
Bootstrapping ontology-based data access
specifications from relational databases

Bachelor thesis
by

stud. inf. Philipp Martis

realized at the
Institute for Parallel and Distributed Systems,

University of Stuttgart

Stuttgart, in May 2016

Abstract

Nach der Titelseite des Berichtes und dem Aufgabenblatt soll das Wesentliche aus dem Inhalt
der Arbeit in wenigen Sätzen zusammengefasst werden. Diese Übersicht soll keine Formeln
und möglichst keine Literaturhinweise enthalten.

ii

Kurzfassung

Nach der Titelseite des Berichtes und dem Aufgabenblatt soll das Wesentliche aus dem Inhalt
der Arbeit in wenigen Sätzen zusammengefasst werden. Diese „Übersicht“ soll keine Formeln
und möglichst keine Literaturhinweise enthalten.

iii

Contents

Abstract iii

Kurzfassung iv

Contents v

List of figures vi

List of tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Approach . 1
1.3 Requirements and goals . 2

2 Background and related work 3
2.1 Background . 3
2.2 Related work . 3

3 The OBDA Specification Language (OSL) 4
3.1 Specification . 4

4 The db2osl software 8
4.1 Functionality . 8

4.1.1 Description . 8
4.1.2 Summary . 9

4.2 Interface and usage . 10
4.2.1 User interaction and configuration . 10
4.2.2 Integration into systems . 13

4.3 The bootstrapping process . 15
4.4 Architecture . 15

4.4.1 Libraries used . 15
4.4.2 Coarse structuring . 15
4.4.3 Fine structuring . 19

4.5 Tools employed . 25
4.6 Code style . 25

4.6.1 Comments . 25
4.6.2 Speaking code . 26
4.6.3 Robustness against incorrect use . 26
4.6.4 Classes . 27

iv

Contents

4.6.5 Packages . 29
4.7 Numbers and statistics . 30
4.8 Versioning . 30

5 Summary and future work 31
5.1 Summary . 31
5.2 Future work . 31

Appendix 33

Bibliography 33

v

List of Figures

4.1 Package dependencies in db2osl . 17
4.2 Package dependencies in earlier versions of db2osl 18
4.2 Class hierarchies in db2osl . 23
4.3 ColumnSet class hierarchy in db2osl – simplified 24

vi

List of Tables

3.1 OWL individual IRIs in OSL . 5
3.2 OWL class membership of map representations in OSL 5
3.3 OWL property IRIs in OSL . 7

4.1 Command-line arguments in db2osl – descriptions 12
4.2 Command-line arguments in db2osl – default values 13
4.3 Descriptions of the packages in db2osl . 15
4.4 Class attachment to packages in db2osl . 20
4.5 Standalone classes in db2osl . 23

vii

1 Introduction

Sie führt in die Problematik ein, skizziert die Motivation und Zielsetzung sowie das geplante
Vorgehen und die angestrebten Ergebnisse und sollte ca. 1 - 2 Seiten umfassen.

1.1 Motivation

As estimated in 2007 [HPZC07], publicly available databases contained up to 500 times more
data than the static web and roughly 70 % of all websites were backed by relational databases
back then. As hardware has become cheaper yet more powerful, open source tools have become
more and more widespread and the web has gotten more and more dynamic and interactive,
it’s likely that these numbers have even increased since then. This makes the publication
of available data in a structured, machine-processable form and its retrieval with eligible
software (Ontology based data access, OBDA) an interesting topic. This vision emerged as
early as TODO and was entitled with the term “semantic web” by Tim Berners-Lee [BLHL01].
Definitely, the automatic translation of relational databases to RDF or similar representations
of structured information is an integral part of the success of the semantic web [HPZC07].
This automatic translation process is commonly called “bootstrapping”.
Early work regarding the development of bootstrapping systems includes TODO. Today, the
pure translation process is a relatively well understood topic, ranging from the rather simple
direct mapping approach [W3C12] to TODO. On the other hand, the handling of the com-
plexity introduced by these approaches and the use of sophisticated tools to perform various
related tasks meanwhile has become a significant challenge in its own right [SGH+15]. Besides
the parametrization of the tools in use, this includes the management of the several kinds
of artifacts accruing during the process, possibly needed in different versions and formats for
the use of different tools and output formats, while also taking changing input data into ac-
count [SGH+15]. Skjæveland and others therefore suggested an approach using a declarative
description of the data to be mapped, concentrating in one place all the information needed
to coordinate the bootstrapping process and to drive the entire tool chain [SGH+15].

1.2 Approach

This thesis describes the development of a specification language to serialize the declarative
specification of the bootstrapping process and of a software to in turn bootstrap it from a
relational database schema. After the tasks they accomplish, the specification language was
called “OBDA Specification Language” (“OSL”) and the software bootstrapping the specifi-
cation was called “db2osl”.

1

Using a declarative specification makes the entire bootstrapping process a two-step-procedure:
First, the OBDA specification is derived from the database schema using db2osl. It specifies
the actual bootstrapping process in a very general way, so it only has to be recreated when the
database schema changes. The second step is to use the OBDA specification to coordinate and
drive the actual bootstrapping process. The development of a software that uses the OBDA
specification to perform this second step currently is subject to ongoing work. It will be able
to be parameterized accordingly to support different output formats, tools, tool versions and
application ranges.

TODO: illustration of overall process

1.3 Requirements and goals

The final system shall be able to cleanly fit into existing bootstrapping systems while being easy
to use, taking the burden of dealing with OSL specifications manually from its users instead of
adding even more complexity to the process. To achieve the former goal, use of existing tools,
languages and conventions was made wherever possible. To fit into the environment used in
the OPTIQUE project TODO it is ultimately part of, Java was used for the bootstrapping
software. Care was taken to design it to be modular and flexible, making it usable not only as
a whole but also as a collection of independent components possibly serving as the basis for a
program library in the future. To further support this aim TODO and to make the software
more easily understandable and extensible, it was documented carefully and thoroughly.
As the software will be maintained by diverse people after its development and will likely be
subject to changes, general code quality was also an issue to consider. Following good object-
oriented software development practice TODO, real world artifacts like database schemas,
database tables, columns, keys, OBDA specifications et cetera were modeled as software ob-
jects, provided with a carefully chosen set of operations to manipulate them and make them
collaborate. Scarce, informative comments were inserted at places of higher complexity and
to expose logical subdivisions, but care was taken to use “speaking code” in favor of rampant
comments. Complex, misleading and hard-to-use interfaces were avoided wherever possible.
External software libraries employed were chosen to be stable, specific, well structured, pub-
licly available and ideally in wide use.

