/**************************************************************************
* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
* *
* Author: The ALICE Off-line Project. *
* Contributors are mentioned in the code where appropriate. *
* *
* Permission to use, copy, modify and distribute this software and its *
* documentation strictly for non-commercial purposes is hereby granted *
* without fee, provided that the above copyright notice appears in all *
* copies and that both the copyright notice and this permission notice *
* appear in the supporting documentation. The authors make no claims *
* about the suitability of this software for any purpose. It is *
* provided "as is" without express or implied warranty. *
**************************************************************************/
/* $Id$ */
//_________________________________________________________________________
// Geometry class for PHOS : singleton
// The EMC modules are parametrized so that any configuration can be easily implemented
// The title is used to identify the type of CPV used. So far only PPSD implemented
//
//*-- Author: Yves Schutz (SUBATECH)
// --- ROOT system ---
#include "TVector3.h"
#include "TRotation.h"
// --- Standard library ---
#include <iostream>
// --- AliRoot header files ---
#include "AliPHOSGeometry.h"
#include "AliPHOSPpsdRecPoint.h"
#include "AliConst.h"
ClassImp(AliPHOSGeometry)
AliPHOSGeometry * AliPHOSGeometry::fGeom = 0 ;
//____________________________________________________________________________
AliPHOSGeometry::~AliPHOSGeometry(void)
{
// dtor
fRotMatrixArray->Delete() ;
delete fRotMatrixArray ;
}
//____________________________________________________________________________
Bool_t AliPHOSGeometry::AbsToRelNumbering(const Int_t AbsId, Int_t * relid)
{
// Converts the absolute numbering into the following array/
// relid[0] = PHOS Module number 1:fNModules
// relid[1] = 0 if PbW04
// = PPSD Module number 1:fNumberOfModulesPhi*fNumberOfModulesZ*2 (2->up and bottom level)
// relid[2] = Row number inside a PHOS or PPSD module
// relid[3] = Column number inside a PHOS or PPSD module
Bool_t rv = kTRUE ;
Float_t id = AbsId ;
Int_t phosmodulenumber = (Int_t)TMath:: Ceil( id / ( GetNPhi() * GetNZ() ) ) ;
if ( phosmodulenumber > GetNModules() ) { // its a PPSD pad
id -= GetNPhi() * GetNZ() * GetNModules() ;
Float_t tempo = 2 * GetNumberOfModulesPhi() * GetNumberOfModulesZ() * GetNumberOfPadsPhi() * GetNumberOfPadsZ() ;
relid[0] = (Int_t)TMath::Ceil( id / tempo ) ;
id -= ( relid[0] - 1 ) * tempo ;
relid[1] = (Int_t)TMath::Ceil( id / ( GetNumberOfPadsPhi() * GetNumberOfPadsZ() ) ) ;
id -= ( relid[1] - 1 ) * GetNumberOfPadsPhi() * GetNumberOfPadsZ() ;
relid[2] = (Int_t)TMath::Ceil( id / GetNumberOfPadsPhi() ) ;
relid[3] = (Int_t) ( id - ( relid[2] - 1 ) * GetNumberOfPadsPhi() ) ;
}
else { // its a PW04 crystal
relid[0] = phosmodulenumber ;
relid[1] = 0 ;
id -= ( phosmodulenumber - 1 ) * GetNPhi() * GetNZ() ;
relid[2] = (Int_t)TMath::Ceil( id / GetNPhi() ) ;
relid[3] = (Int_t)( id - ( relid[2] - 1 ) * GetNPhi() ) ;
}
return rv ;
}
//____________________________________________________________________________
void AliPHOSGeometry::EmcModuleCoverage(const Int_t mod, Double_t & tm, Double_t & tM, Double_t & pm, Double_t & pM, Option_t * opt)
{
// calculates the angular coverage in theta and phi of a EMC module
Double_t conv ;
if ( opt == kRadian )
conv = 1. ;
else if ( opt == kDegre )
conv = 180. / TMath::Pi() ;
else {
cout << "<I> AliPHOSGeometry::EmcXtalCoverage : " << opt << " unknown option; result in radian " << endl ;
conv = 1. ;
}
Float_t phi = GetPHOSAngle(mod) * (TMath::Pi() / 180.) ;
Float_t y0 = GetIPtoOuterCoverDistance() + GetUpperPlateThickness()
+ GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness() ;
Double_t angle = TMath::ATan( GetCrystalSize(0)*GetNPhi() / (2 * y0) ) ;
phi = phi + 1.5 * TMath::Pi() ; // to follow the convention of the particle generator(PHOS is between 230 and 310 deg.)
