upper panel made of composite material
Float_t upppsd[3] ;
upppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
upppsd[1] = fGeom->GetCompositeThickness() / 2.0 ;
upppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
gMC->Gsvolu("UPPS", "BOX ", idtmed[709], upppsd, 3) ;
y0 = y0 - fGeom->GetLidThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
gMC->Gspos("UPPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ;
// 3. the anode made of Copper
Float_t anppsd[3] ;
anppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
anppsd[1] = fGeom->GetAnodeThickness() / 2.0 ;
anppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
gMC->Gsvolu("ANPS", "BOX ", idtmed[710], anppsd, 3) ;
y0 = y0 - fGeom->GetCompositeThickness() / 2. - fGeom->GetAnodeThickness() / 2. ;
gMC->Gspos("ANPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ;
// 4. the conversion gap + avalanche gap filled with gas
Float_t ggppsd[3] ;
ggppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
ggppsd[1] = ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2.0 ;
ggppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
gMC->Gsvolu("GGPS", "BOX ", idtmed[715], ggppsd, 3) ;
// --- Divide GGPP in X (phi) and Z directions --
gMC->Gsdvn("GROW", "GGPS", fGeom->GetNumberOfPadsPhi(), 1) ;
gMC->Gsdvn("GCEL", "GROW", fGeom->GetNumberOfPadsZ() , 3) ;
y0 = y0 - fGeom->GetAnodeThickness() / 2. - ( fGeom->GetConversionGap() + fGeom->GetAvalancheGap() ) / 2. ;
gMC->Gspos("GGPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ;
// 6. the cathode made of Copper
Float_t cappsd[3] ;
cappsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
cappsd[1] = fGeom->GetCathodeThickness() / 2.0 ;
cappsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
gMC->Gsvolu("CAPS", "BOX ", idtmed[710], cappsd, 3) ;
y0 = y0 - ( fGeom->GetAvalancheGap() + fGeom->GetAvalancheGap() ) / 2. - fGeom->GetCathodeThickness() / 2. ;
gMC->Gspos("CAPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ;
// 7. the printed circuit made of G10
Float_t pcppsd[3] ;
pcppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2,.0 ;
pcppsd[1] = fGeom->GetPCThickness() / 2.0 ;
pcppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
gMC->Gsvolu("PCPS", "BOX ", idtmed[711], cappsd, 3) ;
y0 = y0 - fGeom->GetCathodeThickness() / 2. - fGeom->GetPCThickness() / 2. ;
gMC->Gspos("PCPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ;
// 8. the lower panel made of composite material
Float_t lpppsd[3] ;
lpppsd[0] = ( fGeom->GetPPSDModuleSize(0) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
lpppsd[1] = fGeom->GetCompositeThickness() / 2.0 ;
lpppsd[2] = ( fGeom->GetPPSDModuleSize(2) - fGeom->GetMicromegasWallThickness() ) / 2.0 ;
gMC->Gsvolu("LPPS", "BOX ", idtmed[709], lpppsd, 3) ;
