
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Bachelorarbeit Nr. 281

Bootstrapping ontology-based
data access specifications from

relational databases

Philipp Martis

Course of Study: Informatik

Examiner: PD Dr. Holger Schwarz

Supervisor: M. Sc. Leif Harald Karlsen

Commenced: 23rd of November 2015

Completed: 24th of May 2016

CR-Classification: D.0, H.2.8

Abstract

Nach der Titelseite des Berichtes und dem Aufgabenblatt soll das Wesentliche aus dem Inhalt
der Arbeit in wenigen Sätzen zusammengefasst werden. Diese Übersicht soll keine Formeln
und möglichst keine Literaturhinweise enthalten.

iii

Kurzfassung

Nach der Titelseite des Berichtes und dem Aufgabenblatt soll das Wesentliche aus dem Inhalt
der Arbeit in wenigen Sätzen zusammengefasst werden. Diese „Übersicht“ soll keine Formeln
und möglichst keine Literaturhinweise enthalten.

iv

Contents

Abstract iv

Kurzfassung v

Contents vi

List of figures vii

List of tables viii

1. Introduction 1
1.1. Motivation . 1
1.2. Approach . 1
1.3. Requirements and goals . 2

2. Background and related work 3
2.1. Background . 3

2.1.1. Basic concepts . 3
2.1.2. Ontology-based data access (OBDA) 3
2.1.3. OBDA specifications . 5
2.1.4. The OPTIQUE project . 6

2.2. Related work . 6
2.2.1. Ontologies and the semantic web – publications 6
2.2.2. OBDA specifications – publications . 6
2.2.3. OBDA systems – publications . 6
2.2.4. General ontology bootstrapping – publications 6
2.2.5. The OPTIQUE project – publications 7
2.2.6. Alternative approaches – publications 7

3. On bootstrapping and IRI generation 8
3.1. Ontology bootstrapping using direct mapping 8

3.1.1. Overview on the direct graph . 8
3.1.2. Data representation in direct mapping 9
3.1.3. IRI generation in direct mapping . 9

3.2. Ontology bootstrapping using OBDA specifications 9
3.2.1. Structure of OBDA specifications . 10
3.2.2. Using OBDA specifiations . 11
3.2.3. Bootstrapping OBDA specifications . 15

3.3. Generating unique IRIs for OBDA specification map fields 18
3.3.1. Requirements for the IRI scheme . 18

v

Contents

3.3.2. Avoiding name clashes in the IRI scheme 19
3.3.3. The proposed IRI generation scheme 21
3.3.4. Proof of correctness of the proposed IRI scheme 22

4. The OBDA Specification Language (OSL) 24
4.1. Specification . 24

5. The db2osl software 28
5.1. Functionality . 28
5.2. Interface and usage . 30

5.2.1. User interaction and configuration . 30
5.2.2. Integration into systems . 33

5.3. Architecture of db2osl . 34
5.3.1. Libraries used in db2osl . 34
5.3.2. Coarse structuring of db2osl . 34
5.3.3. Fine structuring of db2osl . 39

5.4. Numbers and statistics . 45
5.4.1. Benchmarking details . 45

6. Implementation of db2osl 46
6.1. Tools employed . 46
6.2. Code style . 47

6.2.1. Comments . 48
6.2.2. “Speaking code” . 48
6.2.3. Robustness against incorrect use . 51
6.2.4. Use of classes . 52
6.2.5. Use of packages . 54

7. Summary and future work 55
7.1. Summary . 55
7.2. Future work . 55

Appendix A. Details on the db2osl implementation 57
A.1. Package contents (db2osl) . 57

Bibliography 61

vi

List of Figures

1.1. Illustration of the overall bootstrapping process 2

2.1. The two basic OBDA system architectures . 5
a. OBDA system architecture with materialized RDF view 5
b. OBDA system architecture with a virtual RDF view 5

3.1. Constitution of the direct graph . 8
3.2. Constitution of an OBDA specification . 10

5.1. Package dependencies in db2osl . 37
5.2. Package dependencies in earlier versions of db2osl 38
5.3. Database class hierarchies in db2osl . 40

a. ColumnSet class hierarchy in db2osl 40
b. ColumnSet class hierarchy in db2osl – simplified 40
c. Column class hierarchy in db2osl . 40

5.4. OBDA specification class hierarchies in db2osl 41
a. URIBuilder class hierarchy in db2osl 41
b. OBDAMap class hierarchy in db2osl . 41

5.5. Logging and output class hierarchies in db2osl 41
a. SpecPrinter class hierarchy in db2osl 41
b. StreamHandler class hierarchy in db2osl 41

5.6. Job class hierarchy in db2osl . 42
5.7. Miscellaneous class hierarchies in db2osl . 43

a. Iterable class hierarchy in db2osl . 43
b. ReadOnlyIterator class hierarchy in db2osl 43
c. Iterator class hierarchy in db2osl . 43
d. Exception class hierarchy in db2osl 43
e. RuntimeException class hierarchy in db2osl 43

vii

List of Tables

3.1. Assignment of values to fields of OBDA specification maps 16
3.2. Proposed IRIs to be used in OBDA specification map fields 22

4.1. OWL individual IRIs in OSL . 25
4.2. OWL class membership of map representations in OSL 25
4.3. OWL property IRIs in OSL . 26

5.1. Command-line arguments in db2osl – descriptions 31
5.2. Command-line arguments in db2osl – default values 32
5.3. Descriptions of the packages in db2osl . 35
5.4. Standalone classes in db2osl . 44
5.5. Numbers and statistics about db2osl . 45

A.1. Class attachment to packages in db2osl . 57

viii

1. Introduction

1.1. Motivation

As estimated in 2007 [HPZC07], publicly available databases contained up to 500 times more
data than the static web and roughly 70 % of all websites were backed by relational databases
back then. As hardware has become cheaper yet more powerful, open source tools have become
more and more widespread and the web has gotten more and more dynamic and interactive,
it’s likely that these numbers have even increased since then. This makes the publication of
available data in a structured, machine-processable form and its retrieval with eligible software
an interesting topic. The most important formalism to represent structured data without the
need of a fixed (database) schema is ontologies, and thus this approach is known under the
term “Ontology based data access” (“OBDA”).
The vision of a machine-processable web emerged as early as 1989 [BL89] and was entitled
with the term “semantic web” by Tim Berners-Lee in 1999 [BLF99]. Definitely, the automatic
translation of relational databases to RDF [W3C14] or similar representations of structured
information is an integral part of the success of the semantic web [HPZC07]. This automatic
translation process is commonly called “bootstrapping”.
Today, the pure bootstrapping process is a relatively well understood topic, ranging from
the rather simple direct mapping approach [W3CR12a] to TODO. On the other hand, the
handling of the complexity introduced by these approaches and the use of sophisticated tools
to perform various related tasks meanwhile has become a significant challenge in its own right
[SGH+15]. Besides the parametrization of the tools in use, this includes the management of
the several kinds of artifacts accruing during the process, possibly needed in different versions
and formats for the use of different tools and output formats, while also taking changing
input data into account [SGH+15]. Skjæveland and others therefore suggested an approach
using a declarative description of the data to be mapped, concentrating in one place all the
information needed to coordinate the bootstrapping process and to drive the entire tool chain
[SGH+15].

1.2. Approach

This thesis describes the development of a specification language to serialize the declarative
specification of the bootstrapping process (see Section 1.1 – Motivation) and of a software to
in turn bootstrap it from a relational database schema. After the tasks they accomplish, the
specification language was called “OBDA Specification Language” (“OSL”) and the software
bootstrapping the specification was called “db2osl”.
Furthermore, this thesis suggests a scheme for generating the IRIs that occur in OBDA spec-

1

ification, identifying their parts [SGH+15]. Currently, this issue is only exemplified and there
is room for improvement in that a simple and straight-forward approach can be used to gen-
erate IRIs for all constituents of OBDA specifications without introducing name clashes in
corner cases. This approach is described in Section 3.3 – Generating unique IRIs for OBDA
specification map fields.
Using a declarative specification makes the entire bootstrapping process a two-step-procedure,
illustrated in Figure 1.1: First, the OBDA specification is derived from the database schema
using db2osl. It specifies the actual bootstrapping process in a very general way, so it only
has to be recreated when the database schema changes. The second step is to use the OBDA
specification to coordinate and drive the actual bootstrapping process. The development of
a software that uses the OBDA specification to perform this second step currently is subject
to ongoing work. It will be able to be parameterized accordingly to support different output
formats, tools, tool versions and application ranges.

Database
(schema)

db2osl OBDA specification

Bootstrapper Target
ontology

Figure 1.1.: Illustration of the overall bootstrapping process using a declarative OBDA specification

1.3. Requirements and goals

The final system shall be able to cleanly fit into existing bootstrapping systems while being
easy to use, taking the burden of dealing with OSL specifications manually from its users
instead of adding even more complexity to the process. To achieve these goals, use of existing
tools, languages and conventions was made wherever possible. For example, the OBDA
Specification Language was defined to be a subset of OWL. This facilitates meeting
the objective of a powerful, easy-to-use, flawless and well-documented language that can be
extended and handled by existing tools.
To fit into the environment used in the OPTIQUE project [CGH+13] it is ultimately part
of, Java was used for the bootstrapping software. Care was taken to design it to be modular
and flexible, making it usable not only as a whole but also as a collection of independent
components, possibly serving as the basis for a program library in the future. To achieve this
aim and to make the software more easily understandable and extensible, it was documented
carefully and thoroughly.
As the software will be maintained by diverse people after its development and will likely be
subject to changes, general code quality was also an issue to consider. Following good object-
oriented software development practice [Str00], real world artifacts like database schemata,
database tables, columns, keys, and OBDA specifications were modeled as software objects,
provided with a carefully chosen set of operations to manipulate them and make them col-
laborate. This approach and other actions aiming at yielding clean code are described more
thoroughly in Section 6.2 – Code style, while the resulting structure of the software is discussed
in Section 5.3 – Architecture of db2osl.

2

2. Background and related work

2.1. Background

2.1.1. Basic concepts

TODO: r2rml, rdf, rdfs, owl, xml, iris, baseiri, end with :

2.1.2. Ontology-based data access (OBDA)

TODO: References
Storing data in relational databases is a very common proceeding, since the notion of a re-
lational database is comprehensible and widely known, while the required software is widely
available both commercially and as open-source software. Thus, it is easy for a domain expert
to set up and populate a database. Furthermore, relational databases provide significant ad-
vantages concerning performance, data consistency and integrity, integration abilities, support
and general prominence. These topics definitely played a major role in the success and the
extensive exploration that databases discovered, up to the degree that these are the main fields
the strengths of databases are seen in. Many – if not all – of these strengths trace back to the
relatively fixed and rigid schema databases embody: a well-defined database schema imposing
strong and clear cut constraints on the contained data.
However, this principle also induces notable disadvantages. The database schema, although
theoretically changeable, constitutes a significant burden on TODO the representation of data
of dynamic environments, incomplete data or changing requirements, especially when dealing
with large amounts of data. The resulting representation of data in unintuitive, suboptimal
schemata makes the use of prolonged and complex query constructs inevitable, which lets
more elaborate queries quickly become unmanageable for non-experts and time-consuming
and error-prone even for experts. Ontologies, on the other hand, are much more flexible
regarding incomplete data or changing requirements or environments and allow for much more
intuitive and abstract query systems, while still being a quite comprehensible formalism (see
Section 2.2.1 for publications describing ontologies and the semantic web). Besides, ontologies
provide support for different data records referencing the same entity, while databases do
not [SGH+15], and for the deduction of implicit information [SGH+15], which with common
database systems, if at all, is at least not possible out of the box and in an easy manner. Often,
however, relational databases are preferred for their advantages (although the availability of
cheaper yet more powerful hardware in some cases offsets these) or simply erroneously. Besides,
in some cases, the migration to ontology-based systems, even if beneficial, is to costly to be
seriously considered.

3

Ontology-based data access often provides a solution to this collision of interests: By adding
an ontology-based front-end processing the queries that is sensibly mapped to the data rep-
resentation, the querying facilities of ontology-based systems are introduced, and changes in
the data representation most often can be carried out without breaking existing queries; only
the mapping has to be changed – in a one-time effort – and only when it introduces changes
in the way it presents existing structures to the user, existing queries have to be modified.
The creation of these mappings in turn can happen computer-aided or, in simple cases or to a
certain degree of completeness and accuracy, the mappings can be completely bootstrapped.
Moreover, in cases where it is to costly or for other cases infeasible to carry out a complete
data duplication, the data can remain in the underlying database as is and the query front-
end merely acts as an interface transforming the query into a database query [SGH+15] by
making use of a backward-chaining technique called query rewriting [SGH+15]. This approach
is called virtual OBDA or virtual RDF view [SGH+15] and is illustrated in Figure 2.1b. The
oppositional approach of duplicating all data is called materialized OBDA or materialized RDF
view and is illustrated in Figure 2.1a. Virtual OBDA provides limited abilities compared to
materialized OBDA in that it does not allow for decoupling from the source data by for exam-
ple adding inferred information or applying elaborate transformations and does not support
“fragments of OWL for which query rewriting is not a complete deduction method” [SGH+15].
However, the response time of systems is hard to predict solely from the architectural approach
used, so if it is critical, several systems should be prototyped and evaluated upfront on what
are expected to be typical queries [SGH+15].

4

Source
data Transformer

Map

RDF
store

Query
processor

Ontology

User
data data q

answer

(a) OBDA system architecture with materialized RDF view

Source
data Transformer

Map

Query
processor

Ontology

User
qDB qO q

answer

(b) OBDA system architecture with a virtual RDF view

Figure 2.1.: The two basic OBDA system architectures: materialized and virtual RDF views (from
[SGH+15])

Finally, it has to be mentioned, that ontology-based data access is not limited to databases.
Although this is the most common scenario and the only one this thesis deals with, ontology-
based data access also works with other sources of structured information, like ODS, XLS or
CSV files, though some additional preparation might be necessary in these cases [SGH+15].

2.1.3. OBDA specifications

TODO: more, maybe shorten introduction
As mentioned in Section 1.1 – Motivation, the sole bootstrapping of RDF triples [W3C14] or
other forms of structured information from relational database schemata is a relatively well
understood topic. This is outlined more comprehensively in Section 2.2 – Related work.
Nonetheless, bootstrapping remains an elaborate process involving complex tools to be invoked
– possibly in different versions and configurations and processing different formats – and
working on changing input data [SGH+15]. This is why Skjæveland and others proposed the
introduction of OBDA specifications centralizing the task of driving these tools and to gather in
one place all the information describing the desired mapping between the source database and
the target ontology [SGH+15]. As described in Section 2.2 – Related work, their approach is
the foundation of this thesis, which describes and specifies a format for storing and exchanging

5

such OBDA specifications – the OBDA Specification Language (OSL) – and introduces
a tool that in turn automatically bootstraps OBDA Specifications from relational database
schemata – the db2osl software.
The bootstrapping process using OBDA specifications and db2osl is illustrated in Figure 1.1
in Section 1.2 – Approach.