Double_t max = phi - angle ;
Double_t min = phi + angle ;
pM = TMath::Max(max, min) * conv ;
pm = TMath::Min(max, min) * conv ;
angle = TMath::ATan( GetCrystalSize(2)*GetNZ() / (2 * y0) ) ;
max = TMath::Pi() / 2. + angle ; // to follow the convention of the particle generator(PHOS is at 90 deg.)
min = TMath::Pi() / 2. - angle ;
tM = TMath::Max(max, min) * conv ;
tm = TMath::Min(max, min) * conv ;
}
//____________________________________________________________________________
void AliPHOSGeometry::EmcXtalCoverage(Double_t & theta, Double_t & phi, Option_t * opt)
{
// calculates the angular coverage in theta and phi of a single crystal in a EMC module
Double_t conv ;
if ( opt == kRadian )
conv = 1. ;
else if ( opt == kDegre )
conv = 180. / TMath::Pi() ;
else {
cout << "<I> AliPHOSGeometry::EmcXtalCoverage : " << opt << " unknown option; result in radian " << endl ;
conv = 1. ;
}
Float_t y0 = GetIPtoOuterCoverDistance() + GetUpperPlateThickness()
+ GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness() ;
theta = 2 * TMath::ATan( GetCrystalSize(2) / (2 * y0) ) * conv ;
phi = 2 * TMath::ATan( GetCrystalSize(0) / (2 * y0) ) * conv ;
}
//____________________________________________________________________________
void AliPHOSGeometry::ImpactOnEmc(const Double_t theta, const Double_t phi, Int_t & ModuleNumber, Double_t & z, Double_t & x)
{
// calculates the impact coordinates of a neutral particle
// emitted in direction theta and phi in ALICE
// searches for the PHOS EMC module
ModuleNumber = 0 ;
Double_t tm, tM, pm, pM ;
Int_t index = 1 ;
while ( ModuleNumber == 0 && index <= GetNModules() ) {
EmcModuleCoverage(index, tm, tM, pm, pM) ;
if ( (theta >= tm && theta <= tM) && (phi >= pm && phi <= pM ) )
ModuleNumber = index ;
index++ ;
}
if ( ModuleNumber != 0 ) {
Float_t phi0 = GetPHOSAngle(ModuleNumber) * (TMath::Pi() / 180.) + 1.5 * TMath::Pi() ;
Float_t y0 = GetIPtoOuterCoverDistance() + GetUpperPlateThickness()
+ GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness() ;
Double_t angle = phi - phi0;
x = y0 * TMath::Tan(angle) ;
angle = theta - TMath::Pi() / 2 ;
z = y0 * TMath::Tan(angle) ;
}
}
//____________________________________________________________________________
void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos, TMatrix & gmat)
{
// Calculates the ALICE global coordinates of a RecPoint and the error matrix
AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ;
TVector3 localposition ;
tmpPHOS->GetLocalPosition(gpos) ;
if ( tmpPHOS->IsEmc() ) // it is a EMC crystal
{ gpos.SetY( -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() +
GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ) ;
}
else
{ // it is a PPSD pad
AliPHOSPpsdRecPoint * tmpPpsd = (AliPHOSPpsdRecPoint *) RecPoint ;
if (tmpPpsd->GetUp() ) // it is an upper module
{
gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() -