2

2 Background and related work

Bei experimentellen Untersuchungen sind die benutzte Versuchsanordnung sowie Messanord-
nungen und Messverfahren ausführlich zu beschreiben. Analog sind die Grundlagen eventuell
verwendeter oder erweiterter Berechnungsprogramme zusammenfassend darzustellen. Bei
übernommenen Formeln, Bildern, Tabellen und bei Zitaten ist stets die Quelle durch den
Namen des Verfassers und die zugehörige Nummer im Literaturverzeichnis anzugeben (z.B.
[SGH+15])
Nam eu dolor a nisl faucibus suscipit. Nulla interdum sapien id lectus. Curabitur fringilla
pulvinar nibh. Aenean porta luctus purus. Cras dictum mauris quis velit. Nullam pharetra
pede at risus. Nullam orci sapien, porttitor eu, iaculis et, bibendum ultricies, ipsum. Mauris
eget justo. Donec semper auctor tortor. Mauris a ante et magna facilisis mollis. Proin sem
turpis, interdum quis, fermentum aliquet, faucibus scelerisque, quam. In mi nibh, facilisis eu,
euismod sed, luctus ut, sapien. Etiam ut dui eget libero dapibus elementum.
Nulla ut felis et libero tempus luctus. Praesent vitae velit. Vivamus pharetra pharetra sem.
Morbi id mauris. Ut sem mauris, fermentum non, interdum eu, nonummy non, nunc. Aenean a
sem et odio ornare dictum. Phasellus fermentum justo quis justo. Aenean et felis. Vestibulum
ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Curabitur faucibus
ornare augue. Nullam blandit pellentesque odio. Vestibulum tempor tempor ante. Etiam
scelerisque elementum diam. Vestibulum enim sem, dictum et, rhoncus vitae, ullamcorper ut,
dolor. Sed diam.
Sed dignissim diam vel erat. Pellentesque ac lacus sed dui vehicula tristique. Curabitur justo
sapien, convallis in, faucibus nec, hendrerit eu, sapien. Quisque imperdiet lacus vitae lacus.
Vestibulum aliquet rutrum enim. Fusce et leo. Ut id dui non felis rhoncus laoreet. Nullam
ipsum. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Cras et dolor. Cum sociis
natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

2.1 Background

2.2 Related work

3

3 The OBDA Specification Language
(OSL)

TODO: aims, proceeding, structure As described in [SGH+15], an OBDA specification consists
of several types of maps, all containing data entries and links to other maps. This fits perfectly
into the environment of ontologies and OWL, with data properties being the obvious choice
to represent contained data entries and object properties being the obvious choice to represent
links between maps. Also, a potential user probably to some degree is familiar with this
environment, since this is what the bootstrapping process at the end amounts to.
Therefore, an ideal base for the OBDA Specification Language is OWL, being a solid frame-
work for data and constraint representation with a high degree of software support, while
imposing only a minimum of introductory preparation to the user.
Another advantage of this approach is that the specification is kept compact and focused on
the entities that the language has to represent rather than primarily dealing with technical
details. In particular, many of those details can be formulated as OWL restrictions in a header
ontology demanded to be imported by documents conforming to the OSL specification. Thus,
they are not only specified precisely but they are also stipulated in a machine-readable form
for which tools are widely available, enabling the user to check many aspects of an OSL
document for conformity with minimal effort.

3.1 Specification
1 An OSL document is a valid OWL 2 document (as described in [W3C12]) containing
individuals and data that represent the OBDA Specification, as well as OWL properties that
connect them. The individuals and OWL properties are recognized and mapped to their roles
by their IRIs.
2 An OSL document may contain more OWL entities (with IRIs not defined in this speci-
fication), which are ignored.
3 An OSL document has to declare all individuals having different IRIs as different from
each other (except those which are ignored, see paragraph 2).
It is recommended to use the owl:AllDifferent OWL statement for this purpose.
4 Unless stated otherwise, IRIs mentioned in the following are IRIs relative to a base IRI
chosen by the user being empty (which makes the IRIs absolute [W3C09]) or ending with a
hash character (‘#’).

4

Map type OWL IRI
Entity map <class URI>__ENTITY_MAP
Attribute map <property URI>__ATTRIBUTE_MAP
Identifier map <class URI>__IDENTIFIER_MAP
Relation map <property URI>__RELATION_MAP
Subtype map <class URI>__SUBTYPE_MAP
Translation table of attribute map <property URI>__ATTRIBUTE_MAP__TRANSLATION_TABLE
Translation table of subtype map <class URI>__SUBTYPE_MAP__TRANSLATION_TABLE

Table 3.1: OWL individual IRIs in OSL

Map type OWL class IRI
Entity map osl:EntityMap
Attribute map osl:AttributeMap
Identifier map osl:IdentifierMap
Relation map osl:RelationMap
Subtype map osl:SubtypeMap
Translation table osl:TranslationTable

Table 3.2: OWL class membership of map representations in OSL

It is recommended to use that base IRI as xml:base XML attribute.
IRIs prefixed with osl: are IRIs relative to the IRI
http://w3studi.informatik.uni-stuttgart.de/~martispp/ont# .
5 An OSL document has to import the following ontology (referred to as “the OSL header”
in the following):
http://w3studi.informatik.uni-stuttgart.de/~martispp/ont/db2osl.owl
6 The OWL individuals described by the OSL document representing the certain types of
OBDA maps must have the IRIs specified in table 3.1 (for base IRIs, see paragraph 4). Here,
<class URI> refers
to the OWL class URI field of the respective entity map for entity maps,
to the OWL class URI field of the associated entity map for identifier maps,
to the OWL class URI field of the associated entity map for subtype maps and
to the OWL class URI field of the entity map associated with the respective subtype map for
translation tables of subtype maps.
Similarly, <property URI> refers
to the OWL property URI field of the respective attribute map for attribute maps (or, if it is
empty, the value that would have been generated for it if it weren’t empty),
to the OWL property URI field of the respective relation map for relation maps and
to the OWL property URI field of the respective attribute map for translation tables of at-
tribute maps (or, if it is empty, the value that would have been generated for it if it weren’t
empty).
7 The OWL individuals described by the OSL document representing the certain types of
OBDA maps must be of the OWL types specified in table 3.2 (for base IRIs, see paragraph
4).
8 The OWL properties described by the OSL document representing the fields of the certain

5

http://w3studi.informatik.uni-stuttgart.de/~martispp/ont#
http://w3studi.informatik.uni-stuttgart.de/~martispp/ont/db2osl.owl

OBDA maps must have the IRIs specified in table 3.3 (for base IRIs, see paragraph 4).
9 The following OWL properties in the OSL document refer to lists of elements:

osl:rm__sourceColumns

osl:rm__targetColumns

osl:tt__sourceValues

osl:tt__rdfRessources

Therefore, they have the OWL class osl:StringListNode as their range, as is required by
the OSL header. They must connect the respective individual to an osl:StringListNode
individual in every case. This “root node” must not have an osl:hasValue property.
If the represented list is not empty, the list elements are represented by other osl:StringListNode
individuals connected seriatim by the property osl:nextNode, with the first individual being
connected to the root node. The node representing the last list element must not have an
osl:nextNode property.
All nodes except the root node may have an osl:hasValue property connecting them to their
values. The actual list consists of exactly these values, thus, nodes without values are ignored.
It is recommended to enumerate the node IRIs, using 0 for the root node.

