
Flow analysis with Q-cumulants

Ante Bilandzic,1 Raimond Snellings,1 and Sergei Voloshin2

1 Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands
2 Department of Physics and Astronomy, Wayne State University,

666 W. Hancock Street, Detroit, MI 48201, USA
(Dated: August 2, 2010)

Anisotropic flow measurements in heavy-ion collisions provide important constraints on the equa-
tion of state of hot and dense matter. In these measurements nonflow correlations need to be
eliminated and therefore advanced multi-particle correlation techniques have been developed. More
recently the importance of event by event fluctuations in the magnitude of the anisotropic flow
has become clear. The anisotropic flow analysis using cumulants has a characteristic sensitivity
to these fluctuations. Unfortunately the currently available approaches to calculate the cumulants
have biases which complicate the analysis. In this paper we present a new analytic unbiased way to
calculate the cumulants.
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I. INTRODUCTION

The observed collective motion in heavy-ion collisions
is a detailed probe of the created hot and dense mat-
ter. In non-central heavy-ion collisions the collective mo-
tion is azimuthally anisotropic due to the initial spatial
anisotropic geometry of the overlap region and the pres-
sure developed early in the collision. At RHIC energies
the sizable azimuthal momentum-space anisotropy ob-
served [1, 2] is the main evidence for the nearly perfect
liquid behavior [3] of the created matter.
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FIG. 1: Schematic view of a non-central nucleus-nucleus col-
lision in the transverse plane.

The particle yield can be characterized by [4]:
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where E is the energy of particle, ~p is particle’s three-
momentum, pt is particle’s transverse momentum, φ is
its azimuthal angle, y is the rapidity and ΨR the reac-
tion plane angle. The reaction plane angle, ΨR, is the
azimuthal angle that impact parameter vector spans in

the laboratory frame, see Fig 1. The Fourier coefficients
vn in Eq. (1) quantify the anisotropic flow. The first co-
efficient, v1, of this Fourier series is called directed flow
and second coefficient, v2, is called elliptic flow. In gen-
eral the coefficients vn are pt and y dependent—in this
context we refer to them as differential flow. On the
other hand when we are interested only in their average
values we refer to them as reference flow. From Eq. (1)
it follows that the average Fourier coefficients are given
by:

〈vn〉 = 〈〈cosn(φ−ΨR)〉〉 =
〈〈
ein(φ−ΨR)

〉〉
, (2)

where the double brackets denote a statistical average
over all particles and all events.

Since the reaction plane ΨR is not known experimen-
tally, the anisotropic flow is estimated using azimuthal
correlations between the observed particles. In the case
of 2-particle azimuthal correlations the correlator is pro-
portional to

〈
v2
n

〉
. This can be seen by:〈〈

ein(φ1−φ2)
〉〉

=
〈〈
ein(φ1−ΨR−(φ2−ΨR))

〉〉
=
〈〈
ein(φ1−ΨR)

〉〈
e−in(φ2−ΨR)

〉〉
=
〈
v2
n

〉
, (3)

where the double brackets denote a statistical average
over all particles and all events (we keep this conven-
tion throughout the paper). Eq. (3) assumes that the
azimuthal correlations between particles are only due to
correlation of each particle with the reaction plane. To
calculate azimuthal correlations it is customary to define
a Q-vector evaluated in harmonic n:

Qn ≡
M∑
i=1

einφi , (4)

where M is the total number of reference particles in
particular event.
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Anisotropic flow is a collective effect because it origi-
nates from correlation of all the particles with the reac-
tion plane. This can be exploited experimentally by using
multiparticle correlations to estimate vn. This approach,
improved further to use genuine multiparticle correla-
tions (cumulants), was adapted to measure anisotropic
flow in [6, 7, 8] and it has the additional advantage that
it allows to subtract systematically the so called nonflow
effects from vn. To calculate these multiparticle correla-
tions directly the number of operations is approximately

# of operations '
(
M
k

)
k!

(k2 )!(k2 )!2!
, (5)

where M is the number of particles in an event and k =
2, 4, 6, .... for two, four, six, etc particle correlations. For
the typical number of particles, of order 1000, measured
in high energy heavy-ion collisions such an approach is
clearly not feasible.

To overcome this problem the cumulants were instead
expressed in terms of various moments of the modulus of
the Q-vector [6]. The advantage is that the number of op-
erations required is now ∝M for each k. Unfortunately,
flow estimates from cumulants constructed in such a way
were systematically biased by the interference between
various harmonics (this is clearly seen if one wants to
estimate harmonic v1 while v2 is much larger).

An improved cumulant method using the formalism of
generating functions was constructed [7, 8] which fixed
the problem of interfering harmonics while keeping the
number of operations ∝M for each k. For this approach
the calculation beyond k = 2 becomes analytically rather
tedious and therefore the solutions are obtained using in-
terpolation formulas. Unfortunately this introduces nu-
merical uncertainties and requires tuning of interpolating
parameters for different values of the flow harmonics vn
and multiplicity.

In this paper we present a new analytic way to calcu-
late the cumulants. In our approach the cumulants are
not biased by interference between various harmonics,
interpolating formulas characteristic for the formalism of
generating functions are not needed, and moreover we
demonstrate that all detector effects can be analytically
and automatically disentangled from the flow estimates
in a single pass over the data. The number of operations
required in our approach is still ∝ M for each k. Since
in our approach cumulants are solely expressed in terms
of expressions involving Q-vectors evaluated (in general)
in different harmonics, we call them Q-cumulants.

A. Outline of the paper

II. SETTING UP THE STAGE

In this section we introduce the basic terminology and
notation we will be using throughout the paper.

A. Multiparticle azimuthal correlations

For simplicity sake we consider explicitly only 2- and 4-
particle azimuthal correlations—the generalization to az-
imuthal correlations involving more particles is straight-
forward and will not be presented here. In the way we
define it, average 2- and 4-particle azimuthal correlations
are obtained through the averaging procedure which con-
sists of two distinct steps.

In the first step we define single-event average 2- and
4-particle azimuthal correlations in the following way:

〈2〉 ≡
〈
ein(φ1−φ2)

〉
≡ 1(

M
2

)
2!

M∑
i,j=1
(i 6=j)

ein(φi−φj) , (6)

〈4〉 ≡
〈
ein(φ1+φ2−φ3−φ4)

〉
≡ 1(

M
4

)
4!

M∑
i,j,k,l=1

(i 6=j 6=k 6=l)

ein(φi+φj−φk−φl) . (7)

In above two equations φi is the azimuthal angle mea-
sured in laboratory frame of the i-th reference particle (in
Section IV B we elaborate in detail on the most general
case for labeling a particle as Reference Particle (RP)
and/or Particle Of Interest (POI)). In order to avoid
a trivial contribution coming from autocorrelations we
have enforced the constraints i 6= j and i 6= j 6= k 6= l in
Eqs. (6) and (7), respectively.

In the second step we define the final, all-event average
2- and 4-particle azimuthal correlations:

〈〈2〉〉 ≡
〈〈
ein(φ1−φ2)

〉〉
≡
∑N
i=1(W〈2〉)i 〈2〉i∑N
i=1(W〈2〉)i

, (8)

〈〈4〉〉 ≡
〈〈
ein(φ1+φ2−φ3−φ4)

〉〉
≡
∑N
i=1(W〈4〉)i 〈4〉i∑N
i=1(W〈4〉)i

, (9)

where N is the number of events. In the second step we
have introduced the event weights W〈2〉 and W〈4〉. They
are determined event-by-event in terms of multiplicity in
the following way:

W〈2〉 ≡ M(M − 1) , (10)
W〈4〉 ≡ M(M − 1)(M − 2)(M − 3) . (11)

The above choice for the event weights reflects the num-
ber of different 2- and 4-particle combinations one can
form for the event with multiplicity M . This choice of
event weights minimizes the statistical spread.



3

B. Cumulants

In this section we briefly summarize the most impor-
tant facts about cumulants. Consider first any two ran-
dom observables x1 and x2 and their joint probability
distribution function f(x1, x2). In the case x1 and x2

are statistically independent the joint probability distri-
bution function factorizes, namely

f(x1, x2) = fx1(x1)fx2(x2) . (12)

In the case x1 and x2 are not statistically independent,
i.e. if they are statistically connected, than there is a gen-
uine 2-particle correlation in the system which we quan-
tify in terms of genuine 2-particle probability distribution
function fc(x1, x2). At the level of 2-particle correlation
we have then in general the following decomposition:

f(x1, x2) = fx1(x1)fx2(x2) + fc(x1, x2) . (13)

Written in terms of expectation values this decomposi-
tion translates into:

E[x1x2] = E[x1]E[x2] + Ec[x1x2] . (14)

In practice we rarely know the exact functional form of
the p.d.f.’s appearing in Eq. (13). However, we can use
measured (sampled) values of random variables x1 and x2

to construct an unbiased estimators for the expectation
values in Eq. (14).

The last term on the RHS in Eq. (14), Ec[x1x2],
is by definition the 2nd order (or 2-particle) cumulant.
It isolates the contribution to the expectation value
E[x1x2] coming only from the genuine 2-particle corre-
lation fc(x1, x2). This procedure can be generalized to
any number of observables. Namely, for n random ob-
servables it is possible to isolate the contribution com-
ing only from the genuine n-particle correlation, which
is defined to be the nth order (or n-particle) cumulant
Ec[x1x2 · · ·xn]. The cumulant Ec[x1x2 · · ·xn] is zero if
one of the observables x1, x2, . . . , xn is statistically in-
dependent from the others. Conversely, the cumulant
Ec[x1x2 · · ·xn] is not vanishing if and only if the variables
x1, x2, . . . , xn are statistically connected. For a proof of
these statements we refer reader to [5].

1. Cumulants in flow analysis

The general formalism of cumulants highlighted in pre-
vious section was introduced into flow analysis practice
by Ollitrault et al in [6, 7, 8]. As two random observables
x1 and x2 Ollitrault et al have identified

x1 ≡ einφ1 ,

x2 ≡ e−inφ2 , (15)

where φ1 and φ2 are azimuthal angles of two particles
measured in the laboratory frame. With this choice for

random observables x1 and x2 we can write Eq. (14) in
the following way:

E[ein(φ1−φ2)] = E[einφ1 ]E[e−inφ2 ] + Ec[ein(φ1−φ2)] ,
(16)

i.e.

Ec[ein(φ1−φ2)] = E[ein(φ1−φ2)]− E[einφ1 ]E[e−inφ2 ] .
(17)

In practice we cannot estimate cumulant Ec[ein(φ1−φ2)]
directly. Instead, we estimate from the sampled values
of random observables φ1 and φ2 the quantities E[einφ1 ],
E[e−inφ2 ] and E[ein(φ1−φ2)], and than use the relation
(17) to estimate the 2nd order cumulant Ec[ein(φ1−φ2)].
An immediate consequence of the choice (15) is that for
the perfect detector (i.e. for detector with uniform az-
imuthal acceptance) E[einφ1 ] and E[e−inφ2 ] vanish [7], so
that we have

Ec[ein(φ1−φ2)] = E[ein(φ1−φ2)] . (18)

An unbiased estimator for E[ein(φ1−φ2)] is an all-event
average 2-particle correlation defined in Eq. (8), so that
we finally have

cn{2} = 〈〈2〉〉 , (19)

where we have used the standard notation cn{2} for
the unbiased estimator of true 2nd order cumulant
Ec[ein(φ1−φ2)].

In order to get analogously the estimate for 4th order
cumulant we need to decompose the average 4-particle
azimuthal correlation into its independent contributions.
It was shown in [7] that for the case of detectors with
uniform acceptance the average 4-particle correlation de-
composes into:

E[ein(φ1+φ2−φ3−φ4)] = E[ein(φ1−φ3)]E[ein(φ2−φ4)]

+ E[ein(φ1−φ4)]E[ein(φ2−φ3)]

+ Ec[ein(φ1+φ2−φ3−φ4)] , (20)

which we can invert to isolate the average genuine 4-
particle correlation Ec[ein(φ1+φ2−φ3−φ4)], which is by def-
inition the 4th order (or 4-particle) cumulant:

Ec[ein(φ1+φ2−φ3−φ4)] = E[ein(φ1+φ2−φ3−φ4)] (21)

− E[ein(φ1−φ3)]E[ein(φ2−φ4)]

− E[ein(φ1−φ4)]E[ein(φ2−φ3)] .

Taking into account the unbiased estimators for 4- and
2-particle correlations given in Eqs. (9) and (8), respec-
tively, the relation (21) translates into:

cn{4} = 〈〈4〉〉 − 2 · 〈〈2〉〉2 , (22)

where now cn{4} stands for the unbiased estimator of
true 4th order cumulant Ec[ein(φ1+φ2−φ3−φ4)]. We remark
that expressions (19) and (22) are applicable only for de-
tectors with uniform acceptance and will be generalized
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in Appendix C to extend their applicability also for the
detectors with non-uniform acceptance.

The physical significance of cumulants lies in the fact
that all particles produced in a heavy-ion collision are
correlated to the reaction plane characterizing the geom-
etry of that collision (so called flow correlations). The
correlation of each particle to the reaction plane induces
the genuine multiparticle correlation for any number of
particles in the correlator. On the other hand, multipar-
ticle correlations which do not originate from the correla-
tion of each particle to the reaction plane (so called non-
flow correlations) typically involve only few particles—
this mean that they will contribute only to correlators
involving few particles. As an example, if there is a gen-
uine 2-particle nonflow correlation in the system (origi-
nating for instance from the 2-particle resonance decays
or from track splitting in the detector), than 2nd order
cumulant is sensitive to it while 4th order cumulant is
not. Usually the genuine 2-particle nonflow correlation
is denoted by δ2 and for an event with multiplicity M its
strength can be roughly estimated as:

δ2 ∼
1

M − 1
, (23)

simply because this is the probability that once we have
specified the first particle in the correlator we will out of
the remaining M−1 particles pick up as the second par-
ticle in the correlator the one which is correlated to the
first chosen particle in the correlator. On the other hand,
if there are flow correlations in the system, than they will
induce contribution to genuine multiparticle correlations
for any number of particles in the correlator and both 2nd

and 4th order cumulant will be sensitive to them. Hence
in this example only the 4th order cumulant can disentan-
gle the contribution coming from flow correlations from
the contribution coming from genuine 2-particle nonflow
correlations (this will be illustrated more explicitly with
the example in Section III C).