GetLeadToMicro2Gap() - GetLeadConverterThickness() -
GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0 ) ) ;
}
else // it is a lower module
gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ) ;
}
Float_t phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ;
Double_t const kRADDEG = 180.0 / kPI ;
Float_t rphi = phi / kRADDEG ;
TRotation rot ;
rot.RotateZ(-rphi) ; // a rotation around Z by angle
TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame
gpos.Transform(rot) ; // rotate the baby
}
//____________________________________________________________________________
void AliPHOSGeometry::GetGlobal(const AliRecPoint* RecPoint, TVector3 & gpos)
{
// Calculates the ALICE global coordinates of a RecPoint
AliPHOSRecPoint * tmpPHOS = (AliPHOSRecPoint *) RecPoint ;
TVector3 localposition ;
tmpPHOS->GetLocalPosition(gpos) ;
if ( tmpPHOS->IsEmc() ) // it is a EMC crystal
{ gpos.SetY( -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness() +
GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ) ;
}
else
{ // it is a PPSD pad
AliPHOSPpsdRecPoint * tmpPpsd = (AliPHOSPpsdRecPoint *) RecPoint ;
if (tmpPpsd->GetUp() ) // it is an upper module
{
gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() -
GetLeadToMicro2Gap() - GetLeadConverterThickness() -
GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0 ) ) ;
}
else // it is a lower module
gpos.SetY(-( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ) ;
}
Float_t phi = GetPHOSAngle( tmpPHOS->GetPHOSMod()) ;
Double_t const kRADDEG = 180.0 / kPI ;
Float_t rphi = phi / kRADDEG ;
TRotation rot ;
rot.RotateZ(-rphi) ; // a rotation around Z by angle
TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame
gpos.Transform(rot) ; // rotate the baby
}
//____________________________________________________________________________
void AliPHOSGeometry::Init(void)
{
// Initializes the PHOS parameters
fRotMatrixArray = new TObjArray(fNModules) ;
cout << "PHOS geometry setup: parameters for option " << fName << " " << fTitle << endl ;
if ( ((strcmp( fName, "default" )) == 0) || ((strcmp( fName, "GPS2" )) == 0) ) {
fInit = kTRUE ;
this->InitPHOS() ;
this->InitPPSD() ;
this->SetPHOSAngles() ;
}
else {
fInit = kFALSE ;
cout << "PHOS Geometry setup: option not defined " << fName << endl ;
}
}
//____________________________________________________________________________
void AliPHOSGeometry::InitPHOS(void)
{
// Initializes the EMC parameters
fNPhi = 64 ;
fNZ = 64 ;
fNModules = 5 ;
fPHOSAngle[0] = 0.0 ; // Module position angles are set in CreateGeometry()
fPHOSAngle[1] = 0.0 ;
fPHOSAngle[2] = 0.0 ;
fPHOSAngle[3] = 0.0 ;
fXtlSize[0] = 2.2 ;
fXtlSize[1] = 18.0 ;
fXtlSize[2] = 2.2 ;
// all these numbers coming next are subject to changes
fOuterBoxThickness[0] = 2.8 ;
fOuterBoxThickness[1] = 5.0 ;
fOuterBoxThickness[2] = 5.0 ;
fUpperPlateThickness = 4.0 ;
fSecondUpperPlateThickness = 5.0 ;
fCrystalSupportHeight = 6.95 ;