y0 = y0 - fGeom->GetPCThickness() / 2. - fGeom->GetCompositeThickness() / 2. ;
gMC->Gspos("LPPS", 1, "MPPS", 0.0, y0, 0.0, 0, "ONLY") ;
// Position the fNumberOfModulesPhi x fNumberOfModulesZ modules (mppsd) inside PPSD to cover a PHOS module
// the top and bottom one's (which are assumed identical) :
Float_t yt = ( fGeom->GetPPSDBoxSize(1) - fGeom->GetMicromegas1Thickness() ) / 2. ;
Float_t yb = - ( fGeom->GetPPSDBoxSize(1) - fGeom->GetMicromegas2Thickness() ) / 2. ;
Int_t copyNumbertop = 0 ;
Int_t copyNumberbot = fGeom->GetNumberOfModulesPhi() * fGeom->GetNumberOfModulesZ() ;
Float_t x = ( fGeom->GetPPSDBoxSize(0) - fGeom->GetPPSDModuleSize(0) ) / 2. ;
for ( Int_t iphi = 1; iphi <= fGeom->GetNumberOfModulesPhi(); iphi++ ) { // the number of micromegas modules in phi per PHOS module
Float_t z = ( fGeom->GetPPSDBoxSize(2) - fGeom->GetPPSDModuleSize(2) ) / 2. ;
for ( Int_t iz = 1; iz <= fGeom->GetNumberOfModulesZ(); iz++ ) { // the number of micromegas modules in z per PHOS module
gMC->Gspos("MPPS", ++copyNumbertop, "PPSD", x, yt, z, 0, "ONLY") ;
gMC->Gspos("MPPS", ++copyNumberbot, "PPSD", x, yb, z, 0, "ONLY") ;
z = z - fGeom->GetPPSDModuleSize(2) ;
} // end of Z module loop
x = x - fGeom->GetPPSDModuleSize(0) ;
} // end of phi module loop
// The Lead converter between two air gaps
// 1. Upper air gap
Float_t uappsd[3] ;
uappsd[0] = fGeom->GetPPSDBoxSize(0) / 2.0 ;
uappsd[1] = fGeom->GetMicro1ToLeadGap() / 2.0 ;
uappsd[2] = fGeom->GetPPSDBoxSize(2) / 2.0 ;
gMC->Gsvolu("UAPPSD", "BOX ", idtmed[798], uappsd, 3) ;
y0 = ( fGeom->GetPPSDBoxSize(1) - 2 * fGeom->GetMicromegas1Thickness() - fGeom->GetMicro1ToLeadGap() ) / 2. ;
gMC->Gspos("UAPPSD", 1, "PPSD", 0.0, y0, 0.0, 0, "ONLY") ;
// 2. Lead converter
Float_t lcppsd[3] ;
lcppsd[0] = fGeom->GetPPSDBoxSize(0) / 2.0 ;
lcppsd[1] = fGeom->GetLeadConverterThickness() / 2.0 ;
lcppsd[2] = fGeom->GetPPSDBoxSize(2) / 2.0 ;
gMC->Gsvolu("LCPPSD", "BOX ", idtmed[712], lcppsd, 3) ;
y0 = y0 - fGeom->GetMicro1ToLeadGap() / 2. - fGeom->GetLeadConverterThickness() / 2. ;
gMC->Gspos("LCPPSD", 1, "PPSD", 0.0, y0, 0.0, 0, "ONLY") ;
// 3. Lower air gap
Float_t lappsd[3] ;
lappsd[0] = fGeom->GetPPSDBoxSize(0) / 2.0 ;
lappsd[1] = fGeom->GetLeadToMicro2Gap() / 2.0 ;
lappsd[2] = fGeom->GetPPSDBoxSize(2) / 2.0 ;
gMC->Gsvolu("LAPPSD", "BOX ", idtmed[798], lappsd, 3) ;
y0 = y0 - fGeom->GetLeadConverterThickness() / 2. - fGeom->GetLeadToMicro2Gap() / 2. ;
gMC->Gspos("LAPPSD", 1, "PPSD", 0.0, y0, 0.0, 0, "ONLY") ;
}
//___________________________________________________________________________
Int_t AliPHOSv0::Digitize(Float_t Energy)
{
// Applies the energy calibration
Float_t fB = 100000000. ;
Float_t fA = 0. ;
Int_t chan = Int_t(fA + Energy*fB ) ;
return chan ;
}