2.1.4. The OPTIQUE project

The problems addressed in Section 1.1 – Motivation are a big issue inter alia TODO in the
oil and gas industry: 30% to 70% of the working time of engineers is spent on collecting
data or assessing its quality [Cro08]. This led to the origination of the OPTIQUE project in
TODO which “advocates for a next generation of the well known Ontology-Based Data Access
(OBDA) approach to address the data access problem [...] [aiming] at solutions that reduce
the cost of data access dramatically” [KGJR+13]. Thus, the OPTIQUE project tries to reach
exactly the benefits a well-developed OBDA system can provide (explained in Section 2.1.2):
an easy end-user access to data without knowing about its structuring while taking advantage
of automatic translations [CGH+13]. In doing so, ascertained shortcomings of existing OBDA
systems were addressed: usability (for example the need to use formal query languages), costly
prerequisites (consider, for example, the disadvantages of materialized OBDA described in
Section 2.1.2) and efficiency (which was perceived as being insufficiently addressed in previous
approaches) [KGJR+13].

2.2. Related work

2.2.1. Ontologies and the semantic web – publications

2.2.2. OBDA specifications – publications

A publication building the foundation of the work presented in this thesis, is the summarizing
and benchmarking work on OBDA specifications by Skjæveland et al. [SGH+15], the group
that developed them in their present form.

2.2.3. OBDA systems – publications

2.2.4. General ontology bootstrapping – publications

Skjæveland, Lian and Horrocks [SLH13] provided an exemplifying description of the transfor-
mation of the NPD FactPages, an enormous collection of data related to oil drilling on the
Norwegian continental shelf, provided by the Norwegian Petroleum Dictorate (NPD).
Sequeda et al. [STCM11] provided an overview over different direct mapping approaches.
Sequeda, Arenas and Miranker [SAM12] [SAM11] describe the direct mapping of relational
databases to RDF and OWL formally.

6

Stojanovic, Stojanovic and Volz [SSV02] published a formal description of the mapping of
relational databases onto ontology-based structures, describing concepts preceding and/or
supplementing OWL and using F-LOGIC TODO as target language.

2.2.5. The OPTIQUE project – publications

Calvanese et al. [CGH+13] presented the OPTIQUE project including its underlying OBDA
system and showed limitations of current OBDA systems.
Kharlamov et al. [KGJR+13] described the first version of the OPTIQUE system, customized
for use with the NPD FactPages of the Norwegian Petroleum Dictorate (NPD).
Skjæveland and Lian [SL13] summarized the benefits of and the proceeding for converting the
NPD FactPages to linked data [BHBL09] and discuss associated terms like linked data,
URIs, RDF and SPARQL.

2.2.6. Alternative approaches – publications

Barrasa, Corcho and Pérez [BRCGP04] proposed a declarative mapping language – r2o –
able to express a mapping between a relational database and ontologies represented in the
OWL and RDF formats. This approach however aims at connecting existing databases and
existing ontologies.
TODO: R2RML, SQL2SW

7

3. On bootstrapping and IRI generation

3.1. Ontology bootstrapping using direct mapping

TODO: more, individuals <- data TODO: no alternative approach
As its name suggests, the direct mapping approach is a relatively simple and straight forward
approach. Direct mapping is currently a W3C recommendation, which defines the produc-
tion of an RDF graph TODO – which is called the direct graph – from a relational schema
[W3CR12a]. As a matter of fact, the main definition of the direct graph, excluding definitions
of rather trivial subcomponents, fits on one computer screen.
The direct graph contains all data held in the source database but it does not contain additional
schema information like uniqueness of or non-null constraints on columns [W3CR12a].

3.1.1. Overview on the direct graph

The constitution of the direct graph is illustrated in Figure 3.1. Its basic components are, for
each row, the row type triple, its literal triples and its reference triples. Here, the row type
triple encodes which table the respective row belongs to, the literal triples encode the data
in non-foreign-key columns and the reference triples encode the data in foreign key columns.
These triples are then by degrees united to the direct graph: the row triples of each row form
the row graph, the row graphs of each table form the table graph and all table graphs united
constitute the final direct graph.

Direct graph

Table graphs

Row graphs

Row type triple Literal triples Reference triples

Figure 3.1.: Constitution of the direct graph. “→” means “is part of”.

Carefully assigning IRIs to the RDF entities is an essential part of the approach, since oth-

8

erwise, name clashes can occur. Indeed, there seems to be a corner case which was not
considered. For details on IRI generation in direct mapping, see Section 3.1.3.

3.1.2. Data representation in direct mapping

Since the result of a direct mapping is an RDF graph, the means to represent data are limited
to valid RDF vocabulary. This is no problem for IRIs and expressions that only involve IRIs
(row type triples and reference triples).
To encode the non-foreign-key data content of the source database, thus literal triples, the
R2RML mapping language is used, a language providing a mapping from the relational data
model to the RDF data model [W3CR12b]. R2RML expressions thereby are by themselves
RDF statements. The data value contained in a direct mapping literal triple is defined to be
the R2RML natural RDF literal representation of the value [W3CR12a], which, as the name
suggests, is a single RDF literal [W3CR12b].

3.1.3. IRI generation in direct mapping

As all RDF triples generated by the direct mapping are simply united to constitute the final
direct graph (see Section 3.1.1 – Overview on the direct graph for details), a senseful IRI
assigning is vital to the functioning of the approach. By design, IRIs for different kinds of
entities have a different structure, which prevents name clashes on the one hand, but on the
other hand induces that, in case of a clash, all entities with the conflicting IRI are of the same
kind, which means a high risk of producing ambiguous information and thus losing data.
The relatively simple way IRIs are assigned in direct mapping is described in the following
[W3CR12a]:

• Table IRIs correspond to the table name.
• Literal property IRIs consist of the table name and the column name, separated by a

hash character (‘#’).
• Reference property IRIs consist of the child table name, the string “#ref-” and the child

table column names of the respective foreign key, separated by a semicolon (‘;’).
• All contained names are included in their percent-encoded form TODO.

The encoding of reference property IRIs can lead to name clashes in cases multiple foreign
keys exist which contain exactly the same columns – which is allowed for example in SQL
TODO. To remove this flaw, the parent table name and the parent table column names of the
respective foreign key must also be included in the IRI.

3.2. Ontology bootstrapping using OBDA specifications

TODO: only mapping, no duplication, r2rml

9

3.2.1. Structure of OBDA specifications

An OBDA specification consists of several so-called “maps”, which are data records containing
data and references to each other describing parts of the OBDA specification in statically
defined fields [SGH+15]. For different aspects of the specification, there are different map
types, while usually several maps exist for each type. Namely, these are Entity maps describing
database tables, Identifier maps describing database primary keys, Attribute maps describing
database columns, Relation maps describing database foreign keys, Subtype maps describing
“is-a” relationships in the data and Translation tables describing desired translations of data.
The fields of the several types of maps and their interconnection via references is shown in
Figure 3.2. Here, each field specifies, in that order, the field label, the field’s long name, the
bootstrapping steps in which the field is used and the field’s short name. Fields storing a set of
values have both their short and their long name suffixed with “...”. Note that each reference
between two fields is denoted with a short field name contained in the source of the reference,
specifying the field in which the reference is stored. What the values of the fields of the several
types of maps express exactly and how they can be used is described in Section 3.2.2. For
a full description as well of the structure of OBDA specifications as of their application and
the general idea behind them, refer to [SGH+15]. How OBDA specifications can in turn be
automatically bootstrapped, excluding Subtype maps and Translation tables is described in
Section 3.2.3.

Entity map

E1 Table name D O M tbl
E2 Label D O lab
E3 Identif er map D M id
E4 Attribute maps. . . O M attr...
E5 OWL class URI O M URI
E6 Description O desc

Translation table

T1 Source value... O M in...
T2 RDF resource... O M out...

Identifier map

I1 Entity map O M ent
I2 Attribute maps. . . D O M attr...
I3 URI pattern M patn

Attribute map

A1 Column name D O M col
A2 SQL datatype D O SQL
A3 Mandatory D O null
A4 Label D O lab
A5 OWL property URI O M URI
A6 Property type O type
A7 Translation M tran
A8 URI pattern M patn
A9 RDF language M lang
A10 XSD datatype O M XSD
A11 Description O desc

Relation map

R1 Source entity map D O M src
R2 Source column D M scol
R3 Target entity map D O M trg
R4 Target column D M tcol
R5 OWL property URI O M URI

Subtype map

S1 Entity map O M ent
S2 Column name O M col
S3 OWL superclass URI O URI
S4 Pref x O M pre
S5 Suff x O M suf
S6 Translation O M tran

ent

id

attr...

attr...

src

trg

ent

tran

tran

Figure 3.2.: Constitution of an OBDA specification. “→” means “references”. (from [SGH+15])

Entity maps, Identifier maps, Attribute maps and Relation maps directly relate to database
concepts and each of them describes exactly one database table, primary key, column or foreign
key, respectively, and vice versa. Subtype maps and Translation tables, on the other hand,
represent concepts of the bootstrapping process or data to be added to the target ontology
and are somewhat harder to obtain: Subtype maps represent “is-a” relationships in the target
ontology to be determined from the source data [SGH+15] – heuristically or semi-automatically

10

–, while Translation tables allow for the transformation of data values, for example from TRUE
to true or from No to false [SGH+15]. Therefore, they also have to be determined heuristically
or semi- automatically from the source data – considering the database schema only is not
sufficient [SGH+15]. Note that, because of this, special care has to be taken to keep the maps
synchronized with the data in case of Subtype maps and Translation tables.
The structural description of OBDA specifications in [SGH+15] does not propose a serialization
format in which OBDA specifications can be stored or read and written by software and
human agents. How this can be done is subject to this thesis, which introduces the OBDA
Specification Language (OSL) designed exactly for this purpose in Chapter 4.

3.2.2. Using OBDA specifiations

TODO: dirm TODO: r2rml
As described in in Section 2.1.3 – OBDA specifications, using OBDA specifications provides
several benefits when concerned in ontology bootstrapping. Principally, information about the
bootstrapping process is collected in one place and can be used to manage the tools involved.
This includes the availability of the URIs to be used in the constructed ontology from a central
place, which is a great advantage, since URIs are central to an ontology TODO. Additionally,
all information on the database schema of the source database is available. Using Translation
tables, all these information can at will be made subject to transformations normalizing or
correcting the data changing the database [SGH+15].
By the use of a single specification language like the OBDA Specification Language
(OSL) to store OBDA specifications, the expense of converting between different data formats
can be reduced significantly: assumed that there are n different formats to be handled with no
means provided to convert between them, the converting costs decrease from O(n2) to O(n)
by introducing a single central language TODO.
Besides the structure of OBDA specifications, described in Section 3.2.1, Skjæveland et al.
introduce a set of formal rules defining the bootstrapping process and the mapping of the source
data to the generated ontology [SGH+15]. Using an OBDA specification, tools implementing
these rules can easily and in a well-defined manner bootstrap an ontology and a mapping from
the source data onto this ontology (or duplicate that source data, if the materialized OBDA
approach is used, see Section 2.1.2). The mapping rules produce RDF triples which can be
interpreted by R2RML to establish the mapping (see Section 2.1.1 – Basic concepts). They
are accompanied by SQL statements specifying the queries over the source database used to
link the ontology to the data. If the data source is not a relational database but another form
of structured data, like CSV files, a database schema can be bootstrapped first by applying
additional “database rules” [SGH+15]. Afterwards, the proceeding can continue as if the data
source were a database, so this case is neglected in the following.
The rest of this section contains description of the information contained in the various types
of OBDA specification maps and how it is used during bootstrapping, based on the description
in [SGH+15]. Keep in mind that “bootstrapping” here refers to the ontology bootstrapping
process specified by the OBDA specification, yielding a target ontology and mappings relating
it to the source database – it does not refer to the bootstrapping of the OBDA specification
itself. The text is meant to give a brief explanatory overview over the bootstrapping process

11

using OBDA specifications. Thus, it focuses on the information they provide and how they
are used to link the bootstrapped ontology to the source data, leaving out the SQL statements
to be used to gain the datasets. How exactly the ontology is created is also left out, since
this would have involved introducing too many technical details, and moreover, the topic
is also comprehensible by describing the mapping only. For a detailed description of the
bootstrapping process, including ontology creation and all formal rules to be applied, see
[SGH+15]. For an explanation about how an OBDA specification containing Entity maps,
Identifier maps, Attribute maps and Relation maps can be bootstrapped from a relational
database schema, see Section 3.2.3. For details on URI generation, refer to Section 3.3 –
Generating unique IRIs for OBDA specification map fields.

Entity maps

Entity maps provide information about the tables contained in the source database or in
the intermediate database schema to be constructed, if the data source is not a database
but some other source of structured information (see Section 2.1.2 – Ontology-based data
access (OBDA)). The information provided by an Entity map includes the table name, a label
describing the table and a (more detailed) description of the table. Furthermore, each Entity
map references an Identifier map representing its primary key and a set of Attribute maps
representing its columns. Finally, an Entity map provides an OWL class URI identifying
the represented table uniquely in the resulting ontology. As the name suggests, this URI
is given to an OWL class which serves as OWL type (or more precisely: rdf:type) for all
OWL individuals representing the datasets from the respective table in the target ontology
(see Paragraph “Identifier maps”).
Suppose, for example, that an Entity map for a table “persons” provides the OWL class URI
“mydb:persons”. Then, in the target ontology, all OWL individuals representing rows in the
“persons” table, will be of rdf:type “mydb:persons”. If a data record in the “persons”
table has the identifying URI pattern “mydb:person/{pno}” (see Paragraph Identifier maps),
this type information will be expressed by the following RDF triple:
mydb:person/{pno} rdf:type mydb:persons.

Identifier maps

Identifier maps describe database primary keys contained in the source database or in the
intermediate database schema to be constructed, if the data source is not a database (see
Section 2.1.2). Each Identifier map contains a reference back to the respective Entity map,
representing the database table the primary key belongs to. Furthermore, each Identifier map
references a set of Attribute maps, representing the database columns the primary key consists
of (see next paragraph). Finally, an Identifier map provides a URI pattern, allowing OWL
individuals in the bootstrapped target ontology that represent datasets to be identified. A URI
pattern contains placeholders like “{$1}” for all primary key columns, which are replaced with
the respective column names, surrounded by curly braces, during the bootstrapping process,
to yield a valid R2RML template [W3CR12b]. Since the column name substituted in is still a
placeholder, the result of this substitution is still a URI pattern and not a URI. Since such a
URI pattern uniquely identifies a dataset from a given database table – when data values are

12

substituted in –, it will be called identifying URI pattern in the following.
Consider the URI pattern “mydb:person/{$1}”. Replacing the placeholder “{$1}” with the
column name “pno” in curly braces yields the following identifying URI pattern:
“mydb:person/{pno}”.