fCrystalWrapThickness = 0.01 ;
fCrystalHolderThickness = 0.005 ;
fModuleBoxThickness = 2.0 ;
fIPtoOuterCoverDistance = 447.0 ;
fIPtoCrystalSurface = 460.0 ;
fPinDiodeSize[0] = 1.71 ; //Values given by Odd Harald feb 2000
fPinDiodeSize[1] = 0.0280 ; // 0.0280 is the depth of active layer in the silicon
fPinDiodeSize[2] = 1.61 ;
fUpperCoolingPlateThickness = 0.06 ;
fSupportPlateThickness = 10.0 ;
fLowerThermoPlateThickness = 3.0 ;
fLowerTextolitPlateThickness = 1.0 ;
fGapBetweenCrystals = 0.03 ;
fTextolitBoxThickness[0] = 1.5 ;
fTextolitBoxThickness[1] = 0.0 ;
fTextolitBoxThickness[2] = 3.0 ;
fAirThickness[0] = 1.56 ;
fAirThickness[1] = 20.5175 ;
fAirThickness[2] = 2.48 ;
Float_t xtalModulePhiSize = fNPhi * ( fXtlSize[0] + 2 * fGapBetweenCrystals ) ;
Float_t xtalModuleZSize = fNZ * ( fXtlSize[2] + 2 * fGapBetweenCrystals ) ;
// The next dimensions are calculated from the above parameters
fOuterBoxSize[0] = xtalModulePhiSize + 2 * ( fAirThickness[0] + fModuleBoxThickness
+ fTextolitBoxThickness[0] + fOuterBoxThickness[0] ) ;
fOuterBoxSize[1] = ( fXtlSize[1] + fCrystalSupportHeight + fCrystalWrapThickness + fCrystalHolderThickness )
+ 2 * (fAirThickness[1] + fModuleBoxThickness + fTextolitBoxThickness[1] + fOuterBoxThickness[1] ) ;
fOuterBoxSize[2] = xtalModuleZSize + 2 * ( fAirThickness[2] + fModuleBoxThickness
+ fTextolitBoxThickness[2] + fOuterBoxThickness[2] ) ;
fTextolitBoxSize[0] = fOuterBoxSize[0] - 2 * fOuterBoxThickness[0] ;
fTextolitBoxSize[1] = fOuterBoxSize[1] - fOuterBoxThickness[1] - fUpperPlateThickness ;
fTextolitBoxSize[2] = fOuterBoxSize[2] - 2 * fOuterBoxThickness[2] ;
fAirFilledBoxSize[0] = fTextolitBoxSize[0] - 2 * fTextolitBoxThickness[0] ;
fAirFilledBoxSize[1] = fTextolitBoxSize[1] - fSecondUpperPlateThickness ;
fAirFilledBoxSize[2] = fTextolitBoxSize[2] - 2 * fTextolitBoxThickness[2] ;
}
//____________________________________________________________________________
void AliPHOSGeometry::InitPPSD(void)
{
// Initializes the PPSD parameters
fAnodeThickness = 0.0009 ;
fAvalancheGap = 0.01 ;
fCathodeThickness = 0.0009 ;
fCompositeThickness = 0.3 ;
fConversionGap = 0.6 ;
fLeadConverterThickness = 0.56 ;
fLeadToMicro2Gap = 0.1 ;
fLidThickness = 0.2 ;
fMicro1ToLeadGap = 0.1 ;
fMicromegasWallThickness = 0.6 ;
fNumberOfModulesPhi = 4 ;
fNumberOfModulesZ = 4 ;
fNumberOfPadsPhi = 24 ;
fNumberOfPadsZ = 24 ;
fPCThickness = 0.1 ;
fPhiDisplacement = 0.8 ;
fZDisplacement = 0.8 ;
fMicromegas1Thickness = fLidThickness + 2 * fCompositeThickness + fCathodeThickness + fPCThickness
+ fAnodeThickness + fConversionGap + fAvalancheGap ;
fMicromegas2Thickness = fMicromegas1Thickness ;
fPPSDModuleSize[0] = 38.0 ;
fPPSDModuleSize[1] = fMicromegas1Thickness ;
fPPSDModuleSize[2] = 38.0 ;
fPPSDBoxSize[0] = fNumberOfModulesPhi * fPPSDModuleSize[0] + 2 * fPhiDisplacement ;
fPPSDBoxSize[1] = fMicromegas2Thickness + fMicromegas2Thickness + fLeadConverterThickness + fMicro1ToLeadGap + fLeadToMicro2Gap ;