//___________________________________________________________________________
void AliPHOSv0::FinishEvent()
{
// Makes the digits from the sum of summed hit in a single crystal or PPSD gas cell
// Adds to the energy the electronic noise
// Keeps digits with energy above fDigitThreshold
Int_t i ;
Int_t relid[4];
Int_t j ;
TClonesArray &lDigits = *fDigits ;
AliPHOSHit * hit ;
AliPHOSDigit * newdigit ;
AliPHOSDigit * curdigit ;
Bool_t deja = kFALSE ;
for ( i = 0 ; i < fNTmpHits ; i++ ) {
hit = (AliPHOSHit*)fTmpHits->At(i) ;
newdigit = new AliPHOSDigit( hit->GetPrimary(), hit->GetId(), Digitize( hit->GetEnergy() ) ) ;
deja =kFALSE ;
for ( j = 0 ; j < fNdigits ; j++) {
curdigit = (AliPHOSDigit*) lDigits[j] ;
if ( *curdigit == *newdigit) {
*curdigit = *curdigit + *newdigit ;
deja = kTRUE ;
}
}
if ( !deja ) {
new(lDigits[fNdigits]) AliPHOSDigit(* newdigit) ;
fNdigits++ ;
}
delete newdigit ;
}
// Noise induced by the PIN diode of the PbWO crystals
Float_t energyandnoise ;
for ( i = 0 ; i < fNdigits ; i++ ) {
newdigit = (AliPHOSDigit * ) fDigits->At(i) ;
fGeom->AbsToRelNumbering(newdigit->GetId(), relid) ;
if (relid[1]==0){ // Digits belong to EMC (PbW0_4 crystals)
energyandnoise = newdigit->GetAmp() + Digitize(gRandom->Gaus(0., fPinElectronicNoise)) ;
if (energyandnoise < 0 )
energyandnoise = 0 ;
newdigit->SetAmp(energyandnoise) ;
if ( newdigit->GetAmp() < fDigitThreshold ) // if threshold not surpassed, remove digit from list
fDigits->RemoveAt(i) ;
}
}
fDigits->Compress() ;
fNTmpHits = 0 ;
fTmpHits->Delete();
}
//____________________________________________________________________________
void AliPHOSv0::Init(void)
{
// Just prints an information message
Int_t i;
printf("n");
for(i=0;i<35;i++) printf("*");
printf(" PHOS_INIT ");
for(i=0;i<35;i++) printf("*");
printf("n");
// Here the PHOS initialisation code (if any!)
for(i=0;i<80;i++) printf("*");
printf("n");
}
//___________________________________________________________________________
void AliPHOSv0::MakeBranch(Option_t* opt)
{
// Create new branche in the current Root Tree in the digit Tree
AliDetector::MakeBranch(opt) ;
char branchname[10];
sprintf(branchname,"%s",GetName());
char *cdD = strstr(opt,"D");
if (fDigits && gAlice->TreeD() && cdD) {
gAlice->TreeD()->Branch(branchname,&fDigits, fBufferSize);
}
}
//_____________________________________________________________________________
void AliPHOSv0::Reconstruction(AliPHOSReconstructioner * Reconstructioner)
{
// 1. Reinitializes the existing RecPoint, TrackSegment, and RecParticles Lists and
// 2. Creates a branch in TreeR for each list
// 3. Steers the reconstruction processes
// 4. Saves the 3 lists in TreeR
// 5. Write the Tree to File
fReconstructioner = Reconstructioner ;
char branchname[10] ;
// 1.