Attribute maps

Attribute maps provide information about database columns contained in the source database.
Each Attribute map carries the column name, information whether having a value in this col-
umn is mandatory for a dataset (in SQL terms: whether it has a NOT NULL constraint), a label
describing the column as well as an extended description of the column. A database column is
represented as a relation in the final ontology, thus, in OWL terms, as an owl:DataProperty
or an owl:ObjectProperty. The Attribute map provides the URI for this OWL property.
Additionally, it specifies the datatype of values in the represented column in the following
manner: Three fields are provided for this purpose, SQL datatype, RDF language and XSD
datatype. If the XSD datatype field is nonempty, its value is specified to be the datatype
for values in the column the Attribute map represents (note that OWL only knows XSD
datatypes TODO). Otherwise, if the value of the SQL datatype is a standard SQL type, it
will be mapped to an XSD datatype and the resulting type is specified as datatype for values
in the respective column. If neither of the above is the case and the RDF language field is
nonempty, values in the respective column will be interpreted as strings with the value of the
RDF language field applied as RDF language tag (TODO). If neither of the above is the case,
values in the respective column will be interpreted as strings without an RDF language tag.
Finally, an Attribute map specifies whether the column shall be represented as an
owl:DataProperty (for non-foreign-key columns) or as an owl:ObjectProperty (for foreign
key columns). The field specifying that – Property type – also allows, as a further distinction
of object properties, whether the property’s target URI should be the column name placed in
an URI pattern provided by the Attribute map, similarly to URI patterns in Identifier maps
(see example at the end of this paragraph), or if it shall simply be the column name, possibly
with a translation from a Translation table, specified by the Attribute map, applied. The
former option is useful for example when using custom property URIs to express relations
between source data and the target ontology. If an owl:DataProperty is generated, it always
has the column name as target URI, without the use of an URI pattern. Note that it is
sufficient to have the column name be the target of the property, since only a mapping to the
source data is generated.
Consider an Attribute map representing a column named “name” to be mapped to an
owl:DataProperty. Suppose the OWL property URI the Attribute map specifies is
“mynamespace:lastName” and each dataset containing the name column has the identifying
URI pattern “mydb:person/{pno}” (see Paragraph “Identifier maps”). Then, during the
bootstrapping process the following RDF triple will be produced:
mydb:person/{pno} mynamespace:lastName "{name}".
This triple can easily be interpreted by R2RML, which on request then retrieves the queried
name from the data source.
Consider, as a more elaborate example, an Attribute map representing a column named

13

“company” and to be mapped to an owl:ObjectProperty with the use of the URI pattern
“http://otherdb/{$1}”. Suppose the OWL property URI the Attribute map specifies is
“mynamespace:hasSameOwnerAs”, there is no datatype specified and each dataset containing
the company column has the identifying URI pattern “mydb:company/{cmpno}” (see Para-
graph “Identifier maps”). Then, the following RDF triple will be produced during the boot-
strapping process:
mydb:company/{cmpno} mynamespace:hasSameOwnerAs http://otherdb/{company}.
Note that this only makes sense if R2RML can expand “http://otherdb/{company}” to a
valid subject for each value in the company column of the database, and if all rows in the
respective database table are indeed entities having the same owner as the company specified
in the company column.

Relation maps

Relation maps represent foreign keys contained in the source database. Each Relation map
references the Entity maps representing the foreign key’s child table and parent table, respec-
tively. Furthermore, it provides the column names of both the foreign key columns and the
referenced columns and specifies an OWL property URI. Relation maps allow the relations
expressed in the source data via foreign key relationships to be included into the bootstrapped
ontology. This happens in a simple and straight-forward manner: for each foreign key re-
lationship, exactly one triple is generated which contains the two identifying URI patterns
representing the source and the target dataset of the foreign key, respectively, and the OWL
property URI specified by the Relation map.
Suppose, for example, that a Relation map expressing a relation between datasets with
the identifying URI patterns (see Paragraph “Identifier maps”) “mydb:persons/pno/{pno}”
and “mydb:companies/cmpno/{cmpno}”, respectively, and specifying the OWL property URI
“mynamespace:isEmployedAt”. This will result in the following RDF triple to be generated
during the bootstrapping process:
mydb:persons/pno/{pno} mynamespace:isEmployedAt mydb:companies/cmpno/{cmpno}

Subtype maps

Subtype maps provide a means to automatically add subclass-superclass relationships to the
target ontology during the bootstrapping process. They specify an Entity map and a column
name defining a table and a column, respectively, that exist in the source database and contain
the values to be declared as belonging to the subclass. Furthermore, they store a prefix, a
suffix and possibly a reference to a Translation table which are used to generate a URI for that
subclass. Finally, they provide the URI of the superclass. This can be, for instance, some OWL
class being created during the bootstrapping process or already existing in some imported
ontology. The URI generated for the subclass contains the data value of the respective database
column, thus every dataset gets its own (sub)class. During bootstrapping, an RDF triple
declaring the value to belong to that subclass is generated for each data value of the respective
table column in the source database. The limitation to the desired value only thereby happens
by a restriction on the SQL statement accompanying the respective triple, not by limiting
the triple to only cover a specific data value. The actual subclass-superclass relationship

14

is expressed during the creation of the ontology. Note the difference from the previously
described mapping rules, which produced triples independent from the data values in the
source database.
Consider a Subtype map specifying a table column containing the values “Purchase” and
“Sales” with the datasets having the identifying URI pattern (see Paragraph “Identifier
maps”) “mydb:managers/mno/{mno}”. Suppose, the Subtype map specifies the prefix
“mydb:manager/of_department/”, no suffix, no translation table and the supertype URI
“mynamespace:persons”. This will result in the generation of the following triples during the
bootstrapping process:
mydb:managers/mno/{mno} rdf:type mydb:manager/of_department/Purchase
mydb:managers/mno/{mno} rdf:type mydb:manager/of_department/Sales,
while “mydb:manager/of_department/Purchase”
and “mydb:manager/of_department/Sales” will be subclasses of class
“mynamespace:persons” in the target ontology. The accompanying SQL statement will en-
sure that, despite the use of the R2RML template “mydb:managers/mno/{mno}”, not every
manager will be declared as the manager of every department.

Translation tables

Translation tables allow for transforming URIs or other strings in arbitrary ways, by simply
mapping each string to be translated to a target string.
They don’t reflect in the target ontology in any form but are used only during the bootstrap-
ping process.

3.2.3. Bootstrapping OBDA specifications

How OBDA specifications can in turn be bootstrapped from database schemata is subject
to this thesis and is explained in this section. For the description of the software developed
to automate this, see Chapter 5 – The db2osl software. The description in this section
assumes an SQL database as data source. However, ontology-based data access and OBDA
specifications are not limited to SQL databases, as mentioned in Section 2.1.2 – Ontology-
based data access (OBDA) and in Section 3.2.2 – Using OBDA specifiations. Furthermore,
this section refers to OBDA specifications without assuming any specific format in which they
are represented. How OBDA specifications are represented internally by the db2osl software,
is described in Section 5.3.3 – Fine structuring of db2osl. For the description of a format
to serialize OBDA specifications – the output format of db2osl –, refer to Chapter 4 – The
OBDA Specification Language (OSL).
Subtype maps and Translation tables are not considered in this approach, since they cannot
be bootstrapped from schema information only but have to be determined from the input
data (see Section 3.2.1 – Structure of OBDA specifications). Thus, the bootstrapped OBDA
specification does not contain maps of these types. Including them is a significant challenge
in its own right and, since the use of heuristics or user decisions would be necessary, would
make the process involve human supervision at least. Apart from that, the bootstrapping is
an easy and straight-forward task which can be carried out fully automatic TODO.

15

Recall the structure of an OBDA specification explained in Section 3.2.1 – Structure of OBDA
specifications. The map types considered in this approach are Entity maps, Attribute maps,
Identifier maps and Relation maps. The assignment of values to their fields is summarized in
Table 3.1, only hinting at how maps are generated. Both the generation of the maps and the
assignment of values to their fields are described in the rest of this section, with one exception:
since the generation of URIs (or IRIs) in the context of OBDA specifications is an essential
topic which requires some conceptual efforts, it is described in a separate section, Section 3.3.

Map type Field name Value
Entity map Table name SQL table name
Entity map Label <empty>
Entity map Identifier map Identifier map for table
Entity map Attribute maps... Attribute maps for table columns
Entity map OWL class URI URI(table)
Entity map Description SQL table description
Identifier map Entity map Entity map for corresponding table
Identifier map Attribute maps... Attribute maps for primary key columns
Identifier map URI pattern URIpattern(table)
Attribute map Column name SQL column name
Attribute map SQL datatype SQL datatype of column
Attribute map Mandatory SQL NOT NULL property of column

(true or false)
Attribute map Label <empty>
Attribute map OWL property URI <empty> for foreign key columns,

else URI(table, column)
Attribute map Property type “ObjectProperty” for foreign key columns,

else “DataProperty”
Attribute map Translation <empty>
Attribute map URI pattern <empty>
Attribute map RDF language <empty>
Attribute map XSD datatype <empty>
Attribute map Description SQL column description
Relation map Source entity map Entity map for foreign key child table
Relation map Source column Foreign key child columns

(SQL column names)
Relation map Target entity map Entity map for foreign key parent table
Relation map Target column Foreign key parent columns

(SQL column names)
Relation map OWL property URI URI(table, foreignKey)

Table 3.1.: Assignment of values to fields of OBDA specification maps

Entity maps

Exactly one Entity map and one Identifier map is generated per table contained in the source
database. The generated Identifier map is referenced by the Entity map’s Identifier map
field. Similarly, exactly one Attribute map is generated per table column and these Attribute

16

maps are referenced by the Entity map’s Attribute maps... field. The Entity map’s Table
name field is set to the SQL name of the table, the Label field remains empty. An URI
identifying the table is generated and stored in the Entity map’s OWL class URI field. The
SQL table description is copied into the Entity map’s Description field.

Identifier maps

An Identifier map represents exactly one primary key in the source database and is referenced
by the Entity map representing the table containing the primary key constraint. In addition,
it references this table in its Entity map field, so that there is a bidirectional referencing. The
Attribute maps representing the columns constituting the primary key are referenced by the
Identifier map’s Attribute maps... field. An URI pattern, allowing datasets (thus, rows
in the source database) to be identified in the target ontology, is generated and put in the
Identifier map’s URI pattern field.

Attribute maps

An Attribute map represents exactly one column in the source database and is referenced by
the Entity map representing the table containing the column. The Attribute map’s Column
name field is set to the SQL column name of the column, the SQL datatype field is set to its
SQL datatype. The Mandatory field is set to true if the column has the SQL NOT NULL con-
straint, otherwise to false. If the column is part of a foreign key, the OWL propert URI field
remains empty. Otherwise, an URI identifying the column is generated and stored in the At-
tribute map’s OWL property URI field. The Property type field is set to “ObjectProperty”
if the column is part of a foreign key, otherwise to “DataProperty”. The SQL column descrip-
tion is copied into the Attribute map’s Description field. The remaining columns, Label,
Translation, URI pattern, RDF language and XSD datatype remain empty.

Relation maps

A Relation map represents exactly one foreign key in the source database. It contains fields
storing the parent and child table of the foreign key: the Source entity map field, referencing
the Entity map representing the child table of the foreign key, and the Target entity map
field, referencing the Entity map representing the parent table of the foreign key. The SQL
column names of the foreign key columns (thus, column names in the child table) are copied
into the Source column field of the Relation map, and the SQL column names of the referenced
columns in the parent table are copied into its Target column field. Note that, in contrast
to Identifier maps representing primary keys, it is not referenced by any Entity map (or any
other map).

17

3.3. Generating unique IRIs for OBDA specification map
fields

As explained in Section 2.1.1 – Basic concepts, IRIs play a central role in diverse topics related
to ontology-based data access. They provide the means to uniquely identify entities, which
of course is a necessity for data retrieval. As also explained in Section 2.1.1, every URI is
also a IRI, so although Skjæveland et al. use the term “URI” in the introduction of their
approach of using OBDA specifications for ontology bootstrapping – and that term is also
used in Section 3.2, which describes this approach – in this section the general term “IRI” is
used, marking that the introduced concepts are valid for all types of IRIs.
When dealing with ontology bootstrapping using OBDA specifications, it is important to
differentiate between the three types of IRIs occurring in this matter, which will be underlined
by the following unambiguous naming:

• Data IRIs identify entities in the bootstrapped ontology
• OBDA IRIs are used as values for the fields of OBDA specification entities
• OSL IRIs identify components in serialized OBDA specifications, using the OBDA

Specification Language (OSL) introduced in Chapter 4 for serialization
Skjæveland et al. do not define or assume a particular scheme for IRI generation in their
introduction of OBDA specifications [SGH+15]. Instead, the IRI generation strategy is only
adumbrated by giving examples of entities having IRIs. The examplified scheme was used
for the implementation of the db2osl software bootstrapping OBDA specifications from re-
lational database schemata, which is described in this thesis (see Section 5 – The db2osl
software and Section 6 – Implementation of db2osl). The direct mapping approach for on-
tology bootstrapping described in Section 3.1, on the other hand, introduces a scheme for IRI
generation [W3CR12a], but with this scheme, name clashes can occur, as explained in Sec-
tion 3.1.3. The OBDA Specification Language (OSL), finally, defines a proper scheme
for OSL IRIs, as is explained in Section TODO.
In the following, an enhanced scheme for the generation of OBDA IRIs is proposed, which
resembles the previously mentioned scheme used for OSL IRIs and which also may serve as a
blueprint for other IRI generation strategies.

3.3.1. Requirements for the IRI scheme

As explained in Section 2.1.1 – Basic concepts, the main requirement on a IRI generation
scheme is uniqueness of the IRIs: no two entities must be possibly assigned the same IRI,
regardless of their kind, of how low the probability of a name clash (IRI collision) is or of
the conditions leading to a name clash. Additionally, IRI uniqueness shall be independent
from the base IRIs, thus a base IRI shall be arbitrarily selectable for each generation process
without introducing name clashes even with IRIs having other base IRIs.
As to OBDA specification entities, the following kinds of IRIs have to be available, including
IRI patterns:

• Entity map OWL class IRIs

18

• Identifier map IRI patterns
• Attribute map OWL property IRIs
• Attribute map IRI patterns
• Relation map OWL property IRIs
• Subtype map (IRI) prefixes
• Subtype map (IRI) suffixes
• Subtype map OWL superclass IRIs

As Subtype map OWL superclass IRIs are IRIs of data entities already existing in the target
ontology by some means (see Section 3.2.2 – Using OBDA specifiations), they do not have to
be generated and thus are ignored in the following. Exactly the same holds for Attribute map
IRI patterns. Furthermore, this approach creates Subtype map IRI prefixes already leading
to unique IRIs for Subtype map subclasses and so Subtype map IRI suffixes are ignored in
the following. Since an IRI generation scheme cannot avoid collisions with existing IRIs out of
its outreach and these collisions can easily be prevented, for example, by giving them another
base IRI (see Setion 2.1.1 – Basic concepts), this case is excluded from the requirement that
no two URIs must collide under any circumstances. However, the user shall be able to chose
such externally generated IRIs from an infinite set of IRIs, while being sure that no name
clashes will occur.
So compendious, the requirements on the IRI generation scheme are that Entity map OWL
class IRIs, Identifier map IRI patterns, Attribute map OWL property IRIs, Relation map
OWL property IRIs and Subtype map IRI prefixes can be generated that, regardless of the
chosen base IRIs, don’t clash among another, while leaving an infinite set of predictable IRIs
that don’t clash with any of the generated IRIs.