Having obtained estimates for cumulants one can easily
use them to estimate reference flow harmonics. Different
order cumulants provide independent estimates for the
same reference harmonic vn. In particular [7],

vn{2} =
√
cn{2} , (24)

vn{4} = 4
√
−cn{4} , (25)

where notation vn{2} was used to denote the reference
flow harmonic vn estimated from the 2nd order cumulant
cn{2} and vn{4} stands for the reference flow harmonic
vn estimated from the 4th order cumulant cn{4}.

After we have introduced in this section notation and
terminology in subsequent sections we present our re-
sults.

III. ESTIMATING REFERENCE FLOW
HARMONICS FROM Q-CUMULANTS

As already indicated in the introduction it is possible
analytically to express cumulants solely in terms of ex-
pressions consisting of Q-vectors evaluated (in general)
in different harmonics. In order to distinguish these cu-
mulants from the cumulants calculated with formalism of
generating functions we call them Q-cumulants. First we
outline Q-cumulants that shall be used to estimate refer-
ence flow harmonics for the case of detector with uniform
azimuthal acceptance.

A. 2nd order

To obtain 2nd order Q-cumulant it suffices to decom-
pose |Qn|2 which is straight from the definition (4) given
by

|Qn|2 =
M∑

i,j=1

ein(φi−φj) . (26)

It is clear that the two summing indices i and j can be
either the same or different in the above relation. Phys-
ically, when the indices are different we are correlating
two different particles and when the indices are the same
we are correlating particle to itself (autocorrelation). It
follows that in the decomposition of |Qn|2 we have 2-
particle and 1-particle contributions with the following
combinatorial coefficients:

2−particle : 〈2〉 ·
(
M

2

)
2! ,

1−particle : 1 ·M , (27)

where 〈2〉 was defined in Eq. (6). Written explicitly,

|Qn|2 = 〈2〉 ·
(
M

2

)
2! + 1 ·M , (28)

which can be trivially solved to obtain 〈2〉. If follows that
the single-event average 2-particle azimuthal correlation
is analytically given by the following equation:

〈2〉 =
|Qn|2 −M

M(M − 1)
, (29)

where Qn is the Q-vector defined in Eq. (4) and M is
the multiplicity of an event. To get the final, all-event
average 2-particle azimuthal correlation 〈〈2〉〉 one has to
use definitions (8) and (10). By making use of Eq. (19)
the 2nd order Q-cumulant is than simply

cn{2} =

∑N
i=1

(
|Qn|2i −Mi

)
∑N
i=1Mi(Mi − 1)

. (30)

In above equation |Qn|i is the modulus of Q-vector (4)
in the i-th event, Mi is the number of reference particles
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in the i-th event and N is total number of events. Eq.
(30) is the analytic expression for 2nd order Q-cumulant
and its evaluation requires a single loop over data. In
Appendix C the Eq. (30) will be further generalized to
account for detector effects.

B. 4th order

This section we start by decomposing |Qn|4. From
definition of Q-vector (4) it follows that

|Qn|4 =
M∑

i,j,k,l=1

ein(φi+φj−φk−φl) . (31)

In the above summation we can have four distinct cases
for the indices i, j, k and l—either they are all different
(4-particle correlation), either there are three different in-
dices, either there are two different indices, or all indices
are the same (autocorrelation). Very important thing to
note, however, is that for instance for the case of three
different indices we can end up either with 3-particle cor-
relation if the two indices which are the same are on the
same side of the correlator (e.g. φi + φi − φk − φl =
2φi−φk−φl) or with the 2-particle correlation if the two
indices which are the same are on the opposite side of the
correlator (e.g. φi+φj −φk−φi = φj −φk). Having this
in mind we have obtained the following analytic result
for the single-event average 4-particle correlation defined
in Eq. (7):

〈4〉 =
|Qn|4 + |Q2n|2 − 2 ·Re [Q2nQ

∗
nQ

∗
n]

M(M − 1)(M − 2)(M − 3)

− 2
2(M − 2) · |Qn|2 −M(M − 3)
M(M − 1)(M − 2)(M − 3)

. (32)

The detailed derivation of this result is presented in Ap-
pendix A. The final all-event average 4-particle azimuthal
correlation, 〈〈4〉〉, is then obtained by making use of Eqs.
(9) and (11). Having obtained results for 〈〈4〉〉 and 〈〈2〉〉
we can now calculate the 4th order Q-cumulant from Eq.
(22). It follows:

cn{4} =

∑N
i=1

(
|Qn|4i + |Q2n|2i − 2 ·Re [Q2nQ

∗
nQ

∗
n]i
)

∑N
i=1Mi(Mi − 1)(Mi − 2)(Mi − 3)

− 2

∑N
i=1

(
2(Mi − 2) · |Qn|2i −Mi(Mi − 3)

)
∑N
i=1Mi(Mi − 1)(Mi − 2)(Mi − 3)

− 2

∑N
i=1

(
|Qn|2i −Mi

)
∑N
i=1Mi(Mi − 1)

2

. (33)

In above expression |Qn|i and |Q2n|i are moduli of Q-
vector (4) evaluated in harmonics n and 2n, respectively,
in the i-th event, Re [Q2nQ

∗
nQ

∗
n]i stands for the real part

of product Q2nQ
∗
nQ

∗
n in the i-th event, Mi is the multi-

plicity of i-th event and N is the total number of events.
The result (30) is the analytic result for 4th order Q-
cumulant and its evaluation requires a single loop over
data. In Appendix C this result will be further gener-
alized in order to extend its applicability also for the
detectors with non-uniform acceptance.

In the next section with few examples we illustrate the
performance of Q-cumulants in estimating reference flow
harmonics and we point out the improvements over the
cumulants proposed by Ollitrault et al [6, 7, 8] which
were used so far in the flow analysis.

C. Examples

In this section with the series of plots we illustrate the
performance of Q-cumulants. In each plot bellow in the
first bin we place the Monte Carlo estimate for vn and
denote it by vn{MC}. To this estimate the estimates for
vn obtained from different order Q-cumulants are being
compared. Estimate for vn obtained from the kth order
Q-cumulant is denoted by vn{k,QC}, where k = 2, 4, 6, 8.
The grey mesh in each plot is spanned by the error bars
of the Monte Carlo estimate vn{MC}.

a. Interference between harmonics. As already
mentioned in the introduction the first cumulants pro-
posed by Ollitrault et al [6] were systematically biased
by the interference between harmonics. On the other
hand the Q-cumulants can completely disentangle this
interference and this can be clearly seen in examples
presented in Figs. 2, 17, 18, 19, 20. The reason why
the original cumulants proposed by Ollitrault et al
were biased lies in the fact that they have omitted the
terms which consist of Q-vectors evaluated in different
harmonics (for instance terms |Q2n|2 and Re [Q2nQ

∗
nQ

∗
n]

in Eq. (33)—such terms do appear in the analytic
results and are crucial in disentangling the interference
between harmonics).

b. Numerical stability. In the second paper on cu-
mulants [7, 8] Ollitrault et al proposed usage of generat-
ing function accompanied with the prescription of inter-
polating procedure to be used to calculate cumulants in
practice. This proposal improved over their first proposal
[6] in a sense that the issue with interfering harmonics
have been resolved here. However, the limitation of their
new approach lies in the fact that for different values of
flow harmonics and multiplicity one has to tune in a dif-
ferent way parameters on which the interpolating proce-
dure relies (see in particular Eq. (5) in [8] and comments
following this equation). This limitation is not present
in the case of Q-cumulants for which the very same an-
alytic equations can be used for very different values of
flow harmonics and multiplicity. This is illustrated with
example in Fig. 3.

c. Nonflow. We have already shown in introduction
in Eq. (3) that when only flow correlations are present
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{MC}1v {2,QC}1v {4,QC}1v {6,QC}1v {8,QC}1v

0.04

0.04005

0.0401

{MC}2v {2,QC}2v {4,QC}2v {6,QC}2v {8,QC}2v

0.04498

0.045

0.04502

0.04504

{MC}4v {2,QC}4v {4,QC}4v {6,QC}4v {8,QC}4v

0.04998

0.05

0.05002

FIG. 2: Particle azimuthal angles were sampled from az-
imuthal distribution (1) characterized with a presence of three
harmonics, namely v1 = 0.04, v2 = 0.045 and v4 = 0.05. On
the top plot are estimates for harmonic v1, in the middle plot
are estimates for harmonic v2 and on the bottom plot are
estimates for harmonic v4. Each harmonic can be correctly
estimated with Q-cumulants, the presence of other two har-
monics is completely disentangled.

we have for the case of detector with uniform acceptance:

〈〈2〉〉 =
〈
v2
n

〉
. (34)

By following the same line of reasoning as used in deriving
the Eq. (3) it follows straightforwardly:

〈〈4〉〉 =
〈
v4
n

〉
. (35)

For the sake of simplicity of the argument to be presented
now in the remainder of this section we shall assume that
statistical flow fluctuations are negligible, so that we can

{MC}2v {2,QC}2v {4,QC}2v {6,QC}2v {8,QC}2v

0.14995

0.15

0.15005

{MC}2v {2,QC}2v {4,QC}2v {6,QC}2v {8,QC}2v

0.024

0.0245

0.025

FIG. 3: Per event 500 particles were sampled from azimuthal
distribution (1) characterized with harmonic v2 = 15% (top)
and v2 = 2.5% (bottom) in the total of 106 events. The very
same analytic equations for Q-cumulants were used to esti-
mate successfully the flow harmonic v2 in both cases.

write

〈〈2〉〉 ' 〈vn〉2 , (36)

〈〈4〉〉 ' 〈vn〉4 . (37)

When it comes to cumulants, for the case of detector
with uniform acceptance we have from previous sections
that cn{2} = 〈〈2〉〉, so the estimates for vn coming from
cn{2} and 〈〈2〉〉 will be represented with the same result
vn{2,QC} in the plots bellow. After plugging results (36)
and (37) into (22) it follows:

cn{4} ' − 〈vn〉4 . (38)

Therefore when only flow correlations are present we can
use all of quantities 〈〈2〉〉, cn{2}, 〈〈4〉〉 and cn{4} to esti-
mate correctly the flow harmonics:

vn{2,QC} ≡
√
cn{2} ≡

√
〈〈2〉〉 ' 〈vn〉 ,

vn{4, 〈〈4〉〉} ≡ 4
√
〈〈4〉〉 ' 〈vn〉 ,

vn{4,QC} ≡ 4
√
−cn{4} ' 〈vn〉 . (39)

This is illustrated in Fig. 4 (top).
Now we shall use a simple qualitative model to add

genuine 2-particle nonflow correlations in the system—
each produced particle will be taken twice in the analysis
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(this might correspond in reality to track splitting due to
the inefficiencies in the detector.) For original sample of
M/2 particles we build up the Q-vector and estimate the
flow harmonic in the following way:

〈2〉 =
|Qn|2 − M

2
M
2 (M2 − 1)

= v2
n . (40)

For the new sample of M particles in which each particle
is taken twice we have the following result:

〈2〉 =
|2 ·Qn|2 −M

M(M − 1)

=
|Qn|2 − M

2
M
2 (M2 − 1)

+
M2 − 4 |Qn|2

M(M − 1)(M − 2)

= v2
n +

M2 − 4
(
v2
n
M
2

(
M
2 − 1

)
+ M

2

)
M(M − 1)(M − 2)

= v2
n +

1− v2
n

M − 1
, (41)

where in obtaining the 3rd line we have inserted result
(40). Since v2

n � 1, assuming for simplicity that statisti-
cal flow fluctuations are negligible and that multiplicity
is the same in each event, we have

〈〈2〉〉 ' 〈vn〉2 +
1

M − 1
, (42)

from which we can read off that the genuine 2-particle
nonflow contribution to the average 2-particle correlation
is

δ2 '
1

M − 1
, (43)

as already advocated in Section II B 1 based purely on
combinatorial grounds.

By performing the same calculation for 〈4〉 given in Eq.
(32), using vn� 1 and taking for simplicity v2n = 0, we
have obtained for the sample consisting both of original
and doubled tracks the following result:

〈4〉 ' v4
n (44)

+2
36− 22M+M3+Mv2

n(2M
3−10M2+17M−24)

(M − 1)(M − 2)(M − 3)(M − 4)(M − 6)
.

To make a further progress we shall assume that statisti-
cal flow fluctuations are negligible and that multiplicity
is large and constant in each event. Under these assump-
tions and taking into account Eq. (42) and Eq. (44) we
arrive at our final results for average 2- and 4-particle
correlations in a sample with doubled tracks:

〈〈2〉〉 ' 〈vn〉2 +
1
M

, (45)

〈〈4〉〉 ' 〈vn〉4 + 2
1 + 2v2

nM

M2
. (46)

This leads us to the following results for flow estimates:

vn{2,QC} '
√
〈vn〉2 +

1
M

, (47)

vn{4, 〈〈4〉〉} '
4

√
〈vn〉4 +

4 〈vn〉2

M
+

2
M2

, (48)

which indicate that in the case of track splitting the flow
estimates from the 2nd order Q-cumulant and from the
average 4-particle correlation will be strongly biased.