6

Map type Field label Field name OWL IRI
Entity map E1 Table name osl:em__tableName
Entity map E2 Label osl:em__label
Entity map E3 Identifier map osl:em__identifierMap
Entity map E4 Attribute maps... osl:em__attributeMaps
Entity map E5 OWL class URI osl:em__owlClassURI
Entity map E6 Description osl:em__description
Attribute map A1 Column name osl:am__columnName
Attribute map A2 SQL datatype osl:am__sqlDatatype
Attribute map A3 Mandatory osl:am__mandatory
Attribute map A4 Label osl:am__label
Attribute map A5 OWL property URI osl:am__owlPropertyURI
Attribute map A6 Property type osl:am__propertyType
Attribute map A7 Translation osl:am__translation
Attribute map A8 URI pattern osl:am__uriPattern
Attribute map A9 RDF language osl:am__rdfLanguage
Attribute map A10 XSD datatype osl:am__xsdDatatype
Attribute map A11 Description osl:am__description
Identifier map I1 Entity map osl:im__entityMap
Identifier map I2 Attribute maps... osl:im__attributeMaps
Identifier map I3 URI pattern osl:im__uriPattern
Relation map R1 Source entity map osl:rm__sourceEntityMap
Relation map R2 Source column osl:rm__sourceColumns
Relation map R3 Target entity map osl:rm__targetEntityMap
Relation map R4 Target column osl:rm__targetColumns
Relation map R5 OWL property URI osl:rm__owlPropertyURI
Subtype map S1 Entity Map osl:sm__entityMap
Subtype map S2 Column Name osl:sm__columnName
Subtype map S3 OWL superclass URI osl:sm__owlSuperclassURI
Subtype map S4 Prefix osl:sm__prefix
Subtype map S5 Suffix osl:sm__suffix
Subtype map S6 Translation osl:sm__translation
Translation table T1 Source value... osl:tt__sourceValues
Translation table T2 RDF ressource... osl:tt__rdfRessources

Table 3.3: OWL property IRIs in OSL

7

4 The db2osl software

Besides the conception of the “OBDA Specification Language” (OSL), the design and imple-
mentation of the db2osl software was an important part of this work. The program itself
and its creation process are described in the following sections: Section 4.1 – Functionality
describes the functionality the program offers. Section 4.2 – Interface and usage describes how
this functionality is exposed to the program environment. Section 4.3 – The bootstrapping
process explains in detail how the bootstrapping process was realized. Section 4.4 – Archi-
tecture describes the program architecture both on a coarse and a fine level. Section 4.5 –
Tools employed explains what tools where used to create the program. Section 4.6 – Code
style describes concepts and decisions that where implemented on the code level to yield clean
code. Section 4.7 – Numbers and statistics mentions some figures about the program. Section
4.8 – Versioning gives a brief timewise TODO overview over the program development and
describes important milestones.
Except the last section, this chapters’ sections present the information in a functionally-
structured fashion: the concepts and decisions are described along with the topics they are
linked to and the problems that made them arise. However, the last section, besides giving an
overview about the program versions, tries to give an insight about development succession.
Unless stated differently, program version 1.0 is described (for details, see section 4.8 – Ver-
sioning).

4.1 Functionality

As described in the introduction, the db2osl software basically is a program which automat-
ically derives an OBDA specification from a relational database schema, which then can be
used by other tools to drive the actual bootstrapping process. Its functionality is described in
the next section (while leaving out self-evident features) and is then listed completely in the
section after that.

4.1.1 Description

The database schema is retrieved by connecting to an SQL database and querying its schema
information. Parsing SQL specifications TODO or SQL dumps currently is not supported.
The databases to derive information from can be specified by regular expressions, while there
are also options to use other databases than specified or even other database servers, taken
from a list of hard-coded strings. While these features may not seem to carry real benefit at
the first glance, they proved to be very useful for testing purposes, especially since the retrieval
of a database schema can take some time (see TODO). For the same purpose, db2osl allows

8

the processing of a hard-coded example database schema.
In addition to OSL output, a low-level output format containing information on all fields of
the underlying objects is supported, which is useful for debugging (however, this feature has
to be enabled via one slight change in the source code). To allow for some customization, the
insertion of an own OSL header is supported (for more information on the OSL header, see
the specification of the OSL language in section 3.1). If the standard OSL header is used, it
is by default loaded from a hard-coded copy, so bootstrapping information from a database
server running locally or from the hard-coded example schema requires no Internet connection
(simply inserting the owl:imports statement of course would not anyway, but the generated
underlying ontology is always checked for consistency with the OSL header to prevent the
generation of invalid output).
The db2osl software can be used both in an interactive and in a non-interactive mode,
while skipping a database or a database server or aborting the entire bootstrapping process
is possible in either mode. Multiple database servers can be specified for a bootstrapping
operation, which then are checked in order for a matching database, allowing to make use of
mirrors or fallback servers. Additionally, multiple bootstrapping operations can be specified
to be performed in sequence with one invocation of db2osl, while all features and settings
previously described are enabled, disabled or set per operation. Finally, a help text can be
displayed which describes the usage of db2osl including the description of all command-line
arguments.