3.3.2. Avoiding name clashes in the IRI scheme

Generating unique Entity map OWL class IRIs ignoring base IRIs is not much of a problem,
assuming database table names are distinct, which is guaranteed in a common database system
like SQL [sql]. Including the table name into an Entity map OWL class IRI is sufficient to
prevent it from colliding with other IRIs with the same base IRI. However, when taking two
different base IRIs into account that are used for two IRIs created according to this scheme,
things get more complicated.
Consider, for example, a database table named “Persons” and a table named
“Persons__TABLE__Persons”. Generating an IRI according to the scheme “<base:>TABLE__
<table name>” for each of these tables, using the base IRI “TABLE__Persons__” for the first
one and the empty base IRI for the second one, both tables will get the IRI
“TABLE__Persons__TABLE__Persons”, although the table name was included into the IRI in
both cases. The problem is that the “TABLE__” string occurring in the table name cannot
be discriminated from the “TABLE__” string added in the course of IRI generation or the
“TABLE__” string occurring in the base IRI. To solve the problem, a marker has to be included
in the URI which definitely indicates the beginning of the table name. In addition, this marker
will uniquely identify Entity map OWL class IRIs. For both aims to be achieved, an escape
symbol must be used, which makes the marker unique at least outside the base IRI part, by

19

escaping the marker whenever it occurs in the table name.
Regarding Identifier map IRI patterns, the IRI resulting from the expansion of the pattern
will contain the column names of the primary key represented by the respective Identifier
map [SGH+15]. Further on, the table name of the database table containing that primary key
has to be included in the IRI pattern, since two distinct tables may have primary keys with
equally named columns. This will make the IRI pattern a unique Identifier map IRI pattern,
since a database table can be assumed to only have one primary key, as is the case in common
database systems like SQL [sql]. The fact that primary key values are unique for each dataset
ensures that unique Identifier map IRI patterns expand to unique IRIs. Moreover, it has to be
ensured, that IRIs resulting from the expansion of Identifier map IRI patterns do not collide
with IRIs of other kinds.
Taking arbitrary and particularly varying base IRIs into account, a definite marker has to be
included in the IRI pattern and other occurrences of this marker in the IRI pattern have to be
escaped. This uniquely identifies Identifier map IRI patterns and unambiguously distinguishes
the table name from the rest of the IRI.
Concerning Attribute map OWL property IRIs, they will be unique among their kind when
they include the column name of the database column they represent besides the table name of
the table containing it, since database table names can be assumed to be distinct and column
names can be assumed to be unique within a table, which is guaranteed in a common database
system like SQL [sql]. Furthermore, Attribute map OWL property IRIs have to be prevented
from colliding with IRIs of other kinds.
Taking arbitrary and particularly varying base IRIs into account, definite markers have to be
included in the IRI and other occurrences of this marker in the IRI have to be escaped. This
uniquely identifies Attribute map OWL property IRIs and unambiguously distinguishes the
table name and the column name from the rest of the IRI and from one another.
Regarding Relation map OWL property IRIs, including the table name and the column names
of both the foreign key represented by the Relation map (or the containing table, respectively)
and the referenced key (or its containing table, respectively) in the IRI will make it a unique
Relation map OWL property IRI. Note that including only the table name and the column
names of the foreign key (or its containing table, respectively) would not be sufficient, since
several distinct foreign keys covering exactly the same columns can exist in a table (this is what
the IRI generation scheme of the direct mapping approach misses). The same applies of course
for the referenced table and its columns – several foreign keys can reference them. Moreover,
these Regarding Relation map OWL property IRIs have to be prevented from colliding with
IRIs of other kinds.
Taking arbitrary and particularly varying base IRIs into account, definite markers have to
be included in the IRI pattern and other occurrences of this marker in the IRI have to be
escaped. This uniquely identifies Relation map OWL property IRIs and in particular their
parts providing the table and column names.
Concerning Subtype map IRI prefixes, they must include the column name of the database
column containing the values to be declared belonging to the subclass. Further on, since
another database table could contain a column of the same name, the IRI must include the
table name of the database table containing the column. This will make Subtype map IRI
prefixes unique among their kind. Note that a Subtype map IRI prefix, similarly to a IRI
pattern, does not specify the final IRI but is subject to expansion. This expansion can yield

20

the same IRI for different data records, which, however, is not considered a collision, since
this behavior is intentional – every two data records having the same value in the respective
column, and only those, will get the same IRI. Additionally, it has to be ensured, that IRIs
resulting from such an expansion do not collide with IRIs of other kinds.
Taking arbitrary and particularly varying base IRIs into account, definite markers have to be
included in the IRI pattern and other occurrences of this marker in the IRI prefix have to be
escaped. This uniquely identifies Subtype map IRI prefixes and unambiguously distinguishes
the table name and the column name from the rest of the IRI and from one another.
For an example that makes awkwardly – or fraudulently – chosen base IRIs introduce name
clashes, see the paragraph about Entity map OWL class IRIs at the beginning of this section.

3.3.3. The proposed IRI generation scheme

This section introduces an IRI generation scheme meeting the requirements formulated in
Section 3.3.1.
In this section, the following strings are subsumed under the term marking strings:
“TABLE__”, “TBL__”, “PROP__”, “REF__” and “SUBTYPE__”.
The string built by escaping (prefixing) all occurrences of marking strings or ‘~’ characters in
a string s with a ‘~’ character will be called the IRI-safe version of s.
The IRI generation scheme is presented in Table 3.2. Here,
<base:> refers to the base IRI to be used for the generated IRI (see Section 2.1.1 – Basic
concepts),
<cl. tbl name> refers to the table name of the database table concerning (see Section 3.3.2)
in its IRI-safe version,
<cl. name 1st pk col> refers to the name of the first primary key column concerning (see
Section 3.3.2) in its IRI-safe version,
</...> refers to the continuation of the previous pattern using the remaining primary key or
foreign key columns,
<cl. col name> refers to the name of the column in question (see Section 3.3.2) in its IRI-safe
version,
<cl. src tbl> refers to the table name of the database table containing the respective foreign
key (see Section 3.3.2) in its IRI-safe version,
<cl. 1st src col> refers to the name of the first foreign key column of the respective foreign
key (see Section 3.3.2) in its IRI-safe version,
<cl. tgt tbl> refers to the table name of the table referenced by the respective foreign key (see
Section 3.3.2) in its IRI-safe version and
<cl. 1st tgt col> refers to the name of the first column referenced by the respective foreign
key (see Section 3.3.2) in its IRI-safe version.

21

IRI type Proposed IRI
Entity map OWL class IRI <base:>TABLE__<cl. tbl name>
Identifier map IRI pattern <base:>TBL__<cl. tbl name>/<cl. name 1st pk col>

/{$1}/</...>
Attribute map OWL property IRI <base:>PROP__<cl. tbl name>__<cl. col name>
Relation map OWL property IRI <base:>REF__<cl. src tbl>/<cl. 1st src col>

</...>/<cl. tgt tbl>/<cl. 1st tgt col></...>
Subtype map IRI prefixes <base:>SUBTYPE__<cl. tbl name>__

<cl. col name>/

Table 3.2.: Proposed IRIs to be used in OBDA specification map fields

It is easily verified that the proposed IRI scheme is correct regarding the requirements de-
scribed in Section 3.3.1: it provides unique IRIs for all types of IRIs it allows to create,
regardless of the chosen base IRI (see proof in Section 3.3.4). Furthermore, the IRI scheme is
expressive: ignoring the base IRI part, the kind of entity identified by the IRI can be deter-
mined by beginning of the IRI. In addition, it is regular in that the name of the containing
table always occurs before the name of the first database column.
Taking the information in Section 3.3.2 into account, it is trivial to observe that the suggested
IRI scheme, leaving out the demand of IRI-safe versions, is still correct, given that all IRIs
are generated using the same base IRI.
Note that it is in any case necessary that the beginnings of all kinds of IRIs be mutu-
ally different: if, for example, an Identifier map IRI pattern also would commence with
“<base:>TABLE__”, a table named “PERSONS/{17}” – which is a valid table name for ex-
ample in SQL [sql] – possibly could get an Entity map OWL class IRI assigned which clashes
with the IRI resulting from the expansion of the IRI pattern “<base:>TABLE__PERSONS/{$1}”.

3.3.4. Proof of correctness of the proposed IRI scheme

As described in Section 3.3.1, the previously described IRI schema is required to generate
several types of IRIs without introducing name clashes, thus two equal IRIs for two distinct
entities, independently of the chosen base IRIs. Additionally, the user shall be able to chose
additional IRIs he can be sure won’t collide with IRIs generated with the scheme from an
infinite set.
In this proof, like in Section 3.3.2, the strings “TABLE__”, “TBL__”, “PROP__”, “REF__” and
“SUBTYPE__” are called marking strings.
Strings prefixed by ‘~’ are referred to as escaped, while strings not prefixed by ‘~’ are referred
to as unescaped.
In the following, it is proven that the IRIs of each type do not clash, neither among themselves
nor with IRIs of other types. Since all generated IRIs begin with a marking string, every IRI
not beginning with a marking string, thus an infinite quantity, is sure not to collide with any
of the generated IRIs, and so, the correctness regarding to the stated requirements is then
proven.
Each Entity map OWL class IRI (including its base IRI) is of the form αTABLE__β, with α

22

not ending with ‘~’ and α and β not containing any unescaped marking strings.
Thus, β is the table name, making the IRI unique among all other Entity map OWL class
IRIs (see considerations in Section 3.3.2). Because the IRI does not contain any unescaped
marking strings, it cannot collide with any IRI of another type and thus is indeed unique.
The proof for Identifier map IRI patterns, Attribute map OWL property IRIs, Relation map
OWL property IRIs and Subtype map IRI prefixes is exactly analog.

�

23

4. The OBDA Specification Language
(OSL)

TODO: aims, proceeding, structure
As described in [SGH+15], an OBDA specification consists of several types of maps, all con-
taining data entries and links to other maps. This fits perfectly into the environment of
ontologies and OWL, with data properties being the obvious choice to represent contained
data entries and object properties being the obvious choice to represent links between maps.
Also, a potential user probably to some degree is familiar with this environment, since this is
what the bootstrapping process at the end amounts to.
Therefore, an ideal base for the OBDA Specification Language is OWL, being a solid
framework for data and constraint representation with a high degree of software support, while
imposing only a minimum of introductory preparation to the user.
Another advantage of this approach is that the specification is kept compact and focused on
the entities that the language has to represent rather than primarily dealing with technical
details. In particular, many of those details can be formulated as OWL restrictions in a header
ontology demanded to be imported by documents conforming to the OSL specification. Thus,
they are not only specified precisely but they are also stipulated in a machine-readable form
for which tools are widely available, enabling the user to check many aspects of an OSL
document for conformity with minimal effort.

4.1. Specification
1 An OSL document is a valid OWL 2 document (as described in [W3C12]) containing
individuals and data that represent the OBDA specification, as well as OWL properties that
connect them. The individuals and OWL properties are recognized and mapped to their roles
by their IRIs.
2 An OSL document may contain more OWL entities (with IRIs not defined in this speci-
fication), which are ignored.
3 An OSL document has to declare all individuals having different IRIs as different from
each other (except those which are ignored, see Paragraph 2).
It is recommended to use the owl:AllDifferent OWL statement for this purpose.
4 Unless stated otherwise, IRIs mentioned in the following are IRIs relative to a base IRI
chosen by the user being empty (which makes the IRIs absolute [W3C09]) or ending with a
hash character (‘#’).

24

Map type OWL IRI
Entity map <class URI>__ENTITY_MAP
Attribute map <property URI>__ATTRIBUTE_MAP
Identifier map <class URI>__IDENTIFIER_MAP
Relation map <property URI>__RELATION_MAP
Subtype map <class URI>__SUBTYPE_MAP
Translation table of attribute map <property URI>__ATTRIBUTE_MAP__TRANSLATION_TABLE
Translation table of subtype map <class URI>__SUBTYPE_MAP__TRANSLATION_TABLE

Table 4.1.: OWL individual IRIs in OSL

Map type OWL class IRI
Entity map osl:EntityMap
Attribute map osl:AttributeMap
Identifier map osl:IdentifierMap
Relation map osl:RelationMap
Subtype map osl:SubtypeMap
Translation table osl:TranslationTable

Table 4.2.: OWL class membership of map representations in OSL

It is recommended to use that base IRI as xml:base XML attribute.
IRIs prefixed with osl: are IRIs relative to the IRI
http://w3studi.informatik.uni-stuttgart.de/~martispp/ont# .
5 An OSL document has to import the following ontology (referred to as “the OSL header”
in the following):
http://w3studi.informatik.uni-stuttgart.de/~martispp/ont/db2osl.owl
6 The OWL individuals described by the OSL document representing the certain types of
OBDA maps must have the IRIs specified in Table 4.1 (for base IRIs, see Paragraph 4). Here,
<class URI> refers
to the OWL class URI field of the respective entity map for entity maps,
to the OWL class URI field of the associated entity map for identifier maps,
to the OWL class URI field of the associated entity map for subtype maps and
to the OWL class URI field of the entity map associated with the respective subtype map for
translation tables of subtype maps.
Similarly, <property URI> refers
to the OWL property URI field of the respective attribute map for attribute maps (or, if it is
empty, the value that would have been generated for it if it weren’t empty),
to the OWL property URI field of the respective relation map for relation maps and
to the OWL property URI field of the respective attribute map for translation tables of at-
tribute maps (or, if it is empty, the value that would have been generated for it if it weren’t
empty).
7 The OWL individuals described by the OSL document representing the certain types of
OBDA maps must be of the OWL types specified in Table 4.2 (for base IRIs, see Paragraph 4).
8 The OWL properties described by the OSL document representing the fields of the certain
OBDA maps must have the IRIs specified in Table 4.3 (for base IRIs, see Paragraph 4).