On the other hand, from Eq. (22) and from results
(45) and (46) it follows that the 4th order cumulant, i.e.
the genuine 4-particle correlation, is:

cn{4} ' 〈vn〉4 + 2
1 + 2v2

nM

M2
− 2 ·

(
〈vn〉2 +

1
M

)2

= −〈vn〉4 , (49)

meaning that it is not sensitive to the effects of track
splitting, so that still we have

vn{4,QC} ≡ 4
√
−cn{4} ' 〈vn〉 . (50)

The results (47), (48) and (50) obtained from simple
qualitative model illustrate that in the case genuine 2-
particle nonflow correlations are present in the system
only the 4th and higher order cumulants still provide an
unbiased estimate for the flow harmonics. This is further
illustrated in Fig. 4 (bottom). Analogously one can show
that in the case genuine 4-particle nonflow correlations
are present in the system only the 6th and higher order
cumulants are not sensitive to them—lower order nonflow
contribution is systematically removed by the higher or-
der cumulants.

d. Detector effects. There are two main approaches
to correct for detector inefficiencies in flow analysis. For
the methods based on expressions involving Q-vectors
one usually performs a separate run over data to obtain
the azimuthal profile of detector’s acceptance. Once ob-
tained, this azimuthal profile is inverted and normalized
to get so called wφ-weights. In the subsequent runs over
data when building a Q-vector each particle is weighted
with the wφ-weight corresponding to the azimuthal bin to
which its azimuthal angle belongs. This technique (some-
times also called flattening) is presented in Appendix B.
The limitation of this technique lies in the fact that if
detector has a gap in azimuthal acceptance its azimuthal
profile cannot be inverted, and correspondingly the wφ-
weights cannot be obtained.

Methods for flow analysis based on the formalism of
generating functions relies on the pragmatic approach
to correct for detector effects. Namely, at the level of
generating function on makes few projections on a fixed,
equally spaced, directions in the detector and for each di-
rection obtains independent estimates for flow harmonics.
The final estimate for flow harmonics is than obtained
as average over all those direction-wise flow estimates.
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{MC}2v {2,QC}2v {4,<<4>>}2v {4,QC}2v {6,QC}2v {8,QC}2v

0.0485

0.049

0.0495

0.05

0.0505

{MC}2v {2,QC}2v {4,<<4>>}2v {4,QC}2v {6,QC}2v {8,QC}2v

0.05

0.06

0.07

0.08

FIG. 4: (top) In this example 500 particles were sampled per
event from azimuthal distribution (1) characterized with har-
monic v2 = 0.05. Only flow correlations are present in the
system and both the multiparticle estimates and estimates
from Q-cumulants are estimating v2 correctly. (bottom) In
this example 250 particles were sampled per event from the
same azimuthal distribution as used in the top plot but each
sampled particle was taken twice in order to simulate strong
2-particle nonflow correlations. With dashed line is indicated
theoretical result from Eqs. (47) and with dotted line from
Eq. (48). Only higher order cumulants can provide correct
estimate for v2 in the case genuine 2-particle nonflow correla-
tions are present. (In both examples total number of events
is N = 105.)

Although pragmatic, this approach actually works quite
well in practice.

When it comes to Q-cumulants, it is possible analyti-
cally to account for detector effects. We recall Eq. (17)
which gives that the generalized 2nd order Q-cumulant
which can be also used for detectors with non-uniform
acceptance is:

cn{2} = 〈〈2〉〉 −Re

{[
〈〈cosnφ1〉〉+ i 〈〈sinnφ1〉〉

]
×
[
〈〈cosnφ2〉〉 − i 〈〈sinnφ2〉〉

]}
= 〈〈2〉〉 − 〈〈cosnφ1〉〉2 − 〈〈sinnφ1〉〉2 , (51)

where in obtaining the last line we have used the fact
that for instance 〈〈cosnφ1〉〉 and 〈〈cosnφ2〉〉 are the same
quantities apart from the trivial relabeling. Remarkably,
only two additional terms appear in Eq. (51), namely

〈〈cosnφ1〉〉2 and 〈〈sinnφ1〉〉2, which counterbalance the
bias to 〈〈2〉〉 coming from the very general type of detec-
tor inefficiencies so that cn{2} remains unbiased. Further
details and results are outlined in Appendix C, here we
just present two illustrative examples on Figs. 21 and 6.

φ0 1 2 3 4 5 6

φ
dd
N

0

2000

4000

6000

{MC}2v {2,QC}2v {4,QC}2v

0.05

0.06

0.07

0.08

FIG. 5: Example for small non-uniform acceptance when par-
ticles emitted in 80o ≤ φ < 100o are blocked. Per event 500
particles were sampled from azimuthal distribution (1) char-
acterized with v2 = 0.05 in total number of 1000 events. De-
tector azimuthal profile is shown on the top plot. On the
bottom plot with open markers are shown estimates from
“isotropic” cumulants (defined in Eqs. (19) and (22)) and
with closed markers estimates from “generalized” cumulants
(Eqs. (C1) and (C6)). Bias due to detector defects is clearly
not negligible (open markers) and has to be corrected for thor-
oughly (closed markers).

IV. ESTIMATING DIFFERENTIAL FLOW
FROM Q-CUMULANTS

Multiparticle correlations introduced in the previous
section were used to estimate cumulants which were than
used to estimate reference flow. However, in order to es-
timate the differential flow of particles of interest with
respect to this reference flow we need reduced multiparti-
cle azimuthal correlations. By reduced multiparticle az-
imuthal correlations we mean the multiparticle azimuthal
correlations obtained after restricting one particle in cor-
relator to belong only to the phase window of interest. In
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φ0 1 2 3 4 5 6

φ
dd
N

0

20000

40000

60000

{MC}2v {2,QC}2v {4,QC}2v

0.05

0.1

0.15

0.2

0.25

FIG. 6: Example for the huge non-uniform acceptance when
particles emitted in 20o ≤ φ < 240o were blocked. Per event
500 particles were sampled from azimuthal distribution (1)
characterized with v2 = 0.05 in total number of 1000 events.
Detector azimuthal profile is shown on the top plot. On the
bottom plot with open markers are shown estimates from
“isotropic” cumulants (defined in Eqs. (19) and (22)) and
with closed markers estimates from “generalized” cumulants
(Eqs. (C1) and (C6)). Systematic bias due to detector de-
fects is clearly huge (open markers) but with “generalized”
cumulants can be corrected for (closed markers).

practice the phase window of interest can comprise par-
ticular pt or y bin, subset of all particles consisting only
of identified particles (pions, protons, kaons), and so on.
But first we outline the most general cases for particle
labeling.

A. Particle labels

For particles selected for flow analysis we use two la-
bels, namely RP (Reference Particle) and/or POI (Par-
ticle Of Interest). These labels are needed because flow
analysis is being performed in two distinct steps. In the
first step we estimate the reference flow by using only
the RPs, while in the second step we estimate the differ-
ential flow of POIs with respect to the reference flow of
RPs obtained in the first step. In practice there are three
distinct cases for particle labeling:

1. no overlap: Neither particle labeled as POI was
also labeled as RP;

2. partial overlap: Some particles labeled as POI were
also labeled as RP;

3. full overlap: All particles labeled as POI were also
labeled as RP.

Later in the paper we provide formulas which automati-
cally handle all three distinct cases.

B. Reduced multiparticle azimuthal correlations

For reduced single-event average 2- and 4-particle az-
imuthal correlations we use the following notations and
definitions:

〈2′〉 ≡
〈
ein(ψ1−φ2)

〉
≡ 1

mpM−mq

mp∑
i=1

M∑
j=1
(i 6=j)

ein(ψi−φj) , (52)

〈4′〉 ≡
〈
ein(ψ1+φ2−φ3−φ4)

〉
≡ 1

(mpM−3mq)(M−1)(M−2)

×
mp∑
i=1

M∑
j,k,l=1

(i 6=j 6=k 6=l)

ein(ψi+φj−φk−φl) , (53)

where mp is the total number of particles labeled as POI
(some of which might have been also labeled additionally
as RP) in a phase window of interest, mq is the total
number of particles labeled both as RP and POI in a
phase window of interest, M is the total number of par-
ticles labeled as RP (some of which might have been also
labeled additionally as POI) in the whole event, ψi is the
azimuthal angle of the i-th particle labeled as POI and
taken from a phase window of interest (taken even if it
was also additionally labeled as RP), φj is the azimuthal
angle of the j-th particle labeled as RP and taken from
the whole event (taken even if it was also additionally
labeled as POI).

On the other hand the final, all-event, average reduced
2- and 4-particle correlations we denote and define in the
following way:

〈〈2′〉〉 ≡
∑N
i=1(W〈2′〉)i 〈2′〉i∑N
i=1(W〈2′〉)i

, (54)

〈〈4′〉〉 ≡
∑N
i=1(W〈4′〉)i 〈4′〉i∑N
i=1(W〈4′〉)i

, (55)

where N is the number of events. In the second step
we have introduced the event weights W〈2′〉 and W〈4′〉
for single-event average reduced 2- and 4-particle corre-
lations (52) and (53), respectively. They are determined
event-by-event in the following way:

W〈2′〉 ≡ mpM −mq , (56)
W〈4′〉 ≡ (mpM − 3mq)(M − 1)(M − 2) , (57)
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where meaning of mp, mq and M was given in the text
following Eq. (53).

C. p- and q-vectors

In order to express our subsequent results in a more
elegant way, we will in analogy with the Q-vector for the
whole event defined in Eq. (4) now introduce p- and
q-vectors for the phase window of interest.

Taking all POIs (mp in total) from the phase window of
interest within particular event we build up the following
quantity for that phase window:

pn ≡
mp∑
i=1

einψi . (58)

Furthermore, for the subset of POIs which consists of
all particles from the phase window of interest within
particular event labeled both as POI and RP (mq in total)
we introduce

qn ≡
mq∑
i=1

einψi . (59)

Having introduced some additional quantities in this sec-
tion we are now ready to present our analytic results for
the Q-cumulants that shall be used to estimate differ-
ential flow harmonics (for convenience sake we refer to
them as differential Q-cumulants).

D. Differential Q-cumulants

In this section we present the results for the differential
Q-cumulants and outline the prescription for estimating
differential flow harmonics.

1. 2nd order

By making use of terminology and notation introduced
in previous sections we have obtained the following ana-
lytic result for the average reduced single- and all-event
2-particle correlations:

〈2′〉 =
pnQ

∗
n −mq

mpM−mq
, (60)

〈〈2′〉〉 =
∑N
i=1(w〈2′〉)i 〈2′〉i∑N
i=1(w〈2′〉)i

, (61)

w〈2′〉 = mpM−mq . (62)

In the spirit of Ollitrault et al [7] we now denote by dn{2}
the 2nd order differential Q-cumulant that shall be used
to estimate differential flow and estimate it for detectors
with uniform azimuthal acceptance as

dn{2} = 〈〈2′〉〉 . (63)

Taking into account Eqs. (60–62) it follows:

dn{2} =
∑N
i=1(pnQ

∗
n −mq)i∑N

i=1(mpM−mq)i
. (64)

This is the analytic results and it will be generalized in
Appendix C to extend its applicability also for the detec-
tors with non-uniform acceptance. Estimates of differen-
tial flow harmonics v′n are being denoted as v′n{2} and
are given by [7]:

v′n{2} =
dn{2}√
cn{2}

, (65)

where the analytic expression for dn{2} and cn{2} are
given in Eqs. (64) and (30), respectively.

2. 4th order

At the level of 4-particle correlations, we have obtained
the following analytic results for single- and all-event re-
duced 4-particle correlations:

〈4′〉 =
[
pnQnQ

∗
nQ

∗
n − q2nQ

∗
nQ

∗
n − pnQnQ

∗
2n

− 2 ·MpnQ
∗
n − 2 ·mq |Qn|2 + 7 · qnQ∗

n

− Qnq
∗
n + q2nQ

∗
2n + 2 · pnQ∗

n

+ 2 ·mqM − 6 ·mq

]
/

[
(mpM − 3mq)(M − 1)(M − 2)

]
, (66)

〈〈4′〉〉 =
∑N
i=1(w〈4′〉)i 〈4′〉i∑N
i=1(w〈4′〉)i

, (67)

w〈4′〉 = (mpM − 3mq)(M − 1)(M − 2) . (68)

By following prescription outlined by Ollitrault et al in
[7] we now denote by dn{4} the 4th order differential Q-
cumulant and estimate it by

dn{4} = 〈〈4′〉〉 − 2 · 〈〈2′〉〉 〈〈2〉〉 . (69)
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Plugging results for 〈〈4′〉〉, 〈〈2′〉〉 and 〈〈2〉〉 into Eq. (69)
we arrive at the following result:

dn{4} =

{
N∑
i=1

[
pnQnQ

∗
nQ

∗
n − q2nQ

∗
nQ

∗
n − pnQnQ

∗
2n

− 2 ·MpnQ
∗
n − 2 ·mq |Qn|2 + 7 · qnQ∗

n −Qnq
∗
n

+ q2nQ
∗
2n + 2 · pnQ∗

n + 2 ·mqM − 6 ·mq

]
i

/

N∑
i=1

[
(mpM − 3mq)(M − 1)(M − 2)

]
i

}

− 2 ·
∑N
i=1(pnQ

∗
n −mq)i∑N

i=1(mpM−mq)i

×

∑N
i=1

(
|Qn|2 −M

)
i∑N

i=1(M(M − 1))i
. (70)

This is an analytic result for 4th order differential Q-
cumulant and it is applicable only for the detectors
with uniform azimuthal acceptance—more general result
which can be used also for detectors with non-uniform
acceptance is outlined in Appendix C. Having obtained
estimates for dn{4} and cn{4} in Eqs. (70) and (33),
respectively, we can estimate differential flow harmonics
v′n in the following way [7]:

v′n{4} = − dn{4}
(−cn{4})3/4

. (71)

We used notation v′n{4} to distinguish estimates for dif-
ferential flow harmonics v′n obtained from 4th order cu-
mulants from those which were obtained from 2nd order
cumulants and denoted by v′n{2}. v′n{4} and v′n{2} are
independent estimates for the same differential flow har-
monic v′n. In the case genuine 2-particle nonflow correla-
tions are present in the system v′n{4} is not sensitive to
them, while v′n{2} is systematically biased.