4.1.2 Summary

The functionality of the db2osl software can be summarized as follows:

• Bootstrap one or more OBDA specifications from a database schema by connecting to
an SQL database server

• Specify a custom port, login and password for the database server
• Ask for passwords interactively (before starting any bootstrapping operation), hide them

if desired
• Specify database names by regular expressions
• Process an arbitrary database if the specified database could not be found or uncondi-

tionally
• Connect to a database server containing example databases without having to specify

any further details
• Process a hard-coded example database schema without having to specify any further

details
• Use the OSL format described in section 3 – The OBDA Specification Language (OSL)

or a detailed low-level format for output (the latter is for debugging purposes and has
to be enabled in the source code)

• Write to standard output or to a file
• Insert a custom OSL header (see the specification of the OBDA Specification Language

9

(OSL) in section 3.1 for details)
• Consistency check against a custom OSL header
• Consistency check against the standard OSL header without internet connection
• Act interactively or non-interactively
• Skip currently retrieved database (and try next on server), skip current server or abort

the overall process at any time, even in non-interactive mode
• Define multiple database servers to check in order for the specified database
• Specify multiple bootstrapping operations to perform in order
• Configure the features described in the above notes per bootstrapping operation
• Display a help text describing the usage of db2osl, including the description of all

command-line arguments

4.2 Interface and usage

This section describes the interface to the operating system and the user interface. For infor-
mation on programming interfaces, see section 4.4 – Architecture.

4.2.1 User interaction and configuration

Basic usage

Currently, the only user interface of db2osl is a command-line interface. Since the program
is supposed to bootstrap the OBDA Specification automatically and thus there is little inter-
action, but a lot of output, this was considered ideal. Basically, one invocation of db2osl will
initiate the automatic, non-interactive bootstrapping of exactly one OSL specification written
to the standard output, a behavior which can be modified via command-line arguments. Be-
cause of its ability to write to the standard output (which is also the default behavior), it is easy
to pipe the output of db2osl directly into a program that handles it in a Unix-/POSIX-like
fashion TODO:

db2osl myserver.org | osl2onto myserver.org

(supposed osl2onto is a tool that reads an OSL specification from its standard input and
uses it to bootstrap an ontology from the database specified on its command line).
This scheme is known as “filter-pattern” TODO.
By inserting additional “filters”, the bootstrapping process can be customized without chang-
ing any of the involved programs:

db2osl mydatabase.org | customize_spec.sh | osl2onto mydatabase.org

(supposed customize_spec.sh is a shell script that modifies a given OSL specification in
the way the user desires).

10

Configuration via command-line arguments

The behavior of db2osl itself can be adjusted via command-line arguments (only). The syntax
for their application follows the POSIX standard TODO. Most features can be configured via
short options (as, for example, -P). To allow for enhanced readability of db2osl invocations,
each feature can (also) be configured via a long option (like ––password). The utilization of
configuration files was considered, but for the time being seen as unnecessary complicating
while not addressing any real difficulties.
The command-line arguments db2osl currently supports are described in table 4.1, their
default values are listed in table 4.2. There is currently no switch to set the output format, since
the only supported output format, besides OSL, is a low-level output format for debugging
purposes. Because of this and since the change that has to be made in the source code
to enable it only involves changing one token, it was preferred not to offer a command-line
option for this, to not unnecessarily complicating the command-line interface for the normal,
non-debugging, user.
The sole invocation of db2osl, without any arguments, does not initiate any processing but
displays the usage directions instead, in addition to an error message pointing out the missing
server argument.

Multiple bootstrapping operations or multiple servers

To perform multiple bootstrapping operations with only one invocation of db2osl, it is suffi-
cient to concatenate the command-line arguments for each operation, separated by blanks, to
get the final command line. However, when combining a test job with other operations, some
arbitrary string has to be inserted as dummy server to allow distinguishing the different jobs
and assigning each command-line argument to the appropriate job.
Likewise, to check several servers in order for the database to be used for one bootstrapping
operation, these servers have to be concatenated, separated by blanks. Again, the distinction
of the different bootstrapping jobs has to be possible, so all but the first operation have to
have at least one command-line argument that signals the beginning of a new job definition
(which is no practical problem, since to enforce this, a default argument simply can be stated
explicitly without changing the behavior of the invocation).
All settings are configured per operation, so, when using a shell that separates batched com-
mands by ‘;’,

db2osl ––database employees ––password itsme sql.myemployer.com
––database test myserver.org backup.myserver.org

is equivalent to
db2osl ––database employees ––password itsme sql.myemployer.com;
db2osl ––database test myserver.org backup.myserver.org

Thus, a parameter defined for one operation (like the password in the example) will have no
effect on other operations. This ensures that typical errors are prevented when merging several

11

Option(s) Description, taken from the help page of db2osl
––database, -d database name (Java regular expression) databases have to

match to be processed; see also: ––loose-database-match
––echo-password echo input when prompting for SQL password – must be spec-

ified before ––password-prompt to get effective
––help, -h, show this help and exit
––interactive, -i be interactive when chosing database
––login, -L SQL login
––loose-database-match if no database matching the regex specified with ––database is

found on the given server and ––interactive is not specified
for this job, use some other database

––osl-header use the specified custom (non-standard) OSL header, im-
plies ––remote-osl-header (to import no header, specify the
empty string)

––output-file, -o use the specified output file (for the standard output, specify
“-”)

––password, -P SQL password; use ––password-prompt to get a password
prompt (if you do both, the password set via this switch will
be ignored)

––password-prompt, -p prompt for SQL password; a password set via ––password is
ignored

––remote-osl-header, -R don’t use hard-coded version of the OSL header for verification
––remote-test try to retrieve a database schema from a hard-coded list of

servers and take the first one successfully retrieved (and ac-
cepted, when ––interactive is given; note: give a dummy
server if you want to do a test besides other jobs)

––test use hard-coded test database schema, ignore given servers
(note: give a dummy server if you want to do a test besides
other jobs)

Table 4.1: Command-line arguments in db2osl – descriptions

12

Option(s) Default value
––database, -d .*
––echo-password false
––help, -h, false
––interactive, -i false
––login, -L anonymous
––loose-database-match false
––osl-header <empty string>
––output-file, -o -
––password, -P <empty string>
––password-prompt, -p false
––remote-osl-header, -R false
––remote-test false
––test false

Table 4.2: Command-line arguments in db2osl – default values

invocations of db2osl into one (or vice versa) and allows for a straight-forward, comprehensive
and clean implementation.

Advanced modifications

Since OSL specifications are plain text files, a user can edit them in any desired text editor if
he wants to change them in ways that go beyond the functionality db2osl provides or that
can be achieved by scripts or programs modifying their input automatically. Because of OSL
being defined to be a subset of OWL (see the specification of OSL in section 3.1), he can
thereby take advantage of editors supporting syntax highlighting or other features making the
handling of the respective OWL serialization more comfortable.
Moreover, every common ontology editor can be used to edit the generated OSL specification
automatically or manually. Doing so, care has to be taken to make the ontology remain a
conforming OSL specification. However, since the restrictions imposed by OSL are rather
small and intuitive, this is easily achieved. Furthermore, upcoming tools supporting OSL (see
section 5.2 – Future work) are very likely to be able to check their input for conformity with
the OSL definition.