25

http://w3studi.informatik.uni-stuttgart.de/~martispp/ont#
http://w3studi.informatik.uni-stuttgart.de/~martispp/ont/db2osl.owl

Map type Field label Field name OWL IRI
Entity map E1 Table name osl:em__tableName
Entity map E2 Label osl:em__label
Entity map E3 Identifier map osl:em__identifierMap
Entity map E4 Attribute maps... osl:em__attributeMaps
Entity map E5 OWL class URI osl:em__owlClassURI
Entity map E6 Description osl:em__description
Attribute map A1 Column name osl:am__columnName
Attribute map A2 SQL datatype osl:am__sqlDatatype
Attribute map A3 Mandatory osl:am__mandatory
Attribute map A4 Label osl:am__label
Attribute map A5 OWL property URI osl:am__owlPropertyURI
Attribute map A6 Property type osl:am__propertyType
Attribute map A7 Translation osl:am__translation
Attribute map A8 URI pattern osl:am__uriPattern
Attribute map A9 RDF language osl:am__rdfLanguage
Attribute map A10 XSD datatype osl:am__xsdDatatype
Attribute map A11 Description osl:am__description
Identifier map I1 Entity map osl:im__entityMap
Identifier map I2 Attribute maps... osl:im__attributeMaps
Identifier map I3 URI pattern osl:im__uriPattern
Relation map R1 Source entity map osl:rm__sourceEntityMap
Relation map R2 Source column osl:rm__sourceColumns
Relation map R3 Target entity map osl:rm__targetEntityMap
Relation map R4 Target column osl:rm__targetColumns
Relation map R5 OWL property URI osl:rm__owlPropertyURI
Subtype map S1 Entity Map osl:sm__entityMap
Subtype map S2 Column Name osl:sm__columnName
Subtype map S3 OWL superclass URI osl:sm__owlSuperclassURI
Subtype map S4 Prefix osl:sm__prefix
Subtype map S5 Suffix osl:sm__suffix
Subtype map S6 Translation osl:sm__translation
Translation table T1 Source value... osl:tt__sourceValues
Translation table T2 RDF ressource... osl:tt__rdfRessources

Table 4.3.: OWL property IRIs in OSL

26

9 The following OWL properties in the OSL document refer to lists of elements:
osl:rm__sourceColumns

osl:rm__targetColumns

osl:tt__sourceValues

osl:tt__rdfRessources

Therefore, they have the OWL class osl:StringListNode as their range, as is required by
the OSL header. They must connect the respective individual to an osl:StringListNode
individual in every case. This “root node” must not have an osl:hasValue property.
If the represented list is not empty, the list elements are represented by other osl:StringListNode
individuals connected seriatim by the property osl:nextNode, with the first individual being
connected to the root node. The node representing the last list element must not have an
osl:nextNode property.
All nodes except the root node may have an osl:hasValue property connecting them to their
values. The actual list consists of exactly these values, thus, nodes without values are ignored.
It is recommended to enumerate the node IRIs, using 0 for the root node.

27

5. The db2osl software
TODO: uris
Besides the conception of the OBDA Specification Language (OSL), the design and
implementation of the db2osl software was an important part of this work. The program
itself and its creation process are described in the following sections: Section 5.1 describes the
functionality the program offers. Section 5.2 describes how this functionality is exposed to the
program environment. Section 5.3 describes the program architecture both on a coarse and a
fine level. Section 5.4 mentions some numbers and statistics about the program. Implementa-
tion topics are dealt with in Chapter 6. For detailed descriptions of the classes and packages
of db2osl, refer to Appendices TODO.
This chapters’ sections present the information in a functionally-structured fashion: the con-
cepts and decisions are described along with the topics they are linked to and the problems
that made them arise.

5.1. Functionality

As described in the introduction of this thesis, the db2osl software is a program automatically
deriving an OBDA specification from a relational database schema, which then can be used
by other tools to drive the actual bootstrapping process. Its functionality is described in this
section, leaving out self-evident features, and is then listed completely. How this functionality
is exposed to users is described in Section 5.2 – Interface and usage. The bootstrapping process
using direct mapping as the core functionality of the software is described in Section 3.1.
TODO: reference to OBDA topics
The database schema is retrieved by connecting to an SQL database and querying its schema
information. Parsing SQL scripts or SQL dumps currently is not supported. The databases
to derive information from can be specified by regular expressions, while there are also options
to use other databases than specified or even other database servers, taken from a list of hard-
coded strings. While these features may not seem to carry real benefit at the first glance, they
proved to be useful for testing purposes, especially since the retrieval of a database schema
can take some time TODO (see Section 5.4 – Numbers and statistics). For the same purpose,
db2osl allows the processing of a hard-coded example database schema.
In addition to OSL output, a low-level output format containing information on all fields of
the underlying objects is supported, which is useful for debugging (however, this feature has
to be enabled via one slight change in the source code). To allow for some customization, the
insertion of an own OSL header is supported (for more information on the OSL header, see the
specification of the OBDA Specification Language in Section 4.1). If the standard OSL
header is used, it is by default loaded from a hard-coded copy, so bootstrapping information

28

from a database server running locally or from the hard-coded example schema requires no
Internet connection (simply inserting the owl:imports statement of course would not anyway,
but the generated underlying ontology is always checked for consistency with the OSL header
to prevent the generation of invalid output).
The db2osl software can be used both in an interactive and in a non-interactive mode,
while skipping a database or a database server or aborting the entire bootstrapping process
is possible in either mode. Multiple database servers can be specified for a bootstrapping
operation, which then are checked in order for a matching database, allowing to make use of
mirrors or fallback servers. Additionally, multiple bootstrapping operations can be specified
to be performed in sequence with one invocation of db2osl, while all features and settings
previously described are enabled, disabled or set per operation. Finally, a help text can be
displayed which describes the usage of db2osl including the description of all command-line
arguments.
The functionality of the db2osl software can be summarized as follows:

• Bootstrap one or more OBDA specifications from a database schema by connecting to
an SQL database server

• Specify a custom port, login and password for the database server
• Ask for passwords interactively (before starting any bootstrapping operation), hide them

if desired
• Specify database names by regular expressions
• Process an arbitrary database if the specified database could not be found or uncondi-

tionally
• Connect to a database server containing example databases without having to specify

any further details
• Process a hard-coded example database schema without having to specify any further

details
• Use the OSL format described in Chapter 4 – The OBDA Specification Language (OSL)

or a detailed low-level format for output (the latter is for debugging purposes and has
to be enabled in the source code)

• Write to standard output or to a file
• Insert a custom OSL header (see the specification of the OBDA Specification Lan-

guage (OSL) in Section 4.1 for details)
• Consistency check against a custom OSL header
• Consistency check against the standard OSL header without internet connection
• Act interactively or non-interactively
• Skip currently retrieved database (and try next on server), skip current server or abort

the overall process at any time, even in non-interactive mode
• Define multiple database servers to check in order for the specified database
• Specify multiple bootstrapping operations to perform in order

29

• Configure the features described in the above notes per bootstrapping operation
• Display a help text describing the usage of db2osl, including the description of all

command-line arguments

5.2. Interface and usage

This section describes the interface to the operating system and the user interface. For infor-
mation on programming interfaces, see Section 5.3 – Architecture of db2osl.

5.2.1. User interaction and configuration

Basic usage

Currently, the only user interface of db2osl is a command-line interface. Since the program
is supposed to bootstrap the OBDA specification automatically and thus there is little inter-
action, but a lot of output, this was considered ideal. Basically, one invocation of db2osl will
initiate the automatic, non-interactive bootstrapping of exactly one OSL specification written
to the standard output, a behavior which can be modified via command-line arguments. Be-
cause of its ability to write to the standard output (which is also the default behavior), it is easy
to pipe the output of db2osl directly into a program that handles it in a Unix-/POSIX-like
fashion [McI87]:

db2osl myserver.org | osl2onto myserver.org

(supposed osl2onto is a tool that reads an OSL specification from its standard input and
uses it to bootstrap an ontology from the database specified on its command line).
This scheme is known as “Pipes and Filters architectural pattern” [BMRSS96].
By inserting additional “filters”, the bootstrapping process can be customized without chang-
ing any of the involved programs:

db2osl mydatabase.org | customize_spec.sh | osl2onto mydatabase.org

(supposed customize_spec.sh is a shell script that modifies a given OSL specification in
the way the user desires).

Configuration via command-line arguments

The behavior of db2osl itself can be adjusted via command-line arguments (only). Most
features can be configured via short options (as, for example, -P). To allow for enhanced
readability of db2osl invocations, each feature can (also) be configured via a long option
(like ––password). The utilization of configuration files was considered, but for the time
being seen as unnecessary complicating while not addressing any real difficulties.
The command-line arguments db2osl currently supports are described in Table 5.1; their
default values are listed in Table 5.2. There is currently no switch to set the output format,

30

Option(s) Description, taken from the help page of db2osl
––database, -d database name (Java regular expression) databases have to

match to be processed; see also: ––loose-database-match
––echo-password echo input when prompting for SQL password – must be spec-

ified before ––password-prompt to get effective
––help, -h, show this help and exit
––interactive, -i be interactive when chosing database
––login, -L SQL login
––loose-database-match if no database matching the regex specified with ––database is

found on the given server and ––interactive is not specified
for this job, use some other database

––osl-header use the specified custom (non-standard) OSL header, im-
plies ––remote-osl-header (to import no header, specify the
empty string)

––output-file, -o use the specified output file (for the standard output, specify
“-”)

––password, -P SQL password; use ––password-prompt to get a password
prompt (if you do both, the password set via this switch will
be ignored)

––password-prompt, -p prompt for SQL password; a password set via ––password is
ignored

––remote-osl-header, -R don’t use hard-coded version of the OSL header for verification
––remote-test try to retrieve a database schema from a hard-coded list of

servers and take the first one successfully retrieved (and ac-
cepted, when ––interactive is given; note: give a dummy
server if you want to do a test besides other jobs)

––test use hard-coded test database schema, ignore given servers
(note: give a dummy server if you want to do a test besides
other jobs)

Table 5.1.: Command-line arguments in db2osl – descriptions

since the only supported output format, besides OSL, is a low-level output format for debug-
ging purposes. Because of this and since the change that has to be made in the source code
to enable it only involves changing one token, it was preferred not to offer a command-line
option for this, to not unnecessarily complicating the command-line interface for the normal,
non-debugging, user.
The sole invocation of db2osl, without any arguments, does not initiate any processing but
displays the usage directions instead, in addition to an error message pointing out the missing
server argument.

Multiple bootstrapping operations or multiple servers

To perform multiple bootstrapping operations with only one invocation of db2osl, it is suffi-
cient to concatenate the command-line arguments for each operation, separated by blanks, to
get the final command line. However, when combining a test job with other operations, some

31

Option(s) Default value
––database, -d .*
––echo-password false
––help, -h, false
––interactive, -i false
––login, -L anonymous
––loose-database-match false
––osl-header <empty string>
––output-file, -o -
––password, -P <empty string>
––password-prompt, -p false
––remote-osl-header, -R false
––remote-test false
––test false

Table 5.2.: Command-line arguments in db2osl – default values

arbitrary string has to be inserted as dummy server to allow distinguishing the different jobs
and assigning each command-line argument to the appropriate job.
Likewise, to check several servers in order for the database to be used for one bootstrapping
operation, these servers have to be concatenated, separated by blanks. Again, the distinction
of the different bootstrapping jobs has to be possible, so all but the first operation have to
have at least one command-line argument that signals the beginning of a new job definition
(which is no practical problem, since to enforce this, a default argument simply can be stated
explicitly without changing the behavior of the invocation).
All settings are configured per operation, so, when using a shell that separates batched com-
mands by ‘;’,

db2osl ––database employees ––password itsme sql.myemployer.com
––database test myserver.org backup.myserver.org

is equivalent to
db2osl ––database employees ––password itsme sql.myemployer.com;
db2osl ––database test myserver.org backup.myserver.org

Thus, a parameter defined for one operation (like the password in the example) will have
no effect on other operations. This ensures that typical errors are prevented when merging
several invocations of db2osl into one (or vice versa) and allows for a straight-forward and
comprehensible implementation.

Advanced modifications

Since OSL specifications are plain text files, a user can edit them in any desired text editor if
he wants to change them in ways that go beyond the functionality db2osl provides or that
can be achieved by scripts or programs modifying their input automatically. Because of OSL

32

being a subset of OWL (see the specification of OSL in Section 4.1), he can thereby take
advantage of editors supporting syntax highlighting or other features making the handling of
the respective OWL serialization more comfortable.
Moreover, every common ontology editor can be used to edit the generated OSL specification
automatically or manually. Doing so, care has to be taken to make the ontology remain a
conforming OSL specification. However, since the restrictions imposed by OSL are rather
small and intuitive, this is easily achieved. One of the most popular ontology editors [MBSF04],
Protégé, is an open, Java based platform supporting plug-ins [NCFK+03]; for a habitual
Protégé user it should be an easy task to write an OSL plugin. Furthermore, upcoming
tools supporting OSL (see Section 7.2 – Future work) most likely will be able to check input
files for conformity with the OSL definition.

5.2.2. Integration into systems

Besides the use cases described in Paragraph “Basic usage” and in Paragraph “Advanced
modifications” in the previous Section 5.2.1, there are many other ways in which db2osl
can be used. For example, a database can be periodically checked for changes that make a
re-bootstrapping necessary:

db2osl -d mydb myserver.org | sha256sum >oldsum
cp oldsum newsum
while diff oldsum newsum; do # while checksums are the same

sleep 3600 # wait 1 hour
db2osl -d mydb myserver.org | sha256sum >newsum

done
rm oldsum newsum
notify web admin via e-mail:
date | mutt -s "Re-bootstrapping necessary" web-admin@myserver.org

Another possible example is the integration of db2osl into a shell script that bootstraps all
databases on a server:

regex='(?!$).*' # accept all nonempty database names first
while db2osl -d "$regex" -o spec myserver.org; do

dbname="` sed -ne '/xmlns:ont/ { s|.*/||; s|#"||p }' spec `"
mv spec "$dbname".osl
don’t use this database a second time:
regex="` printf %s "$regex" | sed -e "s,\\\\$,$|$dbname$," `"

done

Since the programming language used to implement db2osl is Java, it is possible to deploy
it on all platforms offering the Java Runtime Environment TODO. Additionally, it is possible
to deploy it as a Web application TODO.
To simplify integration on the code level, the architecture of db2osl was designed to be highly
modular and to cleanly separate code with different areas of responsibility into different pack-
ages (for details about the structuring of db2osl, see Section 5.3 – Architecture of db2osl).

33

This modularity, besides facilitating understanding the code, allows for a high degree of code
reusability.
For example, the packages database, osl and specification can be reused in other programs
with little or no changes – the biggest change involves combining the database schema retrieval
with the user interface of the new program to provide control over the retrieval process when
reusing the database package (to do this, three method calls have to be replaced). If the
accruing information shall be used in another way than being output or logged, this of course
has to be implemented. If not, it is sufficient to replace the used Logger object by anohter
one providing the desired behavior, since the Logger class is part of the Java API and widely
used [Gup03]. This is a good example of how using well-known and commonly used classes
can greatly improve modularity and reusability.