E. Example

As an example of differential flow analysis we pro-
vide the results for v′2(pt) extracted from Therminator
dataset. As RPs we select pions and as POIs we select
protons. In the first step we estimate reference flow by
making use only of particles labeled as RPs, which in this
example were pions (relevant equations are (24), (25),
(30) and (33)). Results for reference flow estimates are
presented on Fig. 7. In the second step we estimate the
differential flow of POIs (in this example protons were la-
beled as POIs) with respect to the reference flow of RPs
estimated in the first step. For each pt bin we evaluate
dn{2} and dn{4} from Eq. (64) and (70), respectively,
and use equations (65) and (71) to estimate differential
flow harmonics. The results for differential flow of pro-
tons are presented in Fig. 8.

{MC}2v {2,QC}2v {4,QC}2v {6,QC}2v {8,QC}2v

0.09

0.091

0.092

FIG. 7: Reference flow extracted from Therminator dataset
and estimated only by making use of particles labeled as RPs,
which in this example were pions. Average multiplicity of
pions was 〈M〉 = 1322 in a total number of N = 1876 events.

t
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0.3

0.4

FIG. 8: Differential flow extracted from Therminator dataset
for particles labeled as POIs (which in this example were
protons—average multiplicity of protons was 〈M〉 = 332 in
a total number of N = 1876 events.). Differential flow is
estimated with respect to the reference flow obtained from
particles labeled as RPs (which in this example were pions,
see Fig. 7). The grey mesh was obtained after joining the
ends of error bars of Monte Carlo estimates for each pt bin.
Closed circles denote 2nd order estimate (Eq. (65) and closed
squares denote 4th order estimate (Eq. (71)).

F. Integrated flow

Another useful quantity that is frequently reported as
a result of flow measurement is integrated flow. In the
example presented in previous section we have obtained
differential elliptic flow of POIs as a function of transverse
momentum, v′2(pt). We now define the pt-integrated flow
of POIs in the following way:

vn{k} ≡
∫∞
0
v′n{k} dNdpt

dpt∫∞
0

dN
dpt
dpt

, (72)

where k = 2, 4, 6, . . ., and dN
dpt

is the yield of POIs in trans-
verse momentum. For the Therminator dataset used in
Example IV E the protons were labeled as POIs and their
yield in transverse momentum is presented on Fig. 9. The
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resulting pt-integated flow of protons calculated by mak-
ing use of Eq. (72) is presented on Fig. 10.

t
p0 0.5 1 1.5 2 2.5 3 3.5 4

t
d

pd
N
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100
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3
10×

FIG. 9: Transverse momentum proton yield for the Thermi-
nator dataset used in Example IVE.

{MC}2v {2,QC}2v {4,QC}2v

0.061

0.062

0.063

0.064

FIG. 10: pt-integrated flow calculated from Eq. (72) of pro-
tons whose differential flow is presented on Fig. 8 and trans-
verse momentum yield on Fig. 9.

V. EPILOGUE

In this paper we have provided a new analytic way
to calculate Q-cumulants, advantages of which were out-
lined in the main part of the paper and illustrated with
few examples. When it comes to the usage cases, Q-
cumulants will perform best in the system characterized
with sizable flow and large multiplicity as it is expected
in the heavy-ion collisions. In this regime Q-cumulants
are precision method. There are some issues, however,
which still has to be resolved analytically and which we
now briefly discuss.

A. Open issues

There are three remaining major issues that we
couldn’t resolve analytically: multiplicity fluctuations,

flow fluctuations and low sensitivity for small flow values.
In the following lines we discuss briefly their importance.

1. Multiplicity fluctuations

When only flow correlations are present in the system
multiplicity fluctuations do not yield a systematic bias to
the flow estimates fromQ-cumulants—it is only the inter-
play between nonflow correlations and multiplicity fluc-
tuations which accounts for the systematic bias that we
couldn’t resolve analytically. Both cases are illustrated
in Fig. 11. In practice, however, one can always eliminate
the systematic bias coming from multiplicity fluctuations
by performing a flow analysis in a few very narrow cen-
trality bins. The average flow estimate corresponding to
the few merged centrality bins is than obtained straight-
forwardly by statistically averaging the flow estimates ob-
tained for each narrow centrality bin.

2. Flow fluctuations

By using multiparticle azimuthal correlations in flow
analysis we are actually estimating the averages of var-
ious powers of the flow harmonics (for simplicity sake
in this section we suppress the harmonic index and use
v ≡ vn instead):

〈〈2〉〉 =
〈
v2
〉
, (73)

〈〈4〉〉 =
〈
v4
〉
. (74)

What we are after, however, is 〈v〉. This means that even
in the perfect case scenario, namely when only flow cor-
relations are present in the system, the flow estimates
obtained by using multiparticle correlators will be bi-
ased due to the statistical flow fluctuations, which are
unavoidable. When it comes to the flow estimates from
Q-cumulants this systematic bias coming from statistical
flow fluctuations can be quantified.

We denote by σ2
v the variance of the flow harmonic v,

σ2
v =

〈
v2
〉
− 〈v〉2 , (75)

and with the fairly general assumption that σv�〈v〉 and
by working up to 2nd order in σv, we have straight from
the formal properties of Taylor expansion obtained the
following results:

v{2} = 〈v〉+
1
2
σ2
v

〈v〉
, (76)

v{4} = 〈v〉 − 1
2
σ2
v

〈v〉
, (77)

which are valid irrespectively of the details of underlying
model of flow fluctuations (the result (77) remains valid
also for the estimates from higher order Q-cumulants).
The results (76) and (77) are illustrated on Fig. 12 for
Gaussian and uniform flow fluctuations.
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{MC}2v {2,QC}2v {4,QC}2v {6,QC}2v {8,QC}2v
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FIG. 11: (top) In this example M particles per event were
sampled from the azimuthal distribution (1) characterized
by harmonic v2 = 0.05. Multiplicity M itself was sampled
uniformly event-by-event from the interval [50, 500]. In the
case only flow correlations are present in the system estimates
from Q-cumulants are not biased by multiplicity fluctuations.
(bottom) In this example M particles per event were sampled
from the azimuthal distribution (1) characterized by harmonic
v2 = 0.05 and each particle was taken twice for the analysis
in order to simulate strong 2-particle nonflow correlations.
Multiplicity M itself was sampled uniformly event-by-event
from the interval [25, 250], so that resulting multiplicity fluc-
tuates as in the top plot in interval [50, 500]. Due to the
interplay between nonflow correlations and multiplicity fluc-
tuations also the estimates from higher order cumulants are
systematically biased. (In both examples total number of
events was N = 105.)

Since the systematic bias coming from flow fluctuations
is quantified as ± 1

2
σ2

v

〈v〉 , it is clear that in the case when
flow signal is sizable this bias is negligible. In another
limit when flow signal is small the effects of flow fluctua-
tions are best suppressed in estimating the true value of
flow harmonic v by making use of the arithmetic average
of v{2} and v{4}, because the contribution ± 1

2
σ2

v

〈v〉 drops
out from this average.

3. Low sensitivity for small values of flow and multiplicity

Methods for flow analysis based on multiparticle cor-
relations are not sensitive in the regime of very small

{MC}2v {2,QC}2v {4,QC}2v {6,QC}2v {8,QC}2v

0.0499

0.05

0.0501

{MC}2v {2,QC}2v {4,QC}2v {6,QC}2v {8,QC}2v

0.0496

0.0498

0.05

0.0502

0.0504

FIG. 12: (top) In this example 500 particles per event were
sampled from the azimuthal distribution (1) characterized by
harmonic v2, where harmonic v2 itself was sampled event-
by-event from the Gaussian distribution characterized with
mean 〈v〉 = 0.05 and σv = 1/300. The dashed lines indi-
cate theoretical results obtained from the Eqs. (76) and (77)
for these values of 〈v〉 and σv. Total number of events was
N = 2×106. (bottom) In this example 500 particles per event
were sampled from the azimuthal distribution (1) character-
ized by harmonic v2, where harmonic v2 itself was event-by-
event sampled uniformly from the interval [0.04, 0.06]. For
uniform fluctuations we have that 〈v〉= vmax+vmin

2
=0.05 and

σv = 1

2
√

3
(vmax−vmin)' 0.00577. The dashed lines indicate

theoretical results obtained from Eqs. (76) and (77) for these
values of 〈v〉 and σv. Total number of events was N = 2×106.

values of flow and multiplicity. This can be understood
from the way the statistical error of flow estimates scales
with number of events N , flow signal v and multiplicity
M . For instance, for the statistical error of 2nd order
estimate we have:

s(v,M,N) ∼ 1√
NvM

, (78)

which means that for the very small values of v and M
statistical error s is huge. In practice this means that
methods based on multiparticle correlations, in partic-
ular Q-cumulants, cannot be used straightforwardly to
estimate flow harmonics in pp datasets. However, in an-
other regime, namely in heavy-ion datasets where v is
sizable and M is large, Q-cumulants can be regarded as
a precision method.
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APPENDIX A: DERIVATION OF ANALYTIC
EXPRESSION FOR 〈4〉

The key result in obtaining the analytic result for 4th

order Q-cumulant outlined in Eq. (33) was the analytic
expression for average single-event multiparticle corre-
lation 〈4〉 presented in Eq. (32)—in this Appendix we
provide the step-by-step derivation of this result. For
completeness sake we start by outlining the definitions of
all quantities needed in the derivation:

Qn ≡
M∑
i=1

einφi , (A1)

〈2〉 ≡ 〈2〉n|n ≡
1(

M
2

)
2!

M∑
i,j=1
(i 6=j)

ein(φi−φj) , (A2)

〈2〉2n|2n ≡
1(

M
2

)
2!

M∑
i,j=1
(i 6=j)

ei2n(φi−φj) , (A3)

〈3〉2n|n,n ≡
1(

M
3

)
3!

M∑
i,j,k=1
(i 6=j 6=k)

ein(2φi−φj−φk) , (A4)

〈3〉n,n|2n ≡ 〈3〉∗2n|n,n , (A5)

〈4〉 ≡ 〈4〉n,n|n,n ≡
1(

M
4

)
4!

M∑
i,j,k,l=1

(i 6=j 6=k 6=l)

ein(φi+φj−φk−φl),(A6)

where φi denotes the azimuthal angle of i-th particle mea-
sured in laboratory frame and M is multiplicity of event.
In the decomposition of |Qn|4 we have the following mul-
tiparticle correlations with corresponding combinatorial
coefficients:

4−particle : 〈4〉n,n|n,n ·
(
M

4

)
4! ,

3−particle : 〈3〉2n|n,n ·M
(
M − 1

2

)
2! ,

〈3〉n,n|2n ·M
(
M − 1

2

)
2! ,

〈2〉n|n ·M(M − 1)2!(M − 2)2! ,

2−particle : 〈2〉n|n ·M(M − 1)2!2! ,

〈2〉2n|2n ·M(M − 1) ,

1 ·
(
M

2

)
2!2! ,

1−particle : 1 ·M . (A7)

Written explicitly (after grouping some terms),

|Qn|4 = 〈4〉n,n|n,n ·
(
M

4

)
4!

+
[
〈3〉2n|n,n + 〈3〉n,n|2n

]
·M
(
M − 1

2

)
2!

+ 〈2〉n|n ·
[
(M(M − 1)22!2!

]
+ 〈2〉2n|2n ·M(M − 1)

+ 1 ·
[(
M

2

)
2!2! +M

]
. (A8)

The 2-particle correlations 〈2〉n|n was already expressed
in terms of Q-vector evaluated in harmonic n, see Eq.
(29), while the analogous expression for 〈2〉2n|2n is triv-
ially

〈2〉2n|2n =
|Q2n|2 −M

M(M − 1)
. (A9)

What remains to be done here is to express 〈3〉2n|n,n and
〈3〉n,n|2n analytically in terms of Q-vectors. In order to
accomplish this goal we must decompose the expressions
which consist of Q-vectors evaluated in different harmon-
ics. In particular for 〈3〉2n|n,n and 〈3〉n,n|2n we have to
decompose Q2nQ

∗
nQ

∗
n and QnQnQ∗

2n, respectively. It fol-
lows

Q2nQ
∗
nQ

∗
n = 〈3〉2n|n,n ·M

(
M

2

)
2!+〈2〉n|n ·M(M − 1)2!

+ 〈2〉2n|2n ·M(M − 1)+1 ·M . (A10)

After inserting results for 〈2〉n|n and 〈2〉2n|2n given in
Eqs. (29) and (A9), respectively, and solving for 〈3〉2n|n,n
we obtain the following result:

〈3〉2n|n,n =
Q2nQ

∗
nQ

∗
n−2 · |Qn|2−|Q2n|2+2M
M(M − 1)(M − 2)

.(A11)

Trivially,

〈3〉n,n|2n =
QnQnQ

∗
2n−2 · |Qn|2−|Q2n|2+2M
M(M − 1)(M − 2)

.(A12)

It is easy to see that

QnQnQ
∗
2n = (Q2nQ

∗
nQ

∗
n )∗ , (A13)

so that

QnQnQ
∗
2n + (Q2nQ

∗
nQ

∗
n)

∗ = 2 ·Re [Q2nQ
∗
nQ

∗
n] . (A14)

Taking into account this result we arrive at the following
equality:

〈3〉n,n|2n + 〈3〉2n|n,n = 2
Re [Q2nQ

∗
nQ

∗
n]− 2 · |Qn|2

M(M − 1)(M − 2)

− 2
|Q2n|2 − 2M

M(M − 1)(M − 2)
. (A15)

After inserting results (29), (A9) and (A15) into Eq. (A8)
and solving the resulting expression for 〈4〉n,n|n,n the re-
sult (32) follows.
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1. Higher orders

We remark that this derivation can be straightfor-
wardly (if tediously) generalized to obtain the analytic
results for any higher order multiparticle azimuthal corre-
lations. As an example we outline the definition and final
analytic result for average single-event 6-particle correla-
tion:

〈6〉 ≡ 1(
M
6

)
6!