4.2.2 Integration into systems

Besides the use cases described in section “Basic usage”, there are many other ways in which
db2osl can be used. For example, a database can be periodically checked for changes that
make a re-bootstrapping necessary:

db2osl -d mydb myserver.org | sha256sum >oldsum
cp oldsum newsum
while diff oldsum newsum; do

sleep 3600 # wait 1 hour
db2osl -d mydb myserver.org | sha256sum >newsum

13

done
rm oldsum newsum
notify web admin via e-mail:
mutt -s "Re-bootstrapping necessary" web-admin@myserver.org

Another possible example is the integration of db2osl into a shell script that bootstraps all
databases on a server:

regex='(?!$).*' # accept all nonempty database names first
while db2osl -d "$regex" -o spec myserver.org; do

dbname="` sed -ne '/xmlns:ont/ { s|.*/||; s|#"||p }' spec `"
mv spec "$dbname".osl
don’t use this database a second time:
regex="` printf %s "$regex" | sed -e "s,\\\\$,$|$dbname$," `"

done

Newer versions than version 1.0 described here provide a command-line parameter -a (or,
alternatively, ––all) which makes db2osl bootstrap all databases matching the given regular
expression. However, using this approach, all bootstrapped specifications will be output to
one single file.
Since the programming language used to implement db2osl is Java, it is possible to deploy
it on all platforms offering the Java Runtime Environment TODO. Additionally, it is
possible to deploy it as a Web application TODO.
To simplify integration on the code level, the architecture of db2osl was designed to be
highly modular and to cleanly separate code with different areas of responsibility into differ-
ent packages (for details about the structuring of db2osl, see section 4.4 – Architecture).
This modularity, besides facilitating understanding the code, allows for a high degree of code
reusability.
For example, the packages database, osl and specification can be reused in other programs
with little or no changes – the biggest change involves combining the database schema retrieval
with the user interface of the new program to provide control over the retrieval process when
reusing the database package (to do this, three method calls have to be replaced). If the
accruing information shall be used in another way than being output or logged, this of course
has to be implemented. If not, it is sufficient to replace the used Logger object by anohter
one providing the desired behavior, since the Logger class is part of the Java API and widely
used TODO. This is a good example of how using well-known and commonly used classes can
greatly improve modularity and reusability.

14

4.3 The bootstrapping process

4.4 Architecture

4.4.1 Libraries used

4.4.2 Coarse structuring

TODO: overall description, modularity, extendability, ex: easy to add new in-/output formats
TODO: mapping profiles (maybe better in next subsection)

Package partitioning

The 45 classes of db2osl were assigned to 11 packages, each containing classes responsible
for the same area of operation or taking over similar roles. Care was taken that package
division happened senseful, producing meaningful packages with obvious task fields on the
one hand, while on the other hand implementing an incisive separation with a notable degree
of decoupling. Packages were chosen not to be nested but to be set out vapidly. Since this
doesn’t have any functional implications [Sch14], but is rather an implementation detail, this
is further explained in section 4.6.5 – Packages.
The packages are introduced and described in table 4.3. The lists of classes each package
contains are given in table 4.4 in the next section 4.4.3 – Fine structuring.

Package Description
bootstrapping Classes performing bootstrapping
cli Classes related to the command line interface of db2osl
database Classes related to the representation of relational databases and attached

tasks
helpers Helper classes used program-wide
log Classes related to logging and diagnostic output
main The Main class
osl Classes representing OBDA specifications (as described in [SGH+15])

using the OBDA Specification Language (OSL)
output Classes used to output OBDA Specifications as described in [SGH+15]
settings Classes related to program and job settings (including command line

parsing)
specification Classes representing (parts of) OBDA specifications (as described in

[SGH+15]) directly, without involving OSL
test Classes offering testing facilities

Table 4.3: Descriptions of the packages in db2osl

Besides intuition, as stated, care was involved when partitioning the program into these pack-
ages, which included the analysis of the package interaction under a given structure, and the

15

carrying out of changes to make this structure achieve the desired pronounced decoupling with
limited and intelligible dependencies.
The main package was introduced to make the Main class, which carries information needed
by other packages – most prominently, the program name –, importable from inside these
packages. For this, it is required for Main not to reside in the default package [Sch14].

Package interaction

As mentioned, the structuring of the packages was driven by the aim to gain a notable amount
of decoupling. How this reflected in the dependency structure, thus the classes from other
packages that the classes of a package depend on, is described in the following. As was also
mentioned, the information presented here also acted back on the package partitioning, which
changed in consequence.
Dependencies of or on package helpers are not considered in the following, since this package
precisely was meant to offer services used by many other packages. In fact, all facilities
provided by helpers could just as well be part of the Java API, but unfortunately are not.
The current dependency structure, factoring in this restriction, is shown in figure 4.1 and
reveals a conceivably tidy system of dependencies.

16

bootstrapping

settings

cli

database

test

log

main

osl

output

specification

Figure 4.1: Package dependencies in db2osl. “→” means “depends on”.

Though there are quite a number of dependencies (to be precise: 19), many of them (8, thus,
nearly half) trace back to one central package in the middle, settings. This may seem odd at
first glance, considering that most of the edges of the node representing package settings are
outgoing edges and only one is incoming, whereas in a design where the settings are configured
from within a single package and accessed from many other packages this would be the other
way round. The reason for this constellation is that, as described in section 4.2 – Interface
and usage, all settings in db2osl are configured per bootstrapping job (there are no global
settings) and so settings contains a class Job (and currently no other classes). Job represents
the configuration of a bootstrapping job but also provides a perform() method combining
the facilities offered by the other packages.
This way, the perform() method of the Job class acts as the central driver performing the

17

bootstrapping process, reducing the main() method two only 7 lines of code and turning
settings into something like an externalized part of the main package. If, in a future version of
the program, this approach is changed and global settings or configuration files are introduced,
settings will still be the central package, leaving the package structure and dependencies
unchanged, since it either way contains information used by many other packages. This was
the reason why it was not renamed to, for example, driver, which was considered, since it
seems quite a bit unnatural to have the driver class reside in a package called “settings” at
first glance.
Previous versions of db2osl had a quite more complicated package dependency structure,
depicted in figure 4.2.

bootstrapping

settings

specification

cli

database

output

test

log

main

osl

Figure 4.2: Package dependencies in earlier versions of db2osl. “→” again means “depends on”.

18

4.4.3 Fine structuring

Package contents

While the packages in db2osl are introduced and described in section 4.4.2 – Coarse struc-
turing, the classes that comprise them are addressed in this section.
Table 4.4 lists the classes each package contains. The packages cli, main, osl and settings
contain only one class each, while the by far most extensive package is database, containing
17 classes.