5.3. Architecture of db2osl

5.3.1. Libraries used in db2osl

5.3.2. Coarse structuring of db2osl

TODO: overall description, modularity, extendability, ex: easy to add new in-/output formats
TODO: mapping profiles (maybe better in next subsection) TODO: Java, OPTIQUE

Package structuring of db2osl

The 45 classes of db2osl were assigned to 11 packages, each containing classes responsible
for the same area of operation or taking over similar roles. Care was taken that package
division happened senseful, producing meaningful packages with obvious task fields on the
one hand, while on the other hand implementing an incisive separation with a notable degree
of decoupling. Packages were chosen not to be nested but to be set out vapidly. Since this
doesn’t have any functional implications [Sch14], but is rather an implementation detail, this
is further explained in Section 6.2.5 – Use of packages.
The packages are introduced and described in Table 5.3. The lists of classes each package
contains are given in Table A.1 in Appendix A.1 – Package contents (db2osl).

34

Package Description
bootstrapping Classes performing bootstrapping
cli Classes related to the command line interface of db2osl
database Classes related to the representation of relational databases and attached

tasks
helpers Helper classes used program-wide
log Classes related to logging and diagnostic output
main The Main class
osl Classes representing OBDA specifications (as described in [SGH+15])

using the OBDA Specification Language (OSL)
output Classes used to output OBDA specifications as described in [SGH+15]
settings Classes related to program and job settings (including command line

parsing)
specification Classes representing (parts of) OBDA specifications (as described in

[SGH+15]) directly, without involving OSL
test Classes offering testing facilities

Table 5.3.: Descriptions of the packages in db2osl

Besides intuition, as stated, care was involved when partitioning the program into these pack-
ages, which included the analysis of the package interaction under a given structure, and the
carrying out of changes to make this structure achieve the desired pronounced decoupling with
limited and intelligible dependencies.
The main package was introduced to make the Main class, which carries information needed
by other packages – most prominently, the program name –, importable from inside these
packages. For this, it is required for Main not to reside in the default package [Sch14].
Decoupling some of the functionality of a package into a new package – which, in a nesting
package structure, most probably would have become a sub-package – and thus sacrificing the
benefit of having fewer packages also played a role in some cases. Namely, osl is a package on
its own instead of being part of the specification package, the bootstrapping classes also
form a package on their own instead of belonging to the specification package, the classes
of the log and the cli packages were not merged into one package, although logging currently
exclusively happens on the command line, and the functionality of the test package, though
containing only a few lines of code, was separated into its own package.
Even though the package structure would have become quite simpler with these changes ap-
plied – 4 out of 11 packages could have been saved this way – the first aim mentioned –
meaningfulness and intuitiveness – was taken seriously and the presented partitioning was
considered a more natural and comprehensible structuring, emphasizing different roles and
thus being a more proper foundation for future extensions of the program. For example,
because the bootstrapping package is central to the program and takes over an active, pro-
cessing role and in that is completely different from the classes of the specification package
which on their part have a representing role, it was considered senseful not to merge these
two packages. This undergirds the separation of concerns within the program and stresses
that the functionality of the bootstrapping package should not interweave with that in the
specification package, making it easier for both to stay independent and further develop
into understandable and suitable units.

35

Package interaction

As mentioned, the structuring of the packages was driven by the aim to gain a notable amount
of decoupling. How this reflected in the dependency structure, thus the classes from other
packages that the classes of a package depend on, is described in the following. As was also
mentioned, the information presented here also acted back on the package partitioning, which
changed in consequence.
Dependencies of or on package helpers are not considered in the following, since this package
precisely was meant to offer services used by many other packages. In fact, all facilities
provided by helpers could just as well be part of the Java API, but unfortunately are not.
The current dependency structure, factoring in this restriction, is shown in Figure 5.1 and
reveals a conceivably tidy system of dependencies.

36

bootstrapping

settings

cli

database

test

log

main

osl

output

specification

Figure 5.1.: Package dependencies in db2osl. “→” means “depends on”.

Except for the package settings (which is further explained below), every package has at
most two outgoing edges, that is packages it depends on. Previous versions of db2osl had a
quite more complicated package dependency structure, depicted in Figure 5.2. In this previous
package structure, the maximum number of dependencies of packages other than settings
on other packages is three, which also seems reasonably less. However, in the new structuring,
specification has no packages it depends on and thus suits its purpose of providing a
mundane and straight-forward representation of an OBDA specification much better.

37

bootstrapping

settings

specification

cli

database

output

test

log

main

osl

Figure 5.2.: Package dependencies in earlier versions of db2osl. “→” again means “depends on”.

Though there still are quite a number of dependencies (to be precise: 19), many of them (8,
thus, nearly half) trace back to one central package in the middle, settings. This may seem
odd at first glance, considering that most of the edges connecting to the settings node are
outgoing edges and only one is incoming, whereas in a design where the settings are configured
from within a single package and accessed from many other packages this would be the other
way round. The reason for this constellation is that, as described in Section 5.2 – Interface and
usage, all settings in db2osl are configured per bootstrapping job (there are no global settings)
and so settings contains a class Job (and currently no other classes), which represents the
configuration of a bootstrapping job but also provides a perform() method combining the
facilities offered by the other packages.
By this means, the perform() method of the Job class acts as the central driver performing

38

the bootstrapping process, reducing the main() method to only 7 lines of code and turning
settings into something like an externalized part of the main package. If, in a future version of
the program, this approach is changed and global settings or configuration files are introduced,
settings will still be the central package, leaving the package structure and dependencies
unchanged, since it either way contains information used by many other packages. This was
the reason why it was not renamed to, for example, driver, which was considered, since at
first glance it seems quite a bit unnatural to have the driver class reside in a package called
“settings”.

5.3.3. Fine structuring of db2osl

TODO: OBDA spec rep
While the packages in db2osl are introduced and described in Section 5.3.2 – Coarse struc-
turing of db2osl, the classes that comprise them are addressed in this section. For a list of
classes contained in each package, refer to Appendix A.1.
TODO: total classes etc.

Package contents

Table A.1 lists the classes each package contains. The packages cli, main, osl and settings
contain only one class each, while the by far most extensive package is database, containing
15 classes.

Class organization

Organizing classes in a structured, obvious manner such that classes have well-defined roles,
behave in an intuitive way, ideally representing artifacts from the world modeled in the pro-
gram directly [Str00], is a prerequisite to make the code clear and comprehensible on the
architectural level.
Section 6.2.4 – Use of classes as part of Section 6.2 – Code style describes the identification
and naming scheme for the classes in db2osl. However, it is also important, to arrange these
classes in useful, comprehensible class hierarchies to avoid code duplication, make appropriate
use of the type system, ease the design of precise and flexible interfaces and enhance the
adaptability and extensibility of the program.

39

ReadOnlyIterable

database.DBSchema.TableIterable database.ReadableColumnSet

database.TableSchema.Columns
Iterable

database.TableSchema.Foreign
KeysIterable

specification.OBDASpecification.
AttributeMapIterable

database.ColumnSet

database.Key

database.ForeignKeydatabase.PrimaryKey

Set

database.ReadableKey

database.ReadableForeignKeydatabase.ReadablePrimaryKey

Iterable

(a) ColumnSet class hierarchy in db2osl

database.ColumnSet

database.Key

database.ForeignKey database.PrimaryKey

Set

(b) ColumnSet class hierarchy in db2osl – simpli-
fied

database.ReadableColumn

database.Column

(c) Column class hierarchy
in db2osl

Figure 5.3.: Database class hierarchies in db2osl. Interface names are italicized, external classes or interfaces
are hemmed with a gray frame.

40

bootstrapping.URIBuilder

bootstrapping.DirectMapping
URIBuilder

(a) URIBuilder class hierar-
chy in db2osl

specification.OBDAMap

specification.AttributeMap

specification.EntityMap

specification.IdentifierMap

specification.RelationMap

specification.SubtypeMap

specification.Translation
Table

(b) OBDAMap class hierarchy in db2osl

Figure 5.4.: OBDA specification class hierarchies in db2osl. Interface names are italicized, external classes
or interfaces are hemmed with a gray frame.

output.SpecPrinter

output.ObjectSpecPrinter output.OSLSpecPrinter

(a) SpecPrinter class hierarchy in db2osl

StreamHandler

log.ConsoleDiagnosticOutput
Handler

(b) StreamHandler class hier-
archy in db2osl

Figure 5.5.: Logging and output class hierarchies in db2osl. Interface names are italicized, external classes
or interfaces are hemmed with a gray frame.

41

IParameterValidator

settings.Job

Figure 5.6.: Job class hierarchy in db2osl. Interface names are italicized, external classes or interfaces are
hemmed with a gray frame.

42

Iterable

database.DBSchema database.TableSchema helpers.MapValueIterable
< E, T > helpers.ReadOnlyIterable< T >

(a) Iterable class hierarchy in db2osl

ReadOnlyIterator

specification.OBDASpecification.
AttributeMapIterator

Iterator

(b) ReadOnlyIterator class
hierarchy in db2osl

Iterator

database.ColumnSet.Column
SetIterator

helpers.MapValueIterator
< E, T > helpers.ReadOnlyIterator< T >

(c) Iterator class hierarchy in db2osl

Exception

helpers.UserAbortException

(d) Exception class hierarchy
in db2osl

RuntimeException

database.DatabaseException specification.InvalidSpecification
Exception

(e) RuntimeException class hierarchy in db2osl

Figure 5.7.: Miscellaneous class hierarchies in db2osl. Interface names are italicized, external classes or
interfaces are hemmed with a gray frame.

43

• main.Main
• database.RetrieveDBSchema
• database.Table
• helpers.Helpers
• helpers.SQLType
• specification.OBDASpecification
• osl.OSLSpecification
• bootstrapping.Bootstrapping
• cli.CLIDatabaseInteraction
• log.GlobalLogger
• test.CreateTestDBSchema
• test.GetSomeDBSchema

Table 5.4.: Standalone classes in db2osl

Note that every class hierarchy has at least one interface at its top. Classes not belonging
to a class hierarchy were chosen not to be given an interface “factitiously”, which would
have made them part of a (small) class hierarchy [Sch14]. Deliberately, the scheme often
recommended [GHJV95] to give every class an interface it implements was not followed but
the approach described by Stroustrup [Str13] to provide a rich set of so called “concrete
types” not designed for use within class hierarchies, which “build the foundation of every well-
designed program” [Str13]. The details of this consideration are explained in Paragraph “Java
interfaces” in Section 6.2.4 – Use of classes. In fact, many useful types were already offered
by the Java API and of course were not re-implemented.
Class Column with its interface ReadableColumn is an exception in that it was given an inter-
face although it is basically a concrete type. The reason for this is the chosen way to implement
const correctness, described in Paragraph “Const correctness” (which is part of Section 6.2.4 –
Use of classes) TODO. This technique forced class Column to implement an interface, thus
needlessly making it part of a class hierarchy, but also complicated the structure of some class
hierarchies. Consider the class hierarchy around ColumnSet, shown in Figure 5.3b. Definitely,
it seems overly complicated at the first glance. But this complexity solely is introduced by the
artificial Readable... interfaces; would Java provide a mechanism like C++’s const, this
hierarchy would be as simple as in TODO.
However, since const correctness is an important mechanism effectively preventing errors while
on the other hand introducing clarity by itself, it was considered too important to be sacrificed,
even for a cleaner and more intuitive class hierarchy. The fact that the Readable... scheme is
very straight-forward and a programmer reading the documentation knows about its purpose
and the real, much smaller, complexity also makes some amends for the simplicity sacrificed.
The const correctness mechanism itself thereby hinders uninformed or ignorant programmers
from mistakenly using the wrong class in an interface in many cases.
For more information about the program structure on the class level, see Section 6.2 – Code
style, while for a detailed class index refer to Appendix TODO.

44

5.4. Numbers and statistics

TODO: consequences The following numbers and statistics can be stated about db2osl:

Subject Value Details in sections
Number of classes/interfaces 45 5.3.3, 6.2.4, 6.2.4
Number of packages 11 5.3.2, 6.2.5
Classes per package ca 4.1 5.3.2
Number of methods TODO
Number of comments 6.2.1
Number of Javadoc comments 6.2.1, 6.1 (TODO)
Number of non-Javadoc comments 6.2.1
Average length of non-Javadoc comments 6.2.1
Lines of code (LOC) TODO
Non-comment lines of code (NCLOC) TODO
Average NCLOC length TODO
NCLOC per comment TODO 6.2.1
NCLOC per function TODO
NCLOC per class TODO
NCLOC per package TODO
Average NCLOC per method TODO 6.2.1
TODO: Method/class coupling TODO 5.3.3
Deepest nesting level 5 6.2.2
Retrieval time for example schema TODO 5.4.1
Bootstrapping time for example schema TODO 5.4.1

Table 5.5.: Numbers and statistics about db2osl

5.4.1. Benchmarking details

The example schema

TODO: description, URI

The benchmark process

TODO: description

The benchmark system

TODO: description

45

6. Implementation of db2osl

TODO: intro
Section 6.1 explains what tools where used to create the program. Section 6.2 describes
concepts and decisions that where implemented on the code level to yield clean code.

6.1. Tools employed

Several tools were used for the creation of db2osl, some of which also proved useful during
the creation of this thesis. Their use is described briefly in this section.
Thank is proffered to the contributers of these tools, all of which are free and open-source
software TODO.

Debian GNU/Linux

The operating system to run the other tools on was Debian GNU/Linux, version 8.0
(“Jessie”).

Basic Unix tools

Some of the basic Unix shell tools, namely find, cat, grep, sed, less, diff and, of course,
the shell itself (bash was used) were very useful, for instance, for searching all source code
files for common errors or for remains of obsolete constructs that were replaced, for carrying
out changes on all source files and for detecting and removing debugging code.
All of the tools were implementations created as part of the GNU project.

git

git was used both for version control and for shared access to the source code and related
artifacts.

vim

To apply changes involving advanced regular expressions, to perform block editing (insert or
remove columns from multiple lines at once), to insert debugging code and similar editing
tasks, vim was very useful.

46

Eclipse

The IDE to develop the program in was Eclipse. It proved very useful particularly due to
its abilities to easily create packages and move source files between them, to ease the creation
of in-code documentation and other useful features like automatic indention or the automatic
insertion of final keywords.

OpenJDK

The Java compiler, the Javadoc tool (see next paragraph), the Java debugger and the Java
Runtime Environment used were the implementations provided by the OpenJDK project,
version 7.

Javadoc

Javadoc was used as the primary documentation generation system due to its ability to create
clear and well-arranged documentations. Besides, documentations created by Javadoc are
familiar to most Java programmers and cleanly integrate into the Java environment; for
example, methods (automatically) inherited from the Object class are incorporated and links
to methods and classes provided by the Java API are automatically generated.