M∑
i,j,k,l,m,n=1

(i 6=j 6=k 6=l 6=m6=n)

ein(φi+φj+φk−φl−φm−φn)

=
|Qn|6+9 · |Q2n|2 |Qn|2−6 ·Re [Q2nQnQ

∗
nQ

∗
nQ

∗
n]

M(M − 1)(M − 2)(M − 3)(M − 4)(M − 5)

+ 4
Re [Q3nQ

∗
nQ

∗
nQ

∗
n]− 3 ·Re [Q3nQ

∗
2nQ

∗
n]

M(M − 1)(M − 2)(M − 3)(M − 4)(M − 5)

+ 2
9(M − 4) ·Re [Q2nQ

∗
nQ

∗
n] + 2 · |Q3n|2

M(M − 1)(M − 2)(M − 3)(M − 4)(M − 5)

− 9
|Qn|4 + |Q2n|2

M(M − 1)(M − 2)(M − 3)(M − 5)

+ 18
|Qn|2

M(M − 1)(M − 2)(M − 3)(M − 4)

− 6
(M − 1)(M − 2)(M − 3)

. (A16)

Having obtained this results, the 6th order Q-cumulants
is than estimated from

cn{6} = 〈〈6〉〉 − 9 · 〈〈2〉〉 〈〈4〉〉+ 12 · 〈〈2〉〉3 , (A17)

and reference flow harmonic vn is estimated as

vn{6} = 6

√
1
4
cn{6} . (A18)

APPENDIX B: PARTICLE WEIGHTS

In this Appendix we provide analytic formulas for the
average multiparticle correlations when most general par-
ticle weights are used. Standard examples for particle
weights are wφ-weights which are being used to correct
for detector inefficiencies (this technique is applicable
only if there is no gap in detector’s azimuthal acceptance,
see example in B 1 a) and wpt-weights which are being
used to optimize the flow signal and correspondingly to
reduce the spread of flow estimates (see example in ??).

In general we denote the particle weight with w and
use it only to weight the contributions of the reference
particles (RPs) to Q-vector defined in Eq. (4) and to q-
vector defined in Eq. (59). We allow particle weight w to
be the most general function of RP’s azimuth, transverse
momentum and rapidity:

w = w(φ, pt, y) . (B1)

In the most cases of interest, however, particle weight
will be expressed in the factorized form,

w = wφ(φ)wpt(pt)wy(y) . (B2)

In order to accommodate the usage of particle weights
we introduce the following generalized expression for the
weighted Q-vector evaluated in harmonic n:

Qn,k ≡
M∑
i=1

wki e
inφi , (B3)

where wi is a particle weight of the i-th particle labeled
as RP and M is the total number of RPs in particular
event. In order to evaluate Qn,k for particular event from
Eq. (B3) all particles labeled as RPs in that event shall
be taken.

Next we focus on the phase window of interest and
all particles belonging to that window we label as POI.
Taking all POIs from the phase window of interest within
particular event (mp in total) we build up the following
quantity for that phase window:

pn,k ≡
mp∑
i=1

wki e
inψi . (B4)

The important thing to note here is that some of the
POIs contributing to pn,k could have also been labeled as
RPs. Only for those particles non-unit weight wi should
be used in Eq. (B4), while for the particles labeled only
as POI the unit weight, wi = 1, must be inserted in
Eq. (B4). This difference originates from the fact that
in our approach only particles labeled as RPs are used
for instance to correct for detector inefficiencies with wφ-
weights or to optimize the flow signal (reduce spread)
with wpt-weights. For convenience sake for the subset
of POIs which consists of all particles from the phase
window of interest within particular event and labeled
both as POI and RP (mq in total) we introduce

qn,k ≡
mq∑
i=1

wki e
inψi . (B5)

The fundamental difference between Qn,k on one side and
pn,k and qn,k on another is that for a single event there is
a singleQn,k characterizing that event and as many pn,k’s
and qn,k’s as there are phase windows (bins) of interest
in that event (for example, when estimating v′n(pt) we
will evaluate for each pt bin in each event the dedicated
pn,k’s and qn,k’s).

In order to express some of the results bellow in a more
elegant way we will use the following definitions for RPs:

Sp,k ≡

[
M∑
i=1

wki

]p
, (B6)

Mabcd··· ≡
M∑

i,j,k,l,...=1
(i 6=j 6=k 6=l 6=...)

wai w
b
jw

c
kw

d
l · · · . (B7)
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Since the summations in Eqs. (B6) and (B7) go over all
RPs in a particular event we qualify Sp,k and Mabcd··· as
the event-wise quantities.

On the other hand for each phase window of interest
in each event we select all particles labeled both as RP
and POI and evaluate the following quantities:

sp,k ≡

[
mq∑
i=1

wki

]p
, (B8)

M′
abcd··· ≡

mp∑
i=1

M∑
j,k,l,...=1

(i 6=j 6=k 6=l 6=...)

wai w
b
jw

c
kw

d
l · · · . (B9)

The summation in Eq. (B8) runs over particles labeled
both as RP and POI in a phase window (bin) of interest in
a particular event, the first summation in Eq. (B9) runs
over all POIs (some of which might have been also labeled
as RPs) in a phase window of interest in a particular
event, while the remaining summations in (B9) run over
all RPs in a particular event (hence including the ones
which are out of the phase window of interest). The
values of sp,k and M′

abcd··· will be different for different
phase window (bins) of interest within particular event,
so we qualify them as a bin-wise quantities.

Finally, we remark that we will provide formulas which
express analytically Mabcd··· and M′

abcd··· in terms of
Sp,k’s and sp,k’s for which to evaluate only a single loop
over data is required.

1. Weighted multiparticle azimuthal correlations

The definitions presented in Section II A for multipar-
ticle azimuthal correlations straightforwardly generalize
in the case most general particle weights (B1) are be-
ing used. In particular, the weighted single-event 2- and
4-particle correlations are defined as:

〈2〉 ≡ 1
M11

M∑
i,j=1
(i 6=j)

wiwj e
in(φi−φj) , (B10)

〈4〉 ≡ 1
M1111

M∑
i,j,k,l=1

(i 6=j 6=k 6=l)

wiwjwkwl e
in(φi+φj−φk−φl),(B11)

where M11 and M1111 are determined from definition
(B7). On the other hand the event weights (10) and (11)
now read

W〈2〉 ≡ M11 , (B12)
W〈4〉 ≡ M1111 . (B13)

Analogously, for the reduced single-event multiparticle
correlations we have more general definitions when par-
ticle weights are being used. In particular the definitions

(52) and (53) are now generalized into:

〈2′〉 ≡ 1
M′

01

mp∑
i=1

M∑
j=1
(i 6=j)

wj e
in(ψi−φj), (B14)

〈4′〉 ≡ 1
M′

0111

mp∑
i=1

M∑
j,k,l=1

(i 6=j 6=k 6=l)

wjwkwl e
in(ψi+φj−φk−φl),(B15)

where M′
01 and M′

0111 are determined from definition
(B9). Event weights (56) and (57) now read

W〈2′〉 ≡ M′
01 , (B16)

W〈4′〉 ≡ M′
0111 . (B17)

Having introduced all required definitions, we now
present our results. The weighted average 2-particle cor-
relations are given analytically by the following equa-
tions:

〈2〉 =
|Qn,k|2 − S1,2

S2,1 − S1,2
,

〈〈2〉〉 =
∑N
i=1(M11)i 〈2〉i∑N
i=1(M11)i

,

M11 ≡
M∑

i,j=1
(i 6=j)

wiwj

= S2,1 − S1,2 , (B18)

and the weighted average 4-particle correlations are given
by:

〈4〉 =
[
|Qn,1|4 + |Q2n,2|2 − 2 ·Re

[
Q2n,2Q

∗
n,1Q

∗
n,1

]
+ 8 ·Re

[
Qn,3Q

∗
n,1

]
− 4 · S1,2 |Qn,1|2

− 6 · S1,4 − 2 · S2,2

]
/M1111 ,

M1111 ≡
M∑

i,j,k,l=1
(i 6=j 6=k 6=l)

wiwjwkwl

= S4,1 − 6 · S1,2S2,1 + 8 · S1,3S1,1 + 3 · S2,2

− 6 · S1,4 ,

〈〈4〉〉 =
∑N
i=1(M1111)i 〈4〉i∑N
i=1(M1111)i

, (B19)

where weighted Q-vector, Qn,k, was defined in Eq. (B3)
and Sp,k in Eq. (B6).

When it comes to weighted reduced 2- and 4-particle
azimuthal correlations they are given analytically by the
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following formulas:

〈2′〉 =
pn,0Q

∗
n,k − s1,1

mpS1,1 − s1,1
,

〈〈2′〉〉 =
∑N
i=1(M′

01)i 〈2′〉i∑N
i=1(M′

01)i
,

M′
01 ≡

mp∑
i=1

M∑
j=1
(i 6=j)

wj

= mpS1,1 − s1,1 , (B20)

and,

〈4′〉 =
[
pn,0Qn,1Q

∗
n,1Q

∗
n,1

− q2n,1Q
∗
n,1Q

∗
n,1 − pn,0Qn,1Q

∗
2n,2

− 2 · S1,2pn,0Q
∗
n,1 − 2 · s1,1 |Qn,1|2

+ 7 · qn,2Q∗
n,1 −Qn,1q

∗
n,2

+ q2n,1Q
∗
2n,2 + 2 · pn,0Q∗

n,3

+ 2 · s1,1S1,2 − 6 · s1,3
]
/M′

0111 ,

〈〈4′〉〉 =
∑N
i=1(M′

0111)i 〈4′〉i∑N
i=1(M′

0111)i
,

M′
0111 ≡

mp∑
i=1

M∑
j,k,l=1

(i 6=j 6=k 6=l)

wjwkwl

= mp [S3,1 − 3 · S1,1S1,2 + 2 · S1,3]
− 3·[s1,1(S2,1−S1,2)+2·(s1,3−s1,2S1,1)] .(B21)

We remark that to evaluate all quantities appearing on
the right hand sides in analytic expressions (B18–B21)
only a single loop over data is required. Next we provide
two illustrative examples for the usage of particle weights.

a. Example for wφ-weights: Correcting for the bias coming
from non-uniform acceptance of detector

In this example we sample particles from the azimuthal
distribution (1) characterized with pt dependent har-
monic v2, namely:

v2(pt) =
{

0.2 (pt/2.0) pt < 2.0 GeV ,
0.2 pt ≥ 2.0 GeV .

(B22)

The usage of wφ-weights is illustrated for the detector
with two problematic sectors, namely for the detector
which accepts only 1/2 of the tracks going in 60o ≤ φ <
100o and only 1/3 of the tracks going in 270o ≤ φ < 330o.
All particles going in azimuthal angles out of these two
ranges are accepted without any loss.

In the first step we have to perform a dedicated run
over data in order to get the histogram of detector’s az-
imuthal acceptance. The resulting acceptance histogram

is presented on Fig. 13 (top). In the second step from this
histogram the normalized wφ-weights are constructed. If
the average number of particles per φ-bin is 〈N〉 and if the
number of particles in particular φ-bin is Nφ for the his-
togram on Fig. 13 (top), than the normalized wφ-weight
for that φ-bin is simply

wφ ≡
〈N〉
Nφ

. (B23)

The resulting normalized wφ-weights for the detector in
question are presented in Fig. 13 (bottom). From the
Eq. (B23) it is clear that if there is a gap in the detector’s
acceptance than there will be a φ-bin with zero entries
and the wφ-weight for that bin cannot be constructed—
this limits the applicability of the usage of wφ-weights (to
a certain extent one can avoid this problem in practice
by making binning in φ coarser). Having obtained wφ-

φ0 1 2 3 4 5 6

φ
dd
N

0

20000

40000

60000

φ0 1 2 3 4 5 6

φ
w

0

1

2

FIG. 13: Azimuthal profile of a detector which accepts 1/2
of the tracks going in 60o ≤ φ < 100o and only 1/3 of the
tracks going in 270o ≤ φ < 330o (top). Resulting normalized
wφ-weights for this acceptance profile (bottom).

weights in a dedicated run, in the subsequent runs over
data weighted Q-, p- and q-vectors shall be evaluated as
defined in Eqs. (B3), (B4) and (B5), respectively. In ad-
dition, quantities Sp,k and sp,k shall be evaluated accord-
ing to definitions (B6) and (B8). From these quantities
by making use of analytic results presented in Section B 1
all average multiparticle and reduced multiparticle corre-
lations can be obtained for the case wφ-weights are being
used. From this point on the procedure to estimate flow
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harmonics is the same as outlined in the main part of the
paper. On Fig. 14 the estimates for reference flow har-
monics are presented and on Figs. 15 and 16 the estimates
for differential flow harmonics from 2nd and 4th order dif-
ferential Q-cumulant, respectively, with (closed markers)
and without (open markers) using the wφ-weights.

{MC}2v {2,QC}2v {4,QC}2v
0.08

0.1

0.12

0.14

0.16

FIG. 14: Estimates for reference flow harmonics for detec-
tor whose acceptance histogram is presented on the top plot
of Fig. 13. With open markers are estimates obtained with-
out using wφ-weights and with closed markers with using wφ-
weights.

t
p0 0.5 1 1.5 2 2.5 3 3.5 4

nv
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0.15

0.2
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FIG. 15: Estimates for differential flow harmonics from 2nd

order differential Q-cumulant for detector whose acceptance
histogram is presented on the top plot of Fig. 13. The grey
mesh was obtained after joining the ends of error bars of
Monte Carlo estimates for each pt bin. With open markers are
estimates obtained without using wφ-weights and with closed
markers with using wφ-weights.