19

• bootstrapping
– Bootstrapping
– DirectMappingURIBuilder
– URIBuilder

• cli
– CLIDatabaseInteraction

• database
– Column
– ColumnSet
– DatabaseException
– DBSchema
– ForeignKey
– Helpers
– Key
– PrimaryKey
– ReadableColumn
– ReadableColumnSet
– ReadableForeignKey
– ReadableKey
– ReadablePrimaryKey
– RetrieveDBSchema
– SQLType
– Table
– TableSchema

• helpers
– MapValueIterable
– MapValueIterator
– ReadOnlyIterable
– ReadOnlyIterator
– UserAbortException

• log

– ConsoleDiagnosticOutputHandler

– GlobalLogger

• main

– Main

• osl

– OSLSpecification

• output

– ObjectSpecPrinter

– OSLSpecPrinter

– SpecPrinter

• settings

– Job

• specification

– AttributeMap

– EntityMap

– IdentifierMap

– InvalidSpecificationException

– OBDAMap

– OBDASpecification

– RelationMap

– SubtypeMap

– TranslationTable

• test

– CreateTestDBSchema

– GetSomeDBSchema

Table 4.4: Class attachment to packages in db2osl

Class organization

Organizing classes in a structured, obvious manner such that classes have well-defined roles,
behave in an intuitive way, ideally representing artifacts from the world modeled in the pro-

20

gram directly [Str00], is a prerequisite to make the code clear and comprehensible on the
architectural level.
Section 4.6.4 – Classes describes the identification and naming scheme for the classes in
db2osl. However, it is also important, to arrange these classes in useful, comprehensible
class hierarchies to avoid code duplication, make appropriate use of the type system, ease the
design of precise and flexible interfaces and enhance the adaptability and extensibility of the
program. Figure 4.2 shows the class hierarchies in db2osl, while standalone classes are listed
in table 4.5.

ReadOnlyIterable

database.DBSchema.TableIterable database.ReadableColumnSet

database.TableSchema.Columns
Iterable

database.TableSchema.Foreign
KeysIterable

specification.OBDASpecification.
AttributeMapIterable

database.ColumnSet

database.Key

database.ForeignKeydatabase.PrimaryKey

Set

database.ReadableKey

database.ReadableForeignKeydatabase.ReadablePrimaryKey

Iterable

database.DBSchema database.TableSchema helpers.MapValueIterable
< E, T > helpers.ReadOnlyIterable< T >

database.ReadableColumn

database.Column

21

specification.OBDAMap

specification.AttributeMap

specification.EntityMap

specification.IdentifierMap

specification.RelationMap

specification.SubtypeMap

specification.Translation
Table

bootstrapping.URIBuilder

bootstrapping.DirectMapping
URIBuilder

output.SpecPrinter

output.ObjectSpecPrinter output.OSLSpecPrinter

ReadOnlyIterator

specification.OBDASpecification.
AttributeMapIterator

Iterator

StreamHandler

log.ConsoleDiagnosticOutput
Handler

22

Iterator

database.ColumnSet.Column
SetIterator

helpers.MapValueIterator
< E, T > helpers.ReadOnlyIterator< T >

IParameterValidator

settings.Job

Exception

helpers.UserAbortException

RuntimeException

database.DatabaseException specification.InvalidSpecification
Exception

Figure 4.2: Class hierarchies in db2osl. Interface names are italicized, external classes or interfaces are
hemmed with a gray frame.

• main.Main
• database.Helpers
• database.RetrieveDBSchema
• database.SQLType
• database.Table
• specification.OBDASpecification
• osl.OSLSpecification
• bootstrapping.Bootstrapping
• cli.CLIDatabaseInteraction
• log.GlobalLogger
• test.CreateTestDBSchema
• test.GetSomeDBSchema

Table 4.5: Standalone classes in db2osl

23

Note that every class hierarchy has at least one interface at its top. Classes not belonging to a
class hierarchy were chosen not to be given an interface “factitiously”, which would have made
them part of a (small) class hierarchy TODO. Deliberately, the scheme often recommended in
the Java world TODO to give every class an interface it implements was not followed but the
approach described by Stroustrup [Str13] to provide a rich set of so called “concrete types” not
designed for use within class hierarchies, which “build the foundation of every well-designed
program [Str13]” TODO. The details of this consideration are explained in section 4.6.4 – Java
interfaces. In fact, many useful types were already offered by the Java API, so they were not
re-implemented.
Class Column with its interface ReadableColumn is an exception TODO in that it was given
an interface although it is basically a concrete type. The reason for this is the chosen way to
implement const correctness, described in section Const correctness (which is part of section
4.6.4 – Classes). This technique forced class Column to implement an interface, thus needlessly
making it part of a class hierarchy, but also complicated the structure of some class hierarchies.
Consider the class hierarchy around ColumnSet, shown in the first graph TODO of figure
4.2. Definitely, it seems overly complicated at the first glance. But this complexity solely is
introduced by the artificial Readable... interfaces; would Java provide a mechanism like
C++’s const, this hierarchy would be as simple as in the following graph:

database.ColumnSet

database.Key

database.ForeignKey database.PrimaryKey

Set

Figure 4.3: ColumnSet class hierarchy in db2osl – simplified

However, TODO: still good
TODO: rest self-explanatory
For more information about the program structure on the class level, see section 4.6 – Code
style.

24

4.5 Tools employed

4.6 Code style

TODO: Conventions, ex.: iterators As the final system hopefully will have a long living cycle
TODO and will be used and refined by many people, high code quality was an important aim.
Beyond architectural issues this also involves cleanness on the lower level, like the design of
classes and the implementation of methods. Common software development principles were
followed TODO and the unfamiliar reader was constantly taken into account to yield clean,
usable and readable code.