Doxygen

To complement the documentation generated by Javadoc (see previous paragraph), Doxy-
gen was used, which supports all used Javadoc constructs. This was particularly sensible,
because Doxygen is able to create a much more in-depth documentation, that for instance
includes private and protected members, the complete source code with syntax highlighting
and references to it and detailed dependency and call graphs for all classes or methods, respec-
tively. Thus, the Doxygen documentation is meant to be a more extensive, detail-oriented
documentation providing insight into implementation issues.

6.2. Code style

TODO: Conventions, ex.: iterators
As the final system hopefully will have a long lifetime cycle and will be used and refined by
many people, high code quality was an important aim. Beyond architectural issues this also
involves cleanness on the lower level, like the design of classes and the implementation of
methods. Common software development principles were followed and the unfamiliar reader
was constantly taken into account to yield clean, readable and extensible code.

47

6.2.1. Comments

Comments were used at places ambiguities or misinterpretations could arise, yet care was taken
to face such problems at their roots and solve them wherever possible instead of just effacing
the ambiguity with comments. This approach is further explained in Section 6.2.2 – “Speaking
code” and rendered many uses of comments unnecessary.
In fact, the number of (plain, e.g. non-Javadoc) comments was consciously minimized, to
enforce speaking code and avoid redundancy. An exception from this was the highlighting of
subdivisions. In class and method implementations, comments like

//********************** Constructors **********************\\

were deliberately used to ease navigation inside source files, but also to enhance readability:
parts of method implementations, for example, were optically separated this way. Another
alternative would have been to use separate methods for these code pieces, and thereby sticking
strictly to the so-called “Composed Method Pattern” [Bec97], as was done in other cases.
However, sticking to this pattern too rigidly would have introduced additional artifacts with
either long or non-speaking names, would have interrupted the reading flow and also would
have increased complexity, because these methods would have been callable at least from
everywhere in the source file. Consequently, having longer methods at some places that
are optically separated into smaller units that are in fact independent from each other was
considered an elegant solution, although, surprisingly, this technique does not seem to be
proposed that often in the literature.
Wherever possible, the appropriate Javadoc comments were used in favor of plain comments,
for example to specify parameters, return types, exceptions and links to other parts of the
documentation. This proved even more useful due to the fact that Doxygen supports all of
the used Javadoc comments [Hee16] (but not vice versa [Ora16]).

6.2.2. “Speaking code”

As mentioned in Section 6.2.1 – Comments, the code was tried to be designed to “speak for
itself” as much as possible instead of making its readers depend on comments that provide an
understanding. In doing so, besides reducing code size due to the missing comments, clean
code amenable to unfamiliar readers and unpredictable changes was enforced. This is especially
important since, as described in Section 5.3 – Architecture of db2osl, db2osl was designed
to not only be a standalone program but also offer components suitable for reusability.
TODO: understandability <- code size
The following topics were identified to be addressed to get what can be conceived as “speaking
code”:

• Meaningful typing
• Method names
• Variable names
• Intuitive control flow

48

• Limited nesting
• Usage of well-known structures

The rest of this section describes these topics in some detail. Besides, an intuitive architecture
and suitable, well-designed libraries also contributed to the clarity of the code (TODO: move).

Meaningful typing

Meaningful typing includes the direct mapping of entities of the modeled world to code entities
[Str13] as well as an expressive naming scheme for the obtained types. Furthermore, inher-
itance should be used to express commonalities, to avoid code duplication and to separate
implementations from interfaces [Str13].
All real-world artifacts to be modeled like database schemata, tables, table schemata. columns,
keys and OBDA specifications with their certain map types were directly translated into classes
having simple predicting names like Table, TableSchema and Key. Package affiliation provided
the correct context to unambiguously understand these names.

Method names

Assigning expressive names to methods is a substantially important part of producing speak-
ing code, since methods encapsulate operation and as such are important “building blocks”
for other methods [Str13] and ultimately the whole program. Furthermore, method names
often occur in interfaces and therefore are not limited to a local scope, and neither are easily
changeable without affecting callers [Sch14].
Ultimately, care was taken that method names reflect all important aspects of the respective
method’s behavior. Consider the following method from CLIDatabaseInteraction.java:

public static void promptAbortRetrieveDBSchemaAndWait
(final FutureTask<DBSchema> retriever) throws SQLException

It could have been called promptAbortRetrieveDBSchema only, with the waiting mentioned
in a comment. However, the waiting (blocking) is such an important part of its behavior, that
this was considered not enough, so the waiting was included in the function name. Since the
method is called at one place only, the lengthening of the method name by 7 characters or
about 26 % is really not a problem.

Variable names

To keep implementation code readable, care was taken to name variables meaningful yet
concise. If this was not possible, expressiveness was preferred over conciseness.
For example, in the implementation of the database schema retrieval, variables containing data
directly obtained from querying the database and thus being subject to further processing was
consequently prefixed with “recvd”, although in most cases this technically would not have
been necessary.

49

Intuitive control flow

To consequently stick to the maxim of speaking code and further increase readability, control
flow was tried to kept intuitive. do-while loops, for example, are unintuitive: they complicate
matters due to the additional, unconditional, loop their reader has to keep in mind. Even
worse, Java’s Syntax delays the occurrence of their most important control statement – the
loop condition – till after the loop body. Usually, do-while loops can be circumvented by
properly setting variables influencing the loop condition immediately before the loop and using
a while loop. Consequently, do-while loops were omitted – the code of db2osl does not
contain a single do-while loop. TODO: references
Another counterproductive technique is the avoidance of the advanced loop control statements
break, continue and return and the sole direction of a loop’s control flow with its loop
condition, often drawing on additional boolean variables like loopDone or loopContinued.
This approach is an essential part of the “structured programming (paradigm)” [Dij72] and
its purpose is to enforce that a loop is always left regularly, by unsuccessfully checking the loop
condition, which shall ease code verification [Dij72]. A related topic is the general avoidance
of the return statement (except at the end of a method) for similar considerations [Dij72].
However, both are not needed [Mar08] and, as always, the introduction of artificial technical
constructs impairs readability and the ability of the code to “speak for itself”.
Consequently, control flow was not distorted for technical considerations and care was taken to
yield straight-forward loops, utilizing advanced control statements to be concise and intuitive
and cleverly designed methods that benefit from well-placed return statements.

Limited nesting

A topic related to intuitive control flow is limited code nesting. Most introductions of new
nesting levels greatly increase complexity, since the associated conditions for the respective
code to be reached combine with the previous ones in often inscrutable ways. Besides being
aware of the execution condition for the code he is currently reading, the reader is forced to
either remember the sub-conditions introduced with each nesting level, as well as the current
nesting level, or to jump back to the introduction of one or more nestings to figure out the
relevant execution condition again.
Naturally, such code is far from being readable and expressive. Thus, overly deep nesting
was avoided by rearranging code or using control statements like return in favor of opening
a new if block. The deepest and most complicated nesting in db2osl has level 5 (with
normal, non-nested method code having level 0), with one of these nestings being dedicated
to a big enclosing while loop, one to a try-catch block and the remaining three to if blocks
with no else parts and trivial one-expression conditions. Additionally, in this case all of the
nesting blocks only contained a few lines of code, making the whole construction easily fit on
one screen, so this was considered all right. At a few other places there occurs similar, less
complicated, nesting up to level 5. TODO: references

50

Usage of well-known structures

Great benefit can be taken from constructs familiar to programmers regarding expressiveness.
Surely, implementations based on such well-known constructs and patterns are much more
likely to be instantly understood by programmers and therefore have a much higher ability of
“speaking for themselves”.
Examples in db2osl are the (extensively used) iterator concept, const correctness (see Para-
graph “Const correctness” in Section 6.2.4 – Use of classes TODO), exceptions, predicates
[Str13], run-time type information [Str13], helper functions [Str13] and well-known inter-
faces from the Java API like Set or Collection, as well as common Java constructs,
like classes performing a single action (e.g. OSLSpecPrinter), and naming schemes, like
get.../set.../is....

6.2.3. Robustness against incorrect use

Care was taken to produce code that is geared to incorrect use, making it suitable for the
expected environment of sporadic updates by unfamiliar and potentially even unpracticed
programmers, who besides have their emphasis on the concepts of bootstrapping rather than
details of the present code anyway. In fact, carefully avoiding the introduction of technical
artifacts to mind, preventing programmers from focusing on the actual program logic, is an
important principle of writing clean code [Str13].
In modern object-oriented programming languages, of course the main instruments for achiev-
ing this are the type system and exceptions. In particular, static type information should
be used to reflect data abstraction and the “kind” of data, an object reflects, while dynamic
type information should only be used implicitly, through dynamically dispatching method in-
vocations [Str00]. Exceptions on the other hand should be used at any place related to errors
and error handling, separating error handling noticeably from other code and enforcing the
treatment of errors [Str13], preventing the programmer from using corrupted information in
many cases.
An example of both mechanisms, static type information and exceptions, acting in combina-
tion, while cleanly fitting into the context of dynamic dispatching, are the following methods
from Column.java:

public Boolean isNonNull()
public Boolean isUnique()

Their return type is the Java class Boolean, not the plain type boolean, because the infor-
mation they return is not always known. In an early stage of the program, they returned
boolean and were accompanied by two methods public boolean knownIsNonNull() and
public boolean knownIsUnique(), telling the caller whether the respective information was
known and thus the value returned by isNonNull() or isUnique(), respectively, was reliable.
They were then changed to return the Java class Boolean and to return null pointers in case
the respective information is not known. This eliminated any possibility of using unreliable
data in favor of generating exceptions instead, in this case a NullPointerException, which
is thrown automatically by the Java Runtime Environment [Sch14] if the programmer forgets

51

the null check and tries to get a definite value from one of these methods when the correct
value currently is not known.
Comparing two unknown values – thus, two null pointers – also yields the desired result, true,
since the change, even when the programmer forgets that he deals with objects. However, when
comparing two return values of one of the methods in general – as opposed to comparing one
such return value against a constant –, errors could occur if the programmer mistakenly writes
col1.isUnique() == col2.isUnique() instead of col1.isUnique().booleanValue() ==
col2.isUnique().booleanValue(). In this case, since the two Boolean objects are compared
for identity [Sch14], the former comparison can return false, even when the two boolean values
are in fact the same. However, since this case was considered much less common than cases in
which the other solution could make incautious programmers introduce subtle errors, it was
preferred. Besides, wrapper classes like Boolean, Integer, Long and Float are an integral
part of the Java language [Sch14], so Java programmers were expected to manage to use them
properly, so ultimately, since the new solution effectively prevents errors while abstaining from
introducing new artifacts, it was considered fair and clean.
TODO: summary

6.2.4. Use of classes

Following the object-oriented programming paradigm [AO08], classes were heavily used to
abstract from implementation details and to yield intuitively usable objects with a set of
useful operations.

Identification of classes

To identify potential classes, entities from the problem domain were – if reasonable – directly
represented as Java classes. The approach of choosing “the program that most directly mod-
els the aspects of the real world that we are interested in” to yield clean code, as described and
recommended by Stroustrup [Str00], proved to be extremely useful and effective. As a conse-
quence, the code declares classes like Column, ColumnSet, ForeignKey, Table, TableSchema
and SQLType. As described in Section 6.2.2 – “Speaking code”, class names were chosen to be
concise but nevertheless expressive. Java packages were used to help attain this aim, which is
why the previously mentioned class names are unambiguous. For details about package use,
see Section 6.2.5 – Use of packages.
Care was taken not to introduce unnecessary classes, thereby complicating code structure and
increasing the number of source files and program entities. Especially artificial classes, having
little or no reference to real-world objects, could most often be avoided. On the other hand
of course, it usually is not the cleanest solution to avoid such artificial classes entirely.
Section 5.3.3 – Class organization describes how the classes of db2osl are organized into class
hierarchies.

52

Const correctness

Specifying in the code which objects may be altered and which shall remain constant, thus
allowing for additional static checks preventing undesired modifications, is commonly referred
to as “const correctness” TODO. TODO: powerful, preventing errors, clarity
Unfortunately, Java lacks a keyword like C++’s const, making it harder to achieve const
correctness [TE05]. It only specifies the similar keyword final, which is much less expressive
and doesn’t allow for a similarly effective error prevention [TE05]. In particular, because final
is not part of an object’s type information, it is not possible to declare methods that return
read-only objects [TE05] – placing a final before the method’s return type would declare the
method final [Sch14]. Similarly, there is no way to express that a method must not change
the state of its object parameters. A method like public f(final Object obj) is only liable
to not assigning a new value to its parameter object obj [Sch14] (which, if allowed, wouldn’t
affect the caller anyway [Sch14]). Methods changing its state, on the other hand, are allowed
to be called on obj without restrictions.
Several possibilities were considered to address this problem:

• Not implementing const correctness, but stating the access rules in comments only
• Not implementing const correctness, but giving the methods which modify object states

special names like setName––USE_WITH_CARE
• Implementing const correctness by delegating changes of objects to special “editor” ob-

jects to be obtained when an object shall be modified
• Implementing const correctness by deriving classes offering the modifying methods from

read-only classes
Not implementing const correctness at all of course would have been the simplest possibility,
producing the shortest and most readable code, but since incautious manipulation of objects
would possibly have introduced subtle, hard-to-spot errors which in many cases would have
occurred under additional conditions only and at other places, for example when inserting a
Column into a ColumnSet, this method was not seriously considered.
Not implementing const correctness but using intentionally angular, conspicuous names also
was not considered seriously, since it would have cluttered the code for the only sake of hope-
fully warning programmers of possible errors – and not attempting to avoid them technically.
So the introduction of new classes was considered the most effective and cleanest solution,
either in the form of “editor” classes or derived classes offering the modifying methods directly.
Again – as during the identification of classes –, the most direct solution was considered
the best, so the latter form of introducing additional classes was chosen and classes like
ReadableColumn, ReadableColumnSet et cetera were introduced which offer only the read-
only functionality and usually occur in interfaces. Their counterparts including modifying
methods also were derived from them and the implications of modifications were explained
in their documentation, while the issue and the approach as such were also mentioned in
the documentation of the Readable... classes. The Readable... classes can be converted
to their fully-functional counterparts via downcasting (only), thereby giving a strong hint to
programmers that the resulting objects are to be used with care.

53

Java interfaces

In Java programming, it is quiet common and often recommended [GHJV95] that every class
has at least one interface it implements, specifying the operations the class provides. If no
obvious interface exists for a class or the desired interface name is already given to some
other entity, the interface is often given names like ITableSchema or TableSchemaInterface.
However, for a special purpose program with a relatively fixed set of classes mostly representing
real-world artifacts from the problem domain, this approach was considered overly cluttering,
introducing artificial code entities for no benefit. In particular, as explained in Section 5.3.3 –
Fine structuring of db2osl, all program classes either are standing alone or belong to a class
hierarchy derived from at least one interface. So, except from the standalone classes, an
interface existed anyway, either “naturally” (as in the case of Key, for example) or because of
the chosen way to implement const correctness. In some cases, these were interfaces declared
in the program code, while in some cases, Java interfaces like Set were implemented (an
obvious choice, of course, for ColumnSet). Introducing artificial interfaces for the standalone
classes was considered unnecessary at least, if not messy.