fPPSDBoxSize[2] = fNumberOfModulesZ * fPPSDModuleSize[2] + 2 * fZDisplacement ;
fIPtoTopLidDistance = fIPtoOuterCoverDistance - fPPSDBoxSize[1] - 1. ;
}
//____________________________________________________________________________
AliPHOSGeometry * AliPHOSGeometry::GetInstance()
{
// Returns the pointer of the unique instance
return (AliPHOSGeometry *) fGeom ;
}
//____________________________________________________________________________
AliPHOSGeometry * AliPHOSGeometry::GetInstance(const Text_t* name, const Text_t* title)
{
// Returns the pointer of the unique instance
AliPHOSGeometry * rv = 0 ;
if ( fGeom == 0 ) {
fGeom = new AliPHOSGeometry(name, title) ;
rv = (AliPHOSGeometry * ) fGeom ;
}
else {
if ( strcmp(fGeom->GetName(), name) != 0 ) {
cout << "AliPHOSGeometry <E> : current geometry is " << fGeom->GetName() << endl
<< " you cannot call " << name << endl ;
}
else
rv = (AliPHOSGeometry *) fGeom ;
}
return rv ;
}
//____________________________________________________________________________
Bool_t AliPHOSGeometry::RelToAbsNumbering(const Int_t * relid, Int_t & AbsId)
{
// Converts the relative numbering into the absolute numbering
// AbsId = 1:fNModules * fNPhi * fNZ -> PbWO4
// AbsId = 1:fNModules * 2 * (fNumberOfModulesPhi * fNumberOfModulesZ) * fNumberOfPadsPhi * fNumberOfPadsZ -> PPSD
Bool_t rv = kTRUE ;
if ( relid[1] > 0 ) { // its a PPSD pad
AbsId = GetNPhi() * GetNZ() * GetNModules() // the offset to separate emcal crystals from PPSD pads
+ ( relid[0] - 1 ) * GetNumberOfModulesPhi() * GetNumberOfModulesZ() // the pads offset of PHOS modules
* GetNumberOfPadsPhi() * GetNumberOfPadsZ() * 2
+ ( relid[1] - 1 ) * GetNumberOfPadsPhi() * GetNumberOfPadsZ() // the pads offset of PPSD modules
+ ( relid[2] - 1 ) * GetNumberOfPadsPhi() // the pads offset of a PPSD row
+ relid[3] ; // the column number
}
else {
if ( relid[1] == 0 ) { // its a Phos crystal
AbsId = ( relid[0] - 1 ) * GetNPhi() * GetNZ() // the offset of PHOS modules
+ ( relid[2] - 1 ) * GetNPhi() // the offset of a xtal row
+ relid[3] ; // the column number
}
}
return rv ;
}
//____________________________________________________________________________
void AliPHOSGeometry::RelPosInAlice(const Int_t id, TVector3 & pos )
{
// Converts the absolute numbering into the global ALICE coordinates
if (id > 0) {
Int_t relid[4] ;
AbsToRelNumbering(id , relid) ;
Int_t phosmodule = relid[0] ;
Float_t y0 = 0 ;
if ( relid[1] == 0 ) // it is a PbW04 crystal
{ y0 = -(GetIPtoOuterCoverDistance() + GetUpperPlateThickness()
+ GetSecondUpperPlateThickness() + GetUpperCoolingPlateThickness()) ;
}
if ( relid[1] > 0 ) { // its a PPSD pad
if ( relid[1] > GetNumberOfModulesPhi() * GetNumberOfModulesZ() ) // its an bottom module
{
y0 = -( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() / 2.0) ;
}
else // its an upper module