APPENDIX C: NON-UNIFORM ACCEPTANCE

In this Appendix we outline the general procedure how
the bias coming from non-uniform acceptance of the de-
tector can be quantified and removed from the flow es-
timates. Claim: In order to use this procedure one run
over data is enough and this procedure can be used for
all types of non-uniform acceptance. In particular, it can

t
p0 0.5 1 1.5 2 2.5 3 3.5 4

nv
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0.15

0.2

0.25

0.3

FIG. 16: Estimates for differential flow harmonics from 4th or-
der differential Q-cumulant for detector whose acceptance his-
togram is presented on the top plot of Fig. 13. The grey mesh
was obtained after joining the ends of error bars of Monte
Carlo estimates for each pt bin. With open markers are es-
timates obtained without using wφ-weights and with closed
markers with using wφ-weights.

be used also for the detectors with partial azimuthal cov-
erage (for instance for the PHENIX detector) for which
the usage of wφ-weights presented in example in B 1 a is
not possible.

1. Generalized Q-cumulants

For the case of detectors with non-uniform acceptance
the average multiparticle correlations are strongly biased.
On the other hand the cumulants isolate genuine physical
correlation between the particles which should not be
spoiled at all by any inefficiencies in the detector. This
suggests that in building cumulants from multiparticle
correlations we have so far omitted terms which vanish for
the detectors with uniform acceptance. For the detectors
with non-uniform acceptance these terms are crucial and
must be called back, simply because they will counter
balance the bias on multiparticle correlations, so that
cumulants remain unbiased.

The generalized cumulants to be used for detectors
with non-uniform acceptance were given in [5, 6, 7]. In [5]
the formulas were provided which determine generalized
cumulants to all orders, but without any specific connec-
tion to azimuthally sensitive observables. In [6, 7] this
general formalism has been applied for the azimuthally
sensitive obervables yielding the results in which cumu-
lants were composed both from isotropic and anisotropic
terms. However, the authors of [6, 7] were pursuing the
usage of formalism of generating functions and by mak-
ing a suitable projections along the fixed, equally spaced
directions in the laboratory frame they were able to aver-
age out all anisotropic terms which appear in the gener-
alized cumulants. In what follows instead we show that
all these anisotropic terms can be also expressed analyti-
cally in terms of Q-vectors, which will serve as a basis for
explicitly quantifying the bias to flow estimates coming
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from the non-uniform acceptance of the detector.

a. Reference flow

We start by outlining the generalized Q-cumulants
which are used to estimate unbiasedly the reference flow
harmonics for any type of detector’s acceptance. In
Eq. (19) the 2nd order Q-cumulant for detectors with
uniform acceptance was defined—its generalized version
reads:

cn{2} = 〈〈2〉〉− 〈〈cosnφ1〉〉2 − 〈〈sinnφ1〉〉2 . (C1)

The terms in red counter balance the bias to 2-particle
correlation due to non-uniform acceptance, so that cn{2}
remains unbiased. These new anisotropic terms can be
trivially expressed in terms of real and imaginary parts
of Q-vector (4):

〈〈cosnφ1〉〉 =
∑N
i=1 (Re [Qn])i∑N

i=1Mi

, (C2)

〈〈sinnφ1〉〉 =
∑N
i=1 (Im [Qn])i∑N

i=1Mi

, (C3)

and average 2-particle correlation 〈〈2〉〉 was expressed in
terms of Q-vectors in Section III. Note that terms in red
in Eq. (C1) explicitly quantify the bias coming from
non-uniform acceptance to average 2-particle correlation.
When particle weights are used the average 2-particle
correlation 〈〈2〉〉 is determined from Eqs. (B18), while
Eqs. (C2) and (C3) generalize into:

〈〈cosnφ1〉〉 =
∑N
i=1 (Re [Qn,1])i∑N

i=1(S1,1)i
, (C4)

〈〈sinnφ1〉〉 =
∑N
i=1 (Im [Qn,1])i∑N

i=1(S1,1)i
, (C5)

whereQn,1 can be determined from definition of weighted
Q-vector (B3) and S1,1 from definition (B6).

The 4th order Q-cumulant to be used to estimate flow
harmonics for the case of detectors with uniform accep-
tance was defined in Eq. (22). The generalized 4th order
Q-cumulant to be used for any type of detector accep-

tance reads:

cn{4} = 〈〈4〉〉 − 2 · 〈〈2〉〉2

− 4 · 〈〈cosnφ1〉〉 〈〈cosn(φ1 − φ2 − φ3)〉〉
+ 4 · 〈〈sinnφ1〉〉 〈〈sinn(φ1 − φ2 − φ3)〉〉
− 〈〈cosn(φ1 + φ2)〉〉2 − 〈〈sinn(φ1 + φ2)〉〉2

+ 4 · 〈〈cosn(φ1 + φ2)〉〉

×
[
〈〈cosnφ1〉〉2 − 〈〈sinnφ1〉〉2

]
+ 8 · 〈〈sinn(φ1 + φ2)〉〉 〈〈sinnφ1〉〉 〈〈cosnφ1〉〉
+ 8 · 〈〈cosn(φ1 − φ2)〉〉

×
[
〈〈cosnφ1〉〉2 + 〈〈sinnφ1〉〉2

]
− 6 ·

[
〈〈cosnφ1〉〉2 + 〈〈sinnφ1〉〉2

]2
. (C6)

The terms in red in Eq. (C6) counter balance the bias
coming from non-uniform acceptance so that cn{4} is un-
biased. The terms in red in Eq. (C6) explicitly quantify
the bias coming from non-uniform acceptance. It was
explained in Section III how to express 〈〈4〉〉 and 〈〈2〉〉
in terms of Q-vectors. The new anisotropic terms in Eq.
(C6) can also be expressed analytically in terms of Q-
vectors. In particular, the 2-particle anisotropic terms
read:

〈〈cosn(φ1+φ2)〉〉 =
∑N
i=1 (Re [QnQn−Q2n])i∑N

i=1Mi(Mi−1)
, (C7)

〈〈sinn(φ1+φ2)〉〉 =
∑N
i=1 (Im [QnQn−Q2n])i∑N

i=1Mi(Mi−1)
, (C8)

while for 3-particle anisotropic terms the following results
apply:

〈〈cosn(φ1−φ2−φ3)〉〉 =
{ N∑
i=1

(Re [QnQ∗
nQ

∗
n −QnQ

∗
2n]

−2(M−1)Re [Q∗
n])i

}
/

N∑
i=1

Mi(Mi−1)(Mi−2) , (C9)

〈〈sinn(φ1−φ2−φ3)〉〉 =
{ N∑
i=1

(Im [QnQ∗
nQ

∗
n −QnQ

∗
2n]

−2(M−1)Im [Q∗
n])i

}
/

N∑
i=1

Mi(Mi−1)(Mi−2) . (C10)

When particle weights are used the average 2-particle
correlation 〈〈2〉〉 is determined from Eqs. (B18), the av-
erage 4-particle correlation 〈〈4〉〉 is determined from Eqs.
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(B19), the Eqs. (C7) and (C8) generalize into:

〈〈cosn(φ1+φ2)〉〉 =
∑N
i=1 (Re [Qn,1Qn,1 −Q2n,2])i∑N

i=1(M11)i
,

〈〈sinn(φ1+φ2)〉〉 =
∑N
i=1 (Im [Qn,1Qn,1 −Q2n,2])i∑N

i=1(M11)i
,

M11 ≡
M∑

i,j=1
(i 6=j)

wiwj = S2,1 − S1,2 , (C11)

and the Eqs. (C9) and (C10) generalize into

〈〈cosn(φ1−φ2−φ3)〉〉 =
{ N∑
i=1

(
Re
[
Qn,1Q

∗
n,1Q

∗
n,1

−Qn,1Q∗
2n,2−2·S1,2Q

∗
n,1+2·Q∗

n,3

])
i

}
/

N∑
i=1

(M111)i ,

〈〈sinn(φ1−φ2−φ3)〉〉 =
{ N∑
i=1

(
Im
[
Qn,1Q

∗
n,1Q

∗
n,1

−Qn,1Q∗
2n,2−2·S1,2Q

∗
n,1+2·Q∗

n,3

])
i

}
/

N∑
i=1

(M111)i ,

M111≡
M∑

i,j,k=1
(i 6=j 6=k)

wiwjwk =S3,1−3·S1,2S1,1+2 ·S1,3 .(C12)

Next we provide the formulas for generalized differential
Q-cumulants.

b. Differential flow

The generalized 2nd order differential Q-cumulant
reads

dn{2} = 〈〈2′〉〉 − 〈〈cosnψ1〉〉 〈〈cosnφ2〉〉
− 〈〈sinnψ1〉〉 〈〈sinnφ2〉〉 . (C13)

The terms in red counter balance the bias to reduced
2-particle correlation 〈〈2′〉〉 coming from the detector’s
non-uniform acceptance, so that dn{2} remains unbiased.
Expressions for 〈〈cosnφ1〉〉 and 〈〈sinnφ1〉〉 were already
given in Eqs. (C2) and (C3), respectively (when particle
weights are being used in Eqs. (C4) and (C5), respec-
tively). Analogously we derive the following results,

〈〈cosnψ1〉〉 =
∑N
i=1 (Re [pn])i∑N
i=1(mp)i

, (C14)

〈〈sinnψ1〉〉 =
∑N
i=1 (Im [pn])i∑N
i=1(mp)i

, (C15)

where pn and mp were defined in Section IV. The Eqs.
(C14) and (C15) remain unchanged when particle weights
are being used.

The generalized 4th order differential Q-cumulant
reads:

dn{4} = 〈〈4′〉〉 − 2 · 〈〈2′〉〉 〈〈2〉〉 (C16)
− 〈〈cosnψ1〉〉 〈〈cosn(φ1−φ2−φ3)〉〉
+ 〈〈sinnψ1〉〉 〈〈sinn(φ1−φ2−φ3)〉〉
− 〈〈cosnφ1〉〉 〈〈cosn(ψ1−φ2−φ3)〉〉
+ 〈〈sinnφ1〉〉 〈〈sinn(ψ1−φ2−φ3)〉〉
− 2 · 〈〈cosnφ1〉〉 〈〈cosn(ψ1+φ2−φ3)〉〉
− 2 · 〈〈sinnφ1〉〉 〈〈sinn(ψ1+φ2−φ3)〉〉
− 〈〈cosn(ψ1+φ2)〉〉 〈〈cosn(φ1+φ2)〉〉
− 〈〈sinn(ψ1+φ2)〉〉 〈〈sinn(φ1+φ2)〉〉
+ 2 · 〈〈cosn(φ1 + φ2)〉〉
× [〈〈cosnψ1〉〉 〈〈cosnφ1〉〉−〈〈sinnψ1〉〉 〈〈sinnφ1〉〉]
+ 2 · 〈〈sinn(φ1+φ2)〉〉
× [〈〈cosnψ1〉〉 〈〈sinnφ1〉〉+〈〈sinnψ1〉〉 〈〈cosnφ1〉〉]
+ 4 · 〈〈cosn(φ1−φ2)〉〉
× [〈〈cosnψ1〉〉 〈〈cosnφ1〉〉+〈〈sinnψ1〉〉 〈〈sinnφ1〉〉]
+ 2 · 〈〈cosn(ψ1+φ2)〉〉

×
[
〈〈cosnφ1〉〉2−〈〈sinnφ1〉〉2

]
+ 4 · 〈〈sinn(ψ1+φ2)〉〉 〈〈cosnφ1〉〉 〈〈sinnφ1〉〉

+ 4 · 〈〈cosn(ψ1−φ2)〉〉
[
〈〈cosnφ1〉〉2+〈〈sinnφ1〉〉2

]
− 6 ·

[
〈〈cosnφ1〉〉2−〈〈sinnφ1〉〉2

]
× [〈〈cosnψ1〉〉 〈〈cosnφ1〉〉−〈〈sinnψ1〉〉 〈〈sinnφ1〉〉]
− 12 · 〈〈cosnφ1〉〉 〈〈sinnφ1〉〉
× [〈〈sinnψ1〉〉 〈〈cosnφ1〉〉+〈〈cosnψ1〉〉 〈〈sinnφ1〉〉] .

The terms in red in Eq. (C16) counter balance the bias
coming from non-uniform acceptance, so that dn{4} is
unbiased. In this equation some new anisotropic terms
appear which have to be expressed analytically in terms
of Q-, p- and q-vectors. In particular we have obtained
the following results for 2-particle anisotropic terms:

〈〈cosn(ψ1+φ2)〉〉 =
∑N
i=1(Re [pnQn−q2n])i∑N
i=1(mpM−mq)i

,

〈〈sinn(ψ1+φ2)〉〉 =
∑N
i=1(Im [pnQn−q2n])i∑N
i=1(mpM−mq)i

,(C17)
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and the following results for 3-particle anisotropic terms:

〈〈cosn(ψ1+φ2 −φ3)〉〉 =
{ N∑
i=1

(
Re
[
pn

(
|Qn|2−M

)]
−Re [q2nQ∗

n+mqQn−2qn]
)
i

}
/

N∑
i=1

[(mpM−2mq)(M−1)]i ,

〈〈sinn(ψ1+φ2 −φ3)〉〉 =
{ N∑
i=1

(
Im
[
pn

(
|Qn|2−M

)]
−Im [q2nQ∗

n+mqQn−2qn]
)
i

}
/

N∑
i=1

[(mpM−2mq)(M−1)]i ,

(C18)

and for the additional 3-particle anisotropic terms:

〈〈cosn(ψ1−φ2 −φ3)〉〉 =
{ N∑
i=1

(
Re [pnQ∗

nQ
∗
n−pnQ∗

2n]

−Re [2mqQ
∗
n−2q∗n]

)
i

}
/

N∑
i=1

[(mpM − 2mq)(M − 1)]i ,

〈〈sinn(ψ1−φ2 −φ3)〉〉 =
{ N∑
i=1

(
Im [pnQ∗

nQ
∗
n − pnQ

∗
2n]

−Im [2mqQ
∗
n−2q∗n]

)
i

}
/

N∑
i=1

[(mpM − 2mq)(M − 1)]i .