6.2.5. Use of packages

As mentioned in Section 6.2.4 – Use of classes, class names were chosen to be concise but
nevertheless expressive. This only was possible through the use of Java packages, which also
helped structure the program.
For the current, relatively limited, extent of the program which currently comprises 45 (public)
classes, a flat package structure was considered ideal, because it is simple and doesn’t stash
source files deep in subdirectories (in Java, the directory structure of the source tree is re-
quired to reflect the package structure [Sch14]). Because also every class belongs to a package,
each source file is to be found exactly one directory below the root program source directory,
which in many cases eases their handling.
For the description of the packages, their interaction and considerations on their structuring,
see Section 5.3.2 – Coarse structuring of db2osl. For a detailed package description, refer to
Appendix TODO.
Each package is documented in the source code also, namely in a file package-info.java residing
in the respective package directory. This is a common scheme supported by the Eclipse IDE
as well as the documentation generation systems Javadoc and Doxygen (all of which were
used in the creation of the program, as described in Section 6.1 – Tools employed).

54

7. Summary and future work

Für den eiligen Leser ist die Vorgehensweise zusammen mit den wesentlichen Ergebnissen am
Schluss in einer “Zusammenfassung” klar herauszustellen. Diese soll ausführlicher sein als die
“Übersicht” am Anfang der Arbeit. Auch diese Zusammenfassung soll möglichst keine Formeln
enthalten.

7.1. Summary

7.2. Future work

TODO: Software processing (and validating!) OSL

55

Appendices

56

A. Details on the db2osl implementation

A.1. Package contents (db2osl)

The following table lists the contents of each of db2osls packages:

• bootstrapping

– Bootstrapping

– DirectMappingURIBuilder

– URIBuilder

• cli

– CLIDatabaseInteraction

• database

– Column

– ColumnSet

– DatabaseException

– DBSchema

– ForeignKey

– Key

– PrimaryKey

– ReadableColumn

– ReadableColumnSet

– ReadableForeignKey

– ReadableKey

– ReadablePrimaryKey

– RetrieveDBSchema

– Table

– TableSchema

• helpers

– Helpers

– MapValueIterable

– MapValueIterator

– ReadOnlyIterable

– ReadOnlyIterator

– SQLType

– UserAbortException

• log

– ConsoleDiagnosticOutputHandler

– GlobalLogger

• main

– Main

• osl

– OSLSpecification

• output

– ObjectSpecPrinter

– OSLSpecPrinter

– SpecPrinter

• settings

– Job

• specification

– AttributeMap

– EntityMap

– IdentifierMap

– InvalidSpecificationException

– OBDAMap

– OBDASpecification

– RelationMap

– SubtypeMap

– TranslationTable

• test

– CreateTestDBSchema

– GetSomeDBSchema

Table A.1.: Class attachment to packages in db2osl

57

Bibliography

[AO08] Prince Oghenekaro Asgba and Edward E. Ogheneovo. “A Comparative Analy-
sis of Structured and Object-Oriented Programming Methods”. In: Journal of
Environmental Management 12.4 (2008), pp. 41–46 (cit. on p. 52).

[Bec97] Kent Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1997 (cit. on p. 48).

[BHBL09] Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked data – the story
so far”. In: Semantic Services, Interoperability and Web Applications: Emerging
Concepts (2009), pp. 205–227 (cit. on p. 7).

[BL89] Tim Berners-Lee. Information Management: A Proposal. Tech. rep. March
1989, May 1990. CERN, 1989. url: http://www.w3.org/History/1989/
proposal.html (cit. on p. 1).

[BLF99] Tim Berners-Lee and Mark Fischetti. Weaving the Web: The Original Design
and Ultimate Destiny of the World Wide Web by Its Inventor. 1st. Harper San
Francisco, 1999. isbn: 0062515861 (cit. on p. 1).

[BMRSS96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture - Volume 1: A System of Patterns.
Wiley Publishing, 1996. isbn: 0471958697, 9780471958697 (cit. on p. 30).

[BRCGP04] Jesús Barrasa Rodríguez, Óscar Corcho, and Asunción Gómez-Pérez. “R2O, an
Extensible and Semantically Based Database-to-ontology Mapping Language”.
In: SWDB’04: 2nd Workshop on Semantic Web and Databases. Springer-Verlag,
2004, pp. 1069–1070 (cit. on p. 7).

[CGH+13] D. Calvanese et al. “The Optique Project: Towards OBDA Systems for Industry
(Short Paper)”. In:OWL Experiences and Directions Workshop (OWLED). 2013
(cit. on pp. 2, 6, 7).

[Cro08] J. Crompton. Keynote talk at the W3C Workshop on Sem. Web in Oil & Gas
Industry. 2008. url: http://www.w3.org/2008/12/ogws-slides/Crompton.
pdf (cit. on p. 6).

[Dij72] E. W. Dijkstra. Structured Programming. Ed. by O. J. Dahl, E. W. Dijkstra,
and C. A. R. Hoare. London, UK, UK: Academic Press Ltd., 1972. isbn:
0-12-200550-3 (cit. on p. 50).

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns. Reading, MA: Addison Wesley, 1995 (cit. on pp. 44, 54).

58

http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/2008/12/ogws-slides/Crompton.pdf
http://www.w3.org/2008/12/ogws-slides/Crompton.pdf

[Gup03] S. Gupta. Logging in Java with the JDK 1.4 Logging API and Apache log4j.
Apresspod Series. Apress, 2003. isbn: 9781590590997 (cit. on p. 34).

[Hee16] Dimitri van Heesch. Doxygen: Source code documentation generator tool. http:
//www.doxygen.org. [Accessed: 2016-05-13]. 2016 (cit. on p. 48).

[HPZC07] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. “Accessing
the deep web.” In: Commun. ACM 50.5 (2007), pp. 94–101. url: http://
dblp.uni-trier.de/db/journals/cacm/cacm50.html#HePZC07 (cit. on p. 1).

[KGJR+13] Evgeny Kharlamov et al. “Optique 1.0: Semantic Access to Big Data: The Case
of Norwegian Petroleum Directorate’s FactPages”. In: International Semantic
Web Conference (Posters & Demos). Ed. by Eva Blomqvist and Tudor Groza.
Vol. 1035. CEUR Workshop Proceedings. CEUR-WS.org, 2013, pp. 65–68 (cit.
on pp. 6, 7).

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsman-
ship. 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2008. isbn:
0132350882, 9780132350884 (cit. on p. 50).

[MBSF04] J. A. Miller, G. T. Baramidze, A. P. Sheth, and P. A. Fishwick. “Investigating
ontologies for simulation modeling”. In: Simulation Symposium, 2004. Proceed-
ings. 37th Annual. 2004, pp. 55–63. doi: 10.1109/SIMSYM.2004.1299465
(cit. on p. 33).

[McI87] M. D. McIlroy. A Research UNIX Reader: Annotated Excerpts from the Pro-
grammer’s Manual, 1971-1986. Tech. rep. CSTR 139. AT&T Bell Laboratories,
1987 (cit. on p. 30).

[NCFK+03] Natalya F Noy, Monica Crubézy, Ray W Fergerson, Holger Knublauch, Samson
W Tu, Jennifer Vendetti, Mark A Musen, et al. “Protege-2000: an open-source
ontology-development and knowledge-acquisition environment”. In: AMIA Annu
Symp Proc. Vol. 953. 2003, p. 953 (cit. on p. 33).

[Ora16] Oracle Corporation. javadoc - The Java API Documentation Generator. http:
//docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.
html. [Accessed: 2016-05-13]. 2016 (cit. on p. 48).

[SAM11] Juan F. Sequeda, Marcelo Arenas, and Daniel P. Miranker. “A Completely
Automatic Direct Mapping of Relational Databases to RDF and OWL”. In:
International Semantic Web Conference (Posters & Demos). Citeseer, 2011
(cit. on p. 6).

[SAM12] Juan F. Sequeda, Marcelo Arenas, and Daniel P. Miranker. “On Directly Map-
ping Relational Databases to RDF and OWL”. In: Proceedings of the 21st Inter-
national Conference on World Wide Web. Lyon, France: ACM, 2012, pp. 649–
658. isbn: 978-1-4503-1229-5. doi: 10.1145/2187836.2187924 (cit. on p. 6).

59

http://www.doxygen.org
http://www.doxygen.org
http://dblp.uni-trier.de/db/journals/cacm/cacm50.html#HePZC07
http://dblp.uni-trier.de/db/journals/cacm/cacm50.html#HePZC07
http://dx.doi.org/10.1109/SIMSYM.2004.1299465
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.html
http://dx.doi.org/10.1145/2187836.2187924

[Sch14] H. Schildt. Java: The Complete Reference, Ninth Edition. The Complete Refer-
ence. New York, NY, USA: McGraw-Hill Education, 2014. isbn: 9780071808552
(cit. on pp. 34, 35, 44, 49, 51–54).

[SGH+15] Martin G. Skjæveland, Martin Giese, Dag Hovland, Espen H. Lian, and Arild
Waaler. “Engineering ontology-based access to real-world data sources”. In:
Web Semantics: Science, Services and Agents on the World Wide Web 33 (2015),
pp. 112–140 (cit. on pp. 1–6, 10–12, 18, 20, 24, 35).

[SL13] Martin G Skjæveland and Espen H Lian. “Benefits of Publishing the Nor-
wegian Petroleum Directorate’s FactPages as Linked Open Data”. In: Norsk
informatikkonferanse (NIK 2013). Tapir (2013) (cit. on p. 7).

[SLH13] Martin G Skjæveland, Espen H Lian, and Ian Horrocks. “Publishing the Nor-
wegian Petroleum Directorate’s FactPages as Semantic Web Data”. In: The
Semantic Web – ISWC 2013. Springer, 2013, pp. 162–177 (cit. on p. 6).

[SSV02] Ljiljana Stojanovic, Nenad Stojanovic, and Raphael Volz. “Migrating data-
intensive web sites into the semantic web”. In: Proceedings of the 2002 ACM
symposium on Applied computing. ACM. 2002, pp. 1100–1107 (cit. on p. 7).

[STCM11] Juan F. Sequeda, Syed Hamid Tirmizi, Oscar Corcho, and Daniel P. Miranker.
“Survey of directly mapping SQL databases to the Semantic Web”. In: The
Knowledge Engineering Review 26.04 (2011), pp. 445–486 (cit. on p. 6).

[Str00] Bjarne Stroustrup. The C++ Programming Language. 3rd. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2000. isbn: 0201700735 (cit. on
pp. 2, 39, 51, 52).

[Str13] Bjarne Stroustrup. The C++ Programming Language. 4th. Boston, MA, USA:
Addison-Wesley Professional, 2013. isbn: 0321563840, 9780321563842 (cit. on
pp. 44, 49, 51).

[TE05] Matthew S. Tschantz and Michael D. Ernst. “Javari: Adding Reference Im-
mutability to Java”. In: SIGPLAN Not. 40.10 (Oct. 2005), pp. 211–230. issn:
0362-1340. doi: 10.1145/1103845.1094828 (cit. on p. 53).

[W3C09] W3C XML Core Working Group. XML Base (Second Edition). https://www.
w3.org/TR/xmlbase/. [Accessed: 2016-04-02]. 2009 (cit. on p. 24).

[W3C12] W3C OWL Working Group. OWL 2 Web Ontology Language - Document
Overview (Second Edition). https://www.w3.org/TR/owl2- overview/.
[Accessed: 2016-04-02]. 2012 (cit. on p. 24).

[W3C14] W3C RDF Working Group. RDF 1.1 Concepts and Abstract Syntax. https:
//www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. [Accessed: 2016-
05-13]. 2014 (cit. on pp. 1, 5).

60

http://dx.doi.org/10.1145/1103845.1094828
https://www.w3.org/TR/xmlbase/
https://www.w3.org/TR/xmlbase/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

[W3CR12a] W3C RDB2RDFWorking Group. A Direct Mapping of Relational Data to RDF.
https://www.w3.org/TR/rdb-direct-mapping/. [Accessed: 2016-04-06]. 2012
(cit. on pp. 1, 8, 9, 18).

[W3CR12b] W3C RDB2RDF Working Group. R2RML: RDB to RDF Mapping Language.
https://www.w3.org/TR/r2rml/. [Accessed: 2016-05-20]. 2012 (cit. on pp. 9,
12).

https://www.w3.org/TR/rdb-direct-mapping/
https://www.w3.org/TR/r2rml/

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all di-
rect or indirect statements from other sources contained
therein as quotations. Neither this work nor significant
parts of it were part of another examination procedure.
I have not published this work in whole or in part be-
fore. The electronic copy is consistent with all submitted
copies.

place, date, signature

	Abstract
	Kurzfassung
	Contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.3 Requirements and goals

	2 Background and related work
	2.1 Background
	2.1.1 Basic concepts
	2.1.2 Ontology-based data access (OBDA)
	2.1.3 OBDA specifications
	2.1.4 The OPTIQUE project

	2.2 Related work
	2.2.1 Ontologies and the semantic web – publications
	2.2.2 OBDA specifications – publications
	2.2.3 OBDA systems – publications
	2.2.4 General ontology bootstrapping – publications
	2.2.5 The OPTIQUE project – publications
	2.2.6 Alternative approaches – publications

	3 On bootstrapping and IRI generation
	3.1 Ontology bootstrapping using direct mapping
	3.1.1 Overview on the direct graph
	3.1.2 Data representation in direct mapping
	3.1.3 IRI generation in direct mapping

	3.2 Ontology bootstrapping using OBDA specifications
	3.2.1 Structure of OBDA specifications
	3.2.2 Using OBDA specifiations
	3.2.3 Bootstrapping OBDA specifications

	3.3 Generating unique IRIs for OBDA specification map fields
	3.3.1 Requirements for the IRI scheme
	3.3.2 Avoiding name clashes in the IRI scheme
	3.3.3 The proposed IRI generation scheme
	3.3.4 Proof of correctness of the proposed IRI scheme

	4 The OBDA Specification Language (OSL)
	4.1 Specification

	5 The db2osl software
	5.1 Functionality
	5.2 Interface and usage
	5.2.1 User interaction and configuration
	5.2.2 Integration into systems

	5.3 Architecture of db2osl
	5.3.1 Libraries used in db2osl
	5.3.2 Coarse structuring of db2osl
	5.3.3 Fine structuring of db2osl

	5.4 Numbers and statistics
	5.4.1 Benchmarking details

	6 Implementation of db2osl
	6.1 Tools employed
	6.2 Code style
	6.2.1 Comments
	6.2.2 ``Speaking code''
	6.2.3 Robustness against incorrect use
	6.2.4 Use of classes
	6.2.5 Use of packages

	7 Summary and future work
	7.1 Summary
	7.2 Future work

	Appendix A Details on the db2osl implementation
	A.1 Package contents (db2osl)

	Bibliography