if (fEmcClusters) {
fEmcClusters->Delete() ;
delete fEmcClusters ;
fEmcClusters = 0 ;
}
fEmcClusters= new RecPointsList("AliPHOSEmcRecPoint", 100) ;
if ( fEmcClusters && gAlice->TreeR() ) {
sprintf(branchname,"%sERP",GetName()) ;
gAlice->TreeR()->Branch(branchname, &fEmcClusters, fBufferSize);
}
if (fPpsdClusters) {
fPpsdClusters->Delete() ;
delete fPpsdClusters ;
fPpsdClusters = 0 ;
}
fPpsdClusters = new RecPointsList("AliPHOSPpsdRecPoint", 100) ;
if ( fPpsdClusters && gAlice->TreeR() ) {
sprintf(branchname,"%sPRP",GetName()) ;
gAlice->TreeR()->Branch(branchname, &fPpsdClusters, fBufferSize);
}
if (fTrackSegments) {
fTrackSegments->Delete() ;
delete fTrackSegments ;
fTrackSegments = 0 ;
}
fTrackSegments = new TrackSegmentsList(100) ;
// if ( fTrackSegments && gAlice->TreeR() ) {
// sprintf(branchname,"%sTS",GetName()) ;
// gAlice->TreeR()->Branch(branchname, &fTrackSegments, fBufferSize);
// }
if (fRecParticles) {
fRecParticles->Delete() ;
delete fRecParticles ;
fRecParticles = 0 ;
}
fRecParticles = new RecParticlesList("AliPHOSRecParticle", 100) ;
if ( fRecParticles && gAlice->TreeR() ) {
sprintf(branchname,"%sRP",GetName()) ;
gAlice->TreeR()->Branch(branchname, &fRecParticles, fBufferSize);
}
// 3.
fReconstructioner->Make(fDigits, fEmcClusters, fPpsdClusters, fTrackSegments, fRecParticles);
// 4.
gAlice->TreeR()->Fill() ;
// 5.
gAlice->TreeR()->Write() ;
}
//____________________________________________________________________________
void AliPHOSv0::StepManager(void)
{
// Accumulates hits as long as the track stays in a single crystal or PPSD gas Cell
Int_t relid[4] ; // (box, layer, row, column) indices
Float_t xyze[4] ; // position wrt MRS and energy deposited
TLorentzVector pos ;
Int_t copy ;
Int_t primary = gAlice->GetPrimary( gAlice->CurrentTrack() );
TString name = fGeom->GetName() ;
if ( name == "GPS2" ) { // the CPV is a PPSD
if( gMC->CurrentVolID(copy) == gMC->VolId("GCEL") ) // We are inside a gas cell
{
gMC->TrackPosition(pos) ;
xyze[0] = pos[0] ;
xyze[1] = pos[1] ;
xyze[2] = pos[2] ;
xyze[3] = gMC->Edep() ;
if ( xyze[3] != 0 ) { // there is deposited energy
gMC->CurrentVolOffID(5, relid[0]) ; // get the PHOS Module number
gMC->CurrentVolOffID(3, relid[1]) ; // get the Micromegas Module number
// 1-> Geom->GetNumberOfModulesPhi() * fGeom->GetNumberOfModulesZ() upper
// > fGeom->GetNumberOfModulesPhi() * fGeom->GetNumberOfModulesZ() lower
gMC->CurrentVolOffID(1, relid[2]) ; // get the row number of the cell
gMC->CurrentVolID(relid[3]) ; // get the column number
// get the absolute Id number
Int_t absid ;
fGeom->RelToAbsNumbering(relid, absid) ;
// add current hit to the hit list
AddHit(primary, absid, xyze);
} // there is deposited energy
} // We are inside the gas of the CPV
} // GPS2 configuration
if(gMC->CurrentVolID(copy) == gMC->VolId("PXTL") ) // We are inside a PBWO crystal
{
gMC->TrackPosition(pos) ;
xyze[0] = pos[0] ;
xyze[1] = pos[1] ;
xyze[2] = pos[2] ;
xyze[3] = gMC->Edep() ;
if ( xyze[3] != 0 ) {
gMC->CurrentVolOffID(10, relid[0]) ; // get the PHOS module number ;
relid[1] = 0 ; // means PBW04
gMC->CurrentVolOffID(4, relid[2]) ; // get the row number inside the module
gMC->CurrentVolOffID(3, relid[3]) ; // get the cell number inside the module
// get the absolute Id number
Int_t absid ;
fGeom->RelToAbsNumbering(relid, absid) ;
// add current hit to the hit list
AddHit(primary, absid, xyze);
} // there is deposited energy
} // we are inside a PHOS Xtal
}