y0 = -( GetIPtoOuterCoverDistance() - GetMicromegas2Thickness() - GetLeadToMicro2Gap()
- GetLeadConverterThickness() - GetMicro1ToLeadGap() - GetMicromegas1Thickness() / 2.0) ;
}
Float_t x, z ;
RelPosInModule(relid, x, z) ;
pos.SetX(x) ;
pos.SetZ(z) ;
pos.SetY( TMath::Sqrt(x*x + z*z + y0*y0) ) ;
Float_t phi = GetPHOSAngle( phosmodule) ;
Double_t const kRADDEG = 180.0 / kPI ;
Float_t rphi = phi / kRADDEG ;
TRotation rot ;
rot.RotateZ(-rphi) ; // a rotation around Z by angle
TRotation dummy = rot.Invert() ; // to transform from original frame to rotate frame
pos.Transform(rot) ; // rotate the baby
}
else {
pos.SetX(0.);
pos.SetY(0.);
pos.SetZ(0.);
}
}
//____________________________________________________________________________
void AliPHOSGeometry::RelPosInModule(const Int_t * relid, Float_t & x, Float_t & z)
{
// Converts the relative numbering into the local PHOS-module (x, z) coordinates
Int_t ppsdmodule ;
Int_t row = relid[2] ; //offset along z axiz
Int_t column = relid[3] ; //offset along x axiz
Float_t padsizeZ = GetPPSDModuleSize(2)/ GetNumberOfPadsZ();
Float_t padsizeX = GetPPSDModuleSize(0)/ GetNumberOfPadsPhi();
if ( relid[1] == 0 ) { // its a PbW04 crystal
x = -( GetNPhi()/2. - row + 0.5 ) * GetCrystalSize(0) ; // position ox Xtal with respect
z = ( GetNZ() /2. - column + 0.5 ) * GetCrystalSize(2) ; // of center of PHOS module
}
else {
if ( relid[1] > GetNumberOfModulesPhi() * GetNumberOfModulesZ() )
ppsdmodule = relid[1]-GetNumberOfModulesPhi() * GetNumberOfModulesZ();
else ppsdmodule = relid[1] ;
Int_t modrow = 1+(Int_t)TMath::Ceil( (Float_t)ppsdmodule / GetNumberOfModulesPhi()-1. ) ;
Int_t modcol = ppsdmodule - ( modrow - 1 ) * GetNumberOfModulesPhi() ;
Float_t x0 = ( GetNumberOfModulesPhi() / 2. - modrow + 0.5 ) * GetPPSDModuleSize(0) ;
Float_t z0 = ( GetNumberOfModulesZ() / 2. - modcol + 0.5 ) * GetPPSDModuleSize(2) ;
x = - ( GetNumberOfPadsPhi()/2. - row - 0.5 ) * padsizeX + x0 ; // position of pad with respect
z = ( GetNumberOfPadsZ()/2. - column - 0.5 ) * padsizeZ - z0 ; // of center of PHOS module
}
}
//____________________________________________________________________________
void AliPHOSGeometry::SetPHOSAngles()
{
// Calculates the position in ALICE of the PHOS modules
Double_t const kRADDEG = 180.0 / kPI ;
Float_t pphi = TMath::ATan( fOuterBoxSize[0] / ( 2.0 * fIPtoOuterCoverDistance ) ) ;
pphi *= kRADDEG ;
for( Int_t i = 1; i <= fNModules ; i++ ) {
Float_t angle = pphi * 2 * ( i - fNModules / 2.0 - 0.5 ) ;
fPHOSAngle[i-1] = - angle ;
}
}
//____________________________________________________________________________
void AliPHOSGeometry::SetLeadConverterThickness(Float_t e)
{
// should ultimately disappear
cout << " AliPHOSGeometry WARNING : You have changed LeadConverterThickness from "
<< fLeadConverterThickness << " to " << e << endl ;
fLeadConverterThickness = e ;
}
ROOT page - Class index - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.