(C19)

When particle weights are being used Eqs. (C17) gener-
alize into:

〈〈cosn(ψ1+φ2)〉〉 =
∑N
i=1 (Re [pnQn,k − q2n,k])i∑N

i=1 (mpS1,1 − s1,1)i
,

〈〈sinn(ψ1+φ2)〉〉 =
∑N
i=1 (Im [pnQn,k − q2n,k])i∑N

i=1 (mpS1,1 − s1,1)i
,

(C20)

Eqs. (C18) generalize into:

〈〈cosn(ψ1+φ2 −φ3)〉〉=
{ N∑
i=1

(
Re
[
pn

(
|Qn,1|2−S1,2

)]
−Re

[
q2n,1Q

∗
n,1 + s1,1Qn,1 − 2qn,2

] )
i

}
/{ N∑

i=1

(mp(S2,1 − S1,2)− 2 · (s1,1S1,1 − s1,2))i

}
,

〈〈sinn(ψ1+φ2 −φ3)〉〉=
{ N∑
i=1

(
Im
[
pn

(
|Qn,1|2−S1,2

)]
−Im

[
q2n,1Q

∗
n,1+s1,1Qn,1−2qn,2

] )
i

}
/{ N∑

i=1

(mp(S2,1 − S1,2)− 2 · (s1,1S1,1 − s1,2))i

}
, (C21)

and finally, Eqs. (C19) generalize into:

〈〈cosn(ψ1−φ2 −φ3)〉〉=
{ N∑
i=1

(
Re
[
pn
(
Q∗
n,1Q

∗
n,1−Q∗

2n,2

)]
−2 ·Re

[
s1,1Q

∗
n,1 − q∗n,2

] )
i

}
/{ N∑

i=1

(mp(S2,1 − S1,2)− 2 · (s1,1S1,1 − s1,2))i

}
,

〈〈sinn(ψ1−φ2 −φ3)〉〉=
{ N∑
i=1

(
Im
[
pn
(
Q∗
n,1Q

∗
n,1−Q∗

2n,2

)]
−2 · Im

[
s1,1Q

∗
n,1 − q∗n,2

] )
i

}
/{ N∑

i=1

(mp(S2,1 − S1,2)− 2 · (s1,1S1,1 − s1,2))i

}
. (C22)

APPENDIX D: STATISTICAL ERRORS

In this appendix we outline the procedure we use to
report the statistical errors of the reference and differen-
tial flow estimates from Q-cumulants. For simplicity sake
in all expressions bellow we keep only the terms relevant
for detectors with uniform acceptance—more general ex-
pressions for detectors with non-uniform acceptance can
be derived straightforwardly.

1. Some general results

Consider the random observable x sampled from some
probability density function (p.d.f.) f(x) (for a detailed
treatment of what is highlighted here we refer reader
to [9]). The mean of x we denote by µx and the variance
of x we denote by σ2

x (or equivalently by V [x]). Mean
and variance of x are given by the following expressions:

µx = E[x] =
∫ ∞

−∞
xf(x)dx , (D1)

σ2
x = V [x] = E[(x− E[x])2]

=
∫ ∞

−∞
(x− µx)2f(x)dx , (D2)

where E[x] stands for the expectation value of a random
variable x. We denote by xi the measured random ob-
servable x in the i-th event and by (wx)i the observable’s
weight in that event. Even if the p.d.f. f(x) is completely
unknown, we can still use measured values xi to estimate
mean (D1) and variance (D2) of a random variable x. In
particular, the unbiased estimator [18] for the variance
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σ2
x we denote by s2x and it is given by

s2x ≡

[∑N
i=1(wx)i(xi − 〈x〉)2∑N

i=1(wx)i

]
×

 1

1−
PN

i=1(wx)2i

[PN
i=1(wx)i]2

 ,
(D3)

where we have introduced also 〈x〉 as the unbiased esti-
mator for mean µx,

〈x〉 ≡
∑N
i=1(wx)ixi∑N
i=1(wx)i

. (D4)

In above two equations N is the number of independent
measurements, which in our context corresponds to the
number of events.

Since the sample mean, 〈x〉, is an unbiased estimator
for the mean of x, µx, we will report the final results and
the statistical errors as

〈x〉 ± V [〈x〉]1/2 . (D5)

One can easily show that the variance of the sample
mean, V [〈x〉], can be written as

V [〈x〉] =
∑N
i=1(wx)

2
i[∑N

i=1(wx)i
]2 V [x] , (D6)

i.e.

V [〈x〉] =
∑N
i=1(wx)

2
i[∑N

i=1(wx)i
]2 σ2

x . (D7)

Taking into account the unbiased estimator s2x for the
variance σ2

x, we can now write down the expression we
will use to report the final results and statistical errors
of a random variable x:

〈x〉 ±

√∑N
i=1(wx)

2
i∑N

i=1(wx)i
sx , (D8)

where 〈x〉 is given by Eq. (D4) and sx by Eq. (D3).
Consider now the more general case when we deal with

two random variables, x and y, and some other random
variable h which is a function of x and y. Than the mean
of h(x, y), µh, is to first order given by

µh ≡ E[h(x, y)] ≈ h(µx, µy) , (D9)

and the variance of h, σ2
h (or equivalently V [h]), is to first

order given by:

σ2
h = V [h] ≡ E[h2(x, y)]− E[h(x, y)]2

≈
[(

∂h

∂x

)∣∣∣∣
x=µx,y=µy

]2

σ2
x

+
[(

∂h

∂y

)∣∣∣∣
x=µx,y=µy

]2

σ2
y

+ 2
(
∂h

∂x

∂h

∂y

)∣∣∣∣
x=µx,y=µy

Vxy , (D10)

where Vxy is covariance of two random variables x and
y,

Vxy ≡ E[(x− µx)(y − µy)]
= E[xy]− E[x]E[y]

=
∫ ∞

−∞

∫ ∞

−∞
xyf(x, y)dxdy − µxµy . (D11)

If we measure in the i-th event two observables xi and
yi, whose weights are (wx)i and (wy)i, than the unbiased
estimator Cov(x, y) for their covariance Vxy is given by

Cov(x, y) =

PN
i=1(wx)i(wy)ixiyiPN

i=1(wx)i(wy)i
−

PN
i=1(wx)ixiPN

i=1(wx)i

PN
j=1(wy)jyjPN

j=1(wy)j

1−
PN

i=1(wx)i(wy)iPN
i=1(wx)i

PN
j=1(wy)j

.

(D12)
We will report the final result and statistical error for
h(x, y) as

〈h〉 ± s〈h〉 , (D13)

where 〈h〉 is the unbiased estimator for the mean of
h(x, y) and it is to first order given by

〈h〉 = h(〈x〉,〈y〉) , (D14)

while s2〈h〉 is the unbiased estimator for the variance
V [〈h〉]. The variance V [〈h〉] can be obtained to first order
straightforwardly from Eq. (D10):

V [〈h〉] ≈
[(

∂h

∂x

)∣∣∣∣
x=µx,y=µy

]2

V [〈x〉]

+
[(

∂h

∂y

)∣∣∣∣
x=µx,y=µy

]2

V [〈y〉]

+ 2
(
∂h

∂x

∂h

∂y

)∣∣∣∣
x=µx,y=µy

V〈x〉〈y〉 . (D15)

One can easily show that

V〈x〉〈y〉 =
∑N
i=1(wx)i(wy)i∑N

i=1(wx)i
∑N
j=1(wy)j

Vxy . (D16)

Than the unbiased estimator s2〈h〉 for variance V [〈h〉] is

s2〈h〉 ≈
[(

∂h

∂x

)∣∣∣∣
x=〈x〉,y=〈y〉

]2 ∑N
i=1(wx)

2
i[∑N

i=1(wx)i
]2 s2x

+
[(

∂h

∂y

)∣∣∣∣
x=〈x〉,y=〈y〉

]2 ∑N
i=1(wy)

2
i[∑N

i=1(wy)i
]2 s2y

+ 2
(
∂h

∂x

∂h

∂y

)∣∣∣∣
x=〈x〉,y=〈y〉

×
∑N
i=1(wx)i(wy)i∑N

i=1(wx)i
∑N
j=1(wy)j

Cov(x, y) . (D17)
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These formulas can be trivially generalized for the case
of more than two random variables. We will use these
results to report final results and statistical errors for the
flow estimates from Q-cumulants in subsequent sections.

2. Statistical errors for reference flow estimates

We start by identifying random variable x in our anal-
ysis. We will denote its event-by-event measured (sam-
pled) value by xi and its weight by (wx)i.

In what follows we will treat the average multi-particle
correlations, 〈2〉 and 〈4〉, as the measured observables
event-by-event. Their values event-by-event are obtained
from the formulas (29) and (32), respectively. Because of
this we can calculate their final averages (i.e. the unbi-
ased estimators for their mean values), 〈〈2〉〉, and 〈〈4〉〉,
and also the unbiased estimators for their variances, s2〈2〉
and s2〈4〉, straight from the data by making use of the
definitions (D4) and (D3), respectively.

Having calculated this straight from the data, we will
report the final results and statistical errors for the aver-
age multiparticle azimuthal correlations in the following
way:

〈〈2〉〉 ±

√∑N
i=1(w〈2〉)2i∑N
i=1(w〈2〉)i

s〈2〉 ,

〈〈4〉〉 ±

√∑N
i=1(w〈4〉)2i∑N
i=1(w〈4〉)i

s〈4〉 . (D18)

On the other hand, we will report the final results and
statistical errors of the flow estimates from Q-cumulants
by taking into account their functional dependence on
multi-particle correlations. In accordance with notation
introduced in previous section (see Eq. (D13)) we will
report the final results and statistical errors of reference
flow estimates as follows:

〈vn{2}〉 ± s〈vn{2}〉 ,

〈vn{4}〉 ± s〈vn{4}〉 . (D19)

Unbiased estimators for the variances of the sample mean
of reference flow estimates, s〈vn{2}〉 and s〈vn{4}〉, intro-
duced in Eq. (D19), can be straightforwardly expressed
in terms of unbiased estimators for the variances of the
sample mean of multiparticle correlations, s〈2〉 and s〈4〉,
which as already indicated can be obtained straight from
the data—these expressions will follow shortly.

But before proceeding further the very important thing
to note, however, is that the different order average multi-
particle correlations measured event-by-event are not in-
dependent quantities. Due to this, we will also need
the unbiased estimators for their covariance Cov(〈2〉,〈4〉),
which can also be calculated straight from the data by
making use of Eq. (D12).

a. 2nd order

When it comes to 2nd order reference flow estimate we
use the fact that

vn{2} =
√
〈2〉 , (D20)

so that we have to first order

〈vn{2}〉 ≈
√
〈〈2〉〉 . (D21)

By restricting result in Eq.(D17) to functional depen-
dence on one variable it follows

s2〈vn{2}〉 =
1

4 〈〈2〉〉

∑N
i=1(w〈2〉)2i[∑N
i=1(w〈2〉)i

]2 s2〈2〉 , (D22)

i.e.

s〈vn{2}〉 =
1

2
√
〈〈2〉〉

√∑N
i=1(w〈2〉)2i∑N
i=1(w〈2〉)i

s〈2〉 . (D23)

In the next section we provide the formulas for the fourth
order.

b. 4th order

We start from

vn{4} = 4
√

2 · 〈2〉2 − 〈4〉 , (D24)

which gives to first order

〈vn{4}〉 ≈
4
√

2 · 〈〈2〉〉2 − 〈〈4〉〉 . (D25)

By applying Eq. (D17) to equation (D24) we have

s2〈vn{4}〉 =
1[

2 · 〈〈2〉〉2 − 〈〈4〉〉
]3/2 (D26)

×

〈〈2〉〉2 ∑N
i=1(w〈2〉)2i[∑N
i=1(w〈2〉)i

]2 s2〈2〉
+

1
16
·
∑N
i=1(w〈4〉)2i[∑N
i=1(w〈4〉)i

]2 s2〈4〉
− 1

2
·〈〈2〉〉

∑N
i=1(w〈2〉)i(w〈4〉)i∑N

i=1(w〈2〉)i
∑N
j=1(w〈4〉)j

Cov(〈2〉,〈4〉)

]
.

3. Statistical errors for differential flow estimates

We will treat statistical errors of differential flow esti-
mates by following the full analogy with the treatment
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of statistical errors of reference flow estimates presented
in the previous section.

As a measured random observable event-by-event we
identify the average reduced multi-particle correlations,
〈2′〉 and 〈4′〉. Their values for the bin of interest in par-
ticular event are given by Eq. (60) and (66), respectively.
By following an analogy with the previous section, we will
write the final results for the average reduced correlations
and report their statistical errors as

〈〈2′〉〉 ±

√∑N
i=1(w〈2′〉)2i∑N
i=1(w〈2′〉)i

s〈2′〉 ,

〈〈4′〉〉 ±

√∑N
i=1(w〈4′〉)2i∑N
i=1(w〈4′〉)i

s〈4′〉 . (D27)

All quantities in above two equations can be obtained
straight from the data. Having this in mind we will re-
port the final results and statistical errors for the differ-
ential flow estimates by taking into account their func-
tional dependence on the multiparticle correlations and
propagating the statistical error from this dependence.
In accordance with notation introduced in previous sec-
tion (see Eq. (D13)) we will report the final results and
statistical errors of differential flow estimates:

〈v′n{2}〉 ± s〈v′
n{2}〉 ,

〈v′n{4}〉 ± s〈v′
n{4}〉 . (D28)

As in the case of reference flow in previous section, the
very important thing to note is that the different order
average multi-particle correlations and the different or-
der average reduced multi-particle correlations measured
event-by-event are not mutually independent quantities.
Hence, we also need the unbiased estimators for their
covariances Cov(〈2〉,〈2′〉), Cov(〈2〉,〈4′〉), Cov(〈4〉,〈2′〉),
Cov(〈4〉,〈4′〉) and Cov(〈2′〉,〈4′〉). These unbiased estima-
tors for the covariances can also be obtained straight from
the data by making use of Eq. (D12) .

a. 2nd order

For the 2nd order differential flow estimate we have

v′n{2} ≡
〈2′〉
〈2〉1/2

, (D29)

which yields to first order

〈v′n{2}〉 ≈
〈〈2′〉〉
〈〈2〉〉1/2

. (D30)

After plugging this functional dependence into Eq. (D17)
we have

s2〈v′
n{2}〉 =

1
4 · 〈〈2〉〉3

×

〈〈2′〉〉2 ∑N
i=1(w〈2〉)2i[∑N
i=1(w〈2〉)i

]2 s2〈2〉
+ 4·〈〈2〉〉2

∑N
i=1(w〈2′〉)2i[∑N
i=1(w〈2′〉)i

]2 s2〈2′〉−4·〈〈2〉〉 〈〈2′〉〉

×
∑N
i=1(w〈2〉)i(w〈2′〉)i∑N

i=1(w〈2〉)i
∑N
j=1(w〈2′〉)j

Cov(〈2〉,〈2′〉)

]
.