4.6.1 Comments

Comments were used at places ambiguities or misinterpretations could arise, yet care was
taken to face such problems at their roots and solve them wherever possible instead of just
eliminating the ambiguity with comments.
Consider the following method in CLIDatabaseInteraction.java:

public static void promptAbortRetrieveDBSchemaAndWait
(final FutureTask<DBSchema> retriever) throws SQLException

It could have been called promptAbortRetrieveDBSchema only, with the waiting mentioned in
a comment. However, the waiting is such an important part of its behavior, that this wouldn’t
have been enough, so the waiting was included in the function name. Since the method is
called at one place only, the lengthening of the method name by 7 characters or about 26 %
is really not a problem.
More generally, “speaking code” was used wherever possible, as described in section 4.6.2 –
Speaking code, which rendered many uses of comments unnecessary. In fact, the number of
(plain, e.g. non-Javadoc) comments was consciously minimized, to enforce speaking code
and avoid redundancy. This technique is known TODO.
An exception of course from this is the highlighting of subdivisions. In class and method
implementations, comments like

//********************** Constructors **********************\\

were deliberately used to ease navigation inside source files for unfamiliar readers, but also
to enhance readability: independent parts of method implementations, for example, were
optically separated this way. Another alternative would have been to use separate methods
for this code pieces, as was done in other cases, and thereby sticking strictly to the so-called
“Composed Method Pattern” [Bec97]. However, sticking to this pattern too rigidly would have
introduced additional artifacts with either long or non-speaking names, would have interrupted
the reading flow and also would have increased complexity, because these methods would have
been callable at least from everywhere in the source file.
Wherever possible, the appropriate Javadoc comments were used in favor of plain comments,

25

for example to specify parameters, return types, exceptions and links to other parts of the
documentation.

4.6.2 Speaking code

As mentioned in section 4.6.1 – Comments, the use of “speaking code” as introduced TODO
renders many uses of comments unnecessary. In particular, the following aspects are commonly
considered when referring to the term “speaking code” TODO:

• Variable names
• Control flow

Variable names

A very important part of speaking code

4.6.3 Robustness against incorrect use

Care was taken to produce code that is robust to incorrect use, making it suitable for the
expected environment of sporadic updates by unfamiliar and potentially even unpracticed
programmers who very likely have their emphasis on the concepts of bootstrapping rather
than details of the present code.
In fact, carefully avoiding the introduction of technical artifacts to mind, preventing program-
mers from focusing on the actual program logic, is an important principle of writing clean
code [Str13].
In modern programming languages, of course the main instruments for achieving this are the
type system and exceptions. In particular, static type information should be used to reflect
data abstraction and the “kind” of data, an object reflects, while dynamic type information
should only be used implicitly, through dynamically dispatching method invocations [Str13].
Exceptions on the other hand should be used at any place related to errors and error handling,
separating error handling noticeably from other code and enforcing the treatment of errors,
preventing the programmer from using corrupted information in many cases.
An example of both mechanism, static type information and exceptions, acting in combination,
while cleanly fitting into the context of dynamic dispatching, are the following methods from
Column.java:

public Boolean isNonNull()
public Boolean isUnique()

There return type is the Java class Boolean, not the plain type boolean, because the in-
formation they return is not always known. In an early stage of the program, they returned
boolean and were accompanied by two methods public boolean knownIsNonNull() and
public boolean knownIsUnique(), telling the caller whether the respective information was
known and thus the value returned by isNonNull() or isUnique(), respectively, was reliable.

26

They were then changed to return the Java class Boolean and to return null pointers in case
the respective information is not known. This eliminated any possibility of using unreliable
data in favor of generating exceptions instead, in this case a NullPointerException, which
is thrown automatically by the Java Runtime Environment if the programmer forgets the
null check and tries to get a definite value from one of these methods when the correct value
currently is not known.
Comparing two unknown values – thus, two null pointers – also yields the desired result, true,
since the change, even when the programmer forgets that he deals with objects. However, when
comparing two return values of one of the methods in general – as opposed to comparing one
such return value against a constant –, errors could occur if the programmer mistakenly writes
col1.isUnique() == col2.isUnique() instead of col1.isUnique().booleanValue() ==
col2.isUnique().booleanValue(). In this case, since the two Boolean objects are compared
for identity [Sch14], the former comparison can return false, even when the two boolean values
are in fact the same. However, since this case was considered much less common than cases
in which the other solution could make programmers making mistakes produce undetected
errors, it was preferred.
TODO: more (?), summary

4.6.4 Classes

Following the object-oriented programming paradigm, classes were heavily used to abstract
from implementation details and to yield intuitively usable objects with a set of useful opera-
tions [AO08].

Identification of classes

To identify potential classes, entities from the problem domain were – if reasonable – directly
represented as Java classes. The approach of choosing “the program that most directly mod-
els the aspects of the real world that we are interested in” to yield clean code, as described and
recommended by Stroustrup [Str00], proved to be extremely useful and effective. As a conse-
quence, the code declares classes like Column, ColumnSet, ForeignKey, Table, TableSchema
and SQLType. As described in section 4.6.2 – Speaking code, class names were chosen to be
concise but nevertheless expressive TODO. Java packages were used to help attain this aim,
which is why the previously mentioned class names are unambiguous (for details about pack-
age use, see section 4.6.5 – Packages, for the description of the packages themselves and their
structuring, see section 4.4.2 – Coarse structuring).
Care was taken not to introduce unnecessary classes, thereby complicating code structure and
increasing the number of source files and program entities. Especially artificial classes, having
little or no reference to real-world objects, could most often be avoided. On the other hand
of course, it usually is not the cleanest solution to avoid such artificial classes entirely.
Section 4.4.3 – Class organization describes how the classes of db2osl are organized into class
hierarchies.

27

Const correctness

Specifying in the code which objects may be altered and which shall remain constant, thus
allowing for additional static checks preventing undesired modifications, is commonly referred
to as “const correctness” TODO.
Unfortunately, Java lacks a keyword like C++’s const, making it harder to achieve const
correctness [TE05]. It only specifies the similar keyword final, which is much less expressive
and doesn’t allow for a similarly effective error prevention [TE05]. In particular, because final
is not part of an object’s type information, it is not possible to declare methods that return
read-only objects TODO – placing a final before the method’s return type would declare the
method final. Similarly, there is no way to express that a method must not change the state
of its object parameters. A method like public f(final Object obj) is only liable to not
assigning a new value to its parameter object obj [Sch14] (which, if allowed, wouldn’t affect
the caller anyway [Sch14]). Methods changing its state, however, are allowed to be called on
obj without restrictions [Sch14].
Several possibilities were considered to address this problem:

• Not implementing const correctness, but stating the access rules in comments only
• Giving the methods which modify object states special names like

setName––USE_WITH_CARE

• Delegating changes of objects to special “editor” objects to be obtained when an object
shall be altered TODO

• Deriving classes offering the modifying methods from the read-only classes
Not implementing const correctness at all of course would have been the simplest possibility,
producing the shortest and most readable code, but since incautious manipulation of objects
would possibly have introduced subtle, hard-to-spot errors which in many cases would have
occurred under additional conditions only and at other places, for example when inserting a
Column into a ColumnSet, this method was not seriously considered.
Using intentionally angular, conspicuous names also was not considered seriously, since it
would have cluttered the code for the only sake of hopefully warning programmers of possible
errors – and not attempting to avoid them technically.
So the introduction of new classes was considered the most effective and cleanest solution, ei-
ther in the form of “editor” classes or derived classes offering the modifying methods directly.
Again – as in the identification of classes –, the most direct solution was considered the best, so
the latter form of introducing additional classes was chosen and classes like ReadableColumn,
ReadableColumnSet et cetera were introduced which offer only the read-only functionality
and usually occur in interfaces. Their counterparts including modifying methods also were
derived from them and the implications of modifications were explained in their documenta-
tion, while the issue and the approach as such were also mentioned in the documentation of
the Readable... classes. The Readable... classes can be converted to their fully-functional
counterparts via downcasting (only), thereby giving a strong hint to programmers that the
resulting objects are to be used with care.

28

Java interfaces

In Java programming, it is quiet common and often recommended, that every class has at
least one interface it implements, specifying the operations the class provides. TODO If
no obvious interface exists for a class or the desired interface name is already given to some
other entity, the interface is often given names like ITableSchema or TableSchemaInterface.
However, for a special purpose program with a relatively fixed set of classes mostly repre-
senting real-world artifacts from the problem domain, this approach was considered overly
cluttering, introducing artificial code entities for no benefit. In particular, as explained in
section TODO, all program classes either are standing alone TODO or belong to a class hier-
archy derived from at least one interface. So, except from the standalone classes, an interface
existed anyway, either “naturally” (as in the case of Key, for example) or because of the cho-
sen way to implement const correctness. In some cases, these were interfaces declared in the
program code, while in some cases, Java interfaces like Set were implemented (an obvious
choice, of course, for ColumnSet). Introducing artificial interfaces for the standalone classes
was considered unnecessary at least, if not messy.

4.6.5 Packages

As mentioned in section 4.6.4 – Classes, class names were chosen to be concise but nevertheless
expressive. This only was possible through the use of Java packages, which also helped
structure the program.
For the current, relatively limited, extent of the program which currently comprises 45 (public)
classes, a flat package structure was considered ideal, because it is simple and doesn’t stash
source files deep in subdirectories (in Java, the directory structure of the source tree is re-
quired to reflect the package structure TODO). Because also every class belongs to a package,
each source file is to be found exactly one directory below the root program source directory,
which in many cases eases their handling.
The following 11 packages exist in the program (their purpose and more details about the
package structure are described in section 4.4.2 – Coarse structuring):

• boostrapping

• cli

• database

• helpers

• log

• main

• osl

• output

• settings

• specification

• test

Each package is documented in the source code also, particularly in a file package-info.java
residing in the respective package directory. This is a common scheme supported by the
Eclipse IDE as well as the documentation generation systems javadoc and doxygen TODO
(all of which were used in the creation of the program, as described in section TODO).

29

4.7 Numbers and statistics

TODO: Retrieval times, (NC)LOC and other statistics

4.8 Versioning

30

5 Summary and future work

Für den eiligen Leser ist die Vorgehensweise zusammen mit den wesentlichen Ergebnissen am
Schluss in einer “Zusammenfassung” klar herauszustellen. Diese soll ausführlicher sein als die
“Übersicht” am Anfang der Arbeit. Auch diese Zusammenfassung soll möglichst keine Formeln
enthalten.

5.1 Summary

5.2 Future work

TODO: Software processing (and validating!) OSL

31

Appendix

Hierher gehören zur Dokumentation Tabellen, Messprotokolle, Rechnerprotokolle, Konstruk-
tionszeichnungen, kurze Programmausdrucke und Ähnliches.

32

Bibliography

[AO08] Prince Oghenekaro Asgba and Edward E. Ogheneovo. “A Comparative Analysis
of Structured and Object-Oriented Programming Methods”. In: Journal of Envi-
ronmental Management 12.4 (2008), pp. 41–46 (cit. on p. 27).

[Bec97] Kent Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1997 (cit. on p. 25).
[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. “The Semantic Web”. In: Sci-

entific American 284.5 (May 2001), pp. 34–43. url: http://www.sciam.com/
article.cfm?articleID=00048144- 10D2- 1C70- 84A9809EC588EF21 (cit. on
p. 1).

[HPZC07] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. “Accessing the
deep web.” In: Commun. ACM 50.5 (2007), pp. 94–101. url: http://dblp.uni-
trier.de/db/journals/cacm/cacm50.html#HePZC07 (cit. on p. 1).

[Sch14] H. Schildt. Java: The Complete Reference, Ninth Edition. The Complete Refer-
ence. New York, NY, USA: McGraw-Hill Education, 2014. isbn: 9780071808552
(cit. on pp. 15, 16, 27, 28).

[SGH+15] Martin G. Skjæveland, Martin Giese, Dag Hovland, Espen H. Lian, and Ar-
ild Waaler. “Engineering ontology-based access to real-world data sources”. In:
Web Semantics: Science, Services and Agents on the World Wide Web 33 (2015),
pp. 112–140 (cit. on pp. 1, 3, 4, 15).

[Str00] Bjarne Stroustrup. The C++ Programming Language. 3rd. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2000. isbn: 0201700735 (cit. on
pp. 21, 27).

[Str13] Bjarne Stroustrup. The C++ Programming Language. 4th. Boston, MA, USA:
Addison-Wesley Professional, 2013. isbn: 0321563840, 9780321563842 (cit. on
pp. 24, 26).

[TE05] Matthew S. Tschantz and Michael D. Ernst. “Javari: Adding Reference Immutabil-
ity to Java”. In: SIGPLAN Not. 40.10 (Oct. 2005), pp. 211–230. issn: 0362-1340.
doi: 10.1145/1103845.1094828 (cit. on p. 28).

[W3C09] W3C XML Core Working Group. XML Base (Second Edition). https://www.
w3.org/TR/xmlbase/. [Accessed: 2016-04-02]. 2009 (cit. on p. 4).

[W3C12] W3C OWLWorking Group. OWL 2 Web Ontology Language, Document Overview
(Second Edition). https://www.w3.org/TR/owl2-overview/. [Accessed: 2016-
04-02]. 2012 (cit. on p. 4).

[W3C12] TODO. A Direct Mapping of Relational Data to RDF. https://www.w3.org/TR/
rdb-direct-mapping/. [Accessed: 2016-04-06]. 2012 (cit. on p. 1).

33

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://dblp.uni-trier.de/db/journals/cacm/cacm50.html#HePZC07
http://dblp.uni-trier.de/db/journals/cacm/cacm50.html#HePZC07
http://dx.doi.org/10.1145/1103845.1094828
https://www.w3.org/TR/xmlbase/