(D31)

In the next section we present the results for the 4th order
differential flow.

b. 4th order

When it comes to 4th order differential flow estimate
we start from

v′n{4} ≡
2 · 〈2〉〈2′〉 − 〈4′〉[
2 · 〈2〉2 − 〈4〉

]3/4 , (D32)

which yields to leading order

〈v′n{4}〉 ≈
2 · 〈〈2〉〉〈〈2′〉〉 − 〈〈4′〉〉[
2 · 〈〈2〉〉2 − 〈〈4〉〉

]3/4 . (D33)
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We use again generalized version of Eq. (D17) valid for
four random variables. It follows straightforwardly:

s2〈v′
n{4}〉 =

1[
2 · 〈〈2〉〉2 − 〈〈4〉〉

] 7
2
×

{[
2 · 〈〈2〉〉2 〈〈2′〉〉 − 3 · 〈〈2〉〉 〈〈4′〉〉+ 2 · 〈〈4〉〉 〈〈2′〉〉

]2
×
∑N
i=1(w〈2〉)2i[∑N
i=1(w〈2〉)i

]2 s2〈2〉
+

9
16
· [2 · 〈〈2〉〉 〈〈2′〉〉 − 〈〈4′〉〉]2

∑N
i=1(w〈4〉)2i[∑N
i=1(w〈4〉)i

]2 s2〈4〉
+4 · 〈〈2〉〉2

[
2 · 〈〈2〉〉2 − 〈〈4〉〉

]2 ∑N
i=1(w〈2′〉)2i[∑N
i=1(w〈2′〉)i

]2 s2〈2′〉

+
[
2 · 〈〈2〉〉2 − 〈〈4〉〉

]2 ∑N
i=1(w〈4′〉)2i[∑N
i=1(w〈4′〉)i

]2 s2〈4′〉

−3
2
· [2 · 〈〈2〉〉 〈〈2′〉〉 − 〈〈4′〉〉]

×
[
2 · 〈〈2〉〉2 〈〈2′〉〉 − 3 · 〈〈2〉〉 〈〈4′〉〉+ 2 · 〈〈4〉〉 〈〈2′〉〉

]
×

∑N
i=1(w〈2〉)i(w〈4〉)i∑N

i=1(w〈2〉)i
∑N
j=1(w〈4〉)j

Cov(〈2〉,〈4〉)

−4 · 〈〈2〉〉
[
2 · 〈〈2〉〉2 − 〈〈4〉〉

]
×
[
2 · 〈〈2〉〉2 〈〈2′〉〉 − 3 · 〈〈2〉〉 〈〈4′〉〉+ 2 · 〈〈4〉〉 〈〈2′〉〉

]
×

∑N
i=1(w〈2〉)i(w〈2′〉)i∑N

i=1(w〈2〉)i
∑N
j=1(w〈2′〉)j

Cov(〈2〉,〈2′〉)

+2 ·
[
2 · 〈〈2〉〉2 − 〈〈4〉〉

]
×
[
2 · 〈〈2〉〉2 〈〈2′〉〉 − 3 · 〈〈2〉〉 〈〈4′〉〉+ 2 · 〈〈4〉〉 〈〈2′〉〉

]
×

∑N
i=1(w〈2〉)i(w〈4′〉)i∑N

i=1(w〈2〉)i
∑N
j=1(w〈4′〉)j

Cov(〈2〉,〈4′〉)

+3 · 〈〈2〉〉
[
2 · 〈〈2〉〉2 − 〈〈4〉〉

]
[2 · 〈〈2〉〉 〈〈2′〉〉 − 〈〈4′〉〉]

×
∑N
i=1(w〈4〉)i(w〈2′〉)i∑N

i=1(w〈4〉)i
∑N
j=1(w〈2′〉)j

Cov(〈4〉,〈2′〉)

−3
2
·
[
2 · 〈〈2〉〉2 − 〈〈4〉〉

]
[2 · 〈〈2〉〉 〈〈2′〉〉 − 〈〈4′〉〉]

×
∑N
i=1(w〈4〉)i(w〈4′〉)i∑N

i=1(w〈4〉)i
∑N
j=1(w〈4′〉)j

Cov(〈4〉,〈4′〉)

−4 · 〈〈2〉〉
[
2 · 〈〈2〉〉2 − 〈〈4〉〉

]2
×

∑N
i=1(w〈2′〉)i(w〈4′〉)i∑N

i=1(w〈2′〉)i
∑N
j=1(w〈4′〉)j

Cov(〈2′〉,〈4′〉)
}
. (D34)



26

[1] S. A. Voloshin, A. M. Poskanzer and R. Snellings,
[arXiv:0809.2949].

[2] P. Sorensen, [arXiv:0905.0174].
[3] U. W. Heinz, [arXiv:0901.4355].
[4] S. Voloshin and Y. Zhang, Z. Phys. C 70 (1996) 665

[arXiv:hep-ph/9407282].
[5] R. Kubo, “Generalized Cumulant Expansion Method,”

Journal of the Physical Society of Japan, Vol. 17, No. 7,
(1962).

[6] N. Borghini, P. M. Dinh and J. Y. Ollitrault, Phys. Rev.
C 63 (2001) 054906 [arXiv:nucl-th/0007063].

[7] N. Borghini, P. M. Dinh and J. Y. Ollitrault, Phys. Rev.
C 64 (2001) 054901 [arXiv:nucl-th/0105040].

[8] N. Borghini, P. M. Dinh and J. Y. Ollitrault, [arXiv:nucl-
ex/0110016].

[9] G. Cowan, “Statistical data analysis,” Oxford, UK:
Clarendon (1998) 197 p .

[10] R. S. Bhalerao, N. Borghini and J. Y. Ollitrault “Genuine
collective flow from Lee-Yang zeroes,” Phys. Lett. B 580,
157 (2004) [arXiv:nucl-th/0307018].

[11] R. S. Bhalerao, N. Borghini and J. Y. Ollitrault “Analysis
of anisotropic flow with Lee-Yang zeroes,” Nucl. Phys. A
727 (2003) 373 [arXiv:nucl-th/0310016].

[12] R. S. Bhalerao, N. Borghini and J. Y. Ollitrault
“Anisotropic flow from Lee-Yang zeroes: a practi-
cal guide,” J. Phys. G 30 (2004) S1213 [arXiv:nucl-
th/0402053].

[13] A. Bilandzic, N. van der Kolk, J. Y. Ollitrault and
R. Snellings “Event-plane flow analysis without non-flow
effects,” [arXiv:0801.3915].

[14] S. A. Voloshin, A. M. Poskanzer and R. Snellings “Col-
lective phenomena in non-central nuclear collisions,”
[arXiv:0809.2949].

[15] S. A. Voloshin, A. M. Poskanzer, A. Tang and
G. Wang “Elliptic flow in the Gaussian model of ec-
centricity fluctuations,” Phys. Lett. B 659 (2008) 537
[arXiv:0708.0800].

[16] I. Selyuzhenkov and S. A. Voloshin “Effects of non-
uniform acceptance in anisotropic flow measurement,”
Phys. Rev. C 77 (2008) 034904 [arXiv:0707.4672].

[17] A. M. Poskanzer and S. A. Voloshin “Methods for ana-
lyzing anisotropic flow in relativistic nuclear collisions,”
Phys. Rev. C 58 (1998) 1671 [arXiv:nucl-ex/9805001].

[18] To treat statistical errors in this way was suggested by
Evan Warren.

.

http://arxiv.org/abs/0809.2949
http://arxiv.org/abs/0905.0174
http://arxiv.org/abs/0901.4355
http://arxiv.org/abs/hep-ph/9407282
http://arxiv.org/abs/nucl-th/0007063
http://arxiv.org/abs/nucl-th/0105040
http://arxiv.org/abs/nucl-ex/0110016
http://arxiv.org/abs/nucl-ex/0110016
http://arxiv.org/abs/nucl-th/0307018
http://arxiv.org/abs/nucl-th/0310016
http://arxiv.org/abs/nucl-th/0402053
http://arxiv.org/abs/nucl-th/0402053
http://arxiv.org/abs/0801.3915
http://arxiv.org/abs/0809.2949
http://arxiv.org/abs/0708.0800
http://arxiv.org/abs/0707.4672
http://arxiv.org/abs/nucl-ex/9805001


27

APPENDIX E: SPARE PLOTS

{MC}1v {2,QC}1v {4,QC}1v {6,QC}1v {8,QC}1v

0.02

0.022

0.024

{MC}2v {2,QC}2v {4,QC}2v {6,QC}2v {8,QC}2v

0.05

0.0502

0.0504

{MC}4v {2,QC}4v {4,QC}4v {6,QC}4v {8,QC}4v

0.0998

0.0999

0.1

0.1001

FIG. 17: Particle azimuthal angles were sampled from az-
imuthal distribution (1) characterized with a presence of three
non-vanishing harmonics: v1 = 0.02, v2 = 0.05 and v4 = 0.10.
Estimates for harmonic v1 are in the top plot, for harmonic v2

in the middle plot and for the harmonic v4 in the bottom plot.
In each plot in the fist bin is Monte Carlo estimate to which
estimates from 2nd, 4th, 6th and 8th Q-cumulant placed in
subsequent bins are being compared. Each harmonic can be
correctly estimated with Q-cumulants, the presence of other
two harmonics is completely disentangled.
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{MC}1v {2,QC}1v {4,QC}1v {6,QC}1v {8,QC}1v

0.016

0.018

0.02

0.022

{MC}2v {2,QC}2v {4,QC}2v {6,QC}2v {8,QC}2v

0.016

0.018

0.02

0.022

0.024

{MC}4v {2,QC}4v {4,QC}4v {6,QC}4v {8,QC}4v

0.016

0.018

0.02

0.022

FIG. 18: Particle azimuthal angles were sampled from az-
imuthal distribution (1) characterized with a presence of one
subdominant and two larger (order of magnitude) harmon-
ics. On the top plot are estimates for subdominant har-
monic v1 = 0.02 in the presence of two large harmonics
v2 = v4 = 0.2, in the middle plot are estimates for sub-
dominant harmonic v2 = 0.02 in the presence of two large
harmonics v1 = v4 = 0.2 and on the bottom plot are esti-
mates for subdominant harmonic v4 = 0.02 in the presence
of two large harmonics v1 = v2 = 0.2. Each harmonic can be
correctly estimated with Q-cumulants, the presence of other
two harmonics is completely disentangled.
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{MC}1v {2,QC}1v {4,QC}1v {6,QC}1v {8,QC}1v
0.0235

0.024

0.0245

0.025

0.0255

{MC}2v {2,QC}2v {4,QC}2v {6,QC}2v {8,QC}2v

0.04995

0.05

0.05005

0.0501

{MC}4v {2,QC}4v {4,QC}4v {6,QC}4v {8,QC}4v

0.07494

0.07496

0.07498

0.075

0.07502

FIG. 19: Particle azimuthal angles were sampled from az-
imuthal distribution (1) characterized with a presence of three
harmonics, namely v1 = 0.025, v2 = 0.05 and v4 = 0.075. On
the top plot are estimates for harmonic v1, in the middle plot
are estimates for harmonic v2 and on the bottom plot are
estimates for harmonic v4. Each harmonic can be correctly
estimated with Q-cumulants, the presence of other two har-
monics is completely disentangled.
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{MC}1v {2,QC}1v {4,QC}1v {6,QC}1v {8,QC}1v
0.04296

0.04298

0.043

0.04302

0.04304

{MC}2v {2,QC}2v {4,QC}2v {6,QC}2v {8,QC}2v

0.044

0.04402

{MC}4v {2,QC}4v {4,QC}4v {6,QC}4v {8,QC}4v

0.04498

0.045

0.04502

0.04504

FIG. 20: Particle azimuthal angles were sampled from az-
imuthal distribution (1) characterized with a presence of three
harmonics, namely v1 = 0.043, v2 = 0.044 and v4 = 0.045.
On the top plot are estimates for harmonic v1, in the middle
plot are estimates for harmonic v2 and on the bottom plot
are estimates for harmonic v4. Each harmonic can be cor-
rectly estimated with Q-cumulants, the presence of other two
harmonics is completely disentangled.
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φ0 1 2 3 4 5 6

φ
dd
N

0

50
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10×

{MC}2v {2,QC}2v {4,QC}2v

0.2

0.4

0.6

FIG. 21: Example for “PHENIX” like non-uniform accep-
tance when particles emitted in 45o ≤ φ < 135o and in
215o ≤ φ < 305o were blocked. Per event 1000 particles were
sampled from azimuthal distribution (1) characterized with
v2 = 0.05 in total number of 107 events. Detector azimuthal
profile is shown on the top plot. On the bottom plot with
open markers are shown estimates from “isotropic” cumulants
(defined in Eqs. (19) and (22)) and with closed markers es-
timates from “generalized” cumulants (Eqs. (C1) and (C6)).
Bias due to detector defects is clearly huge (open markers)
and has to be corrected for thoroughly (closed markers).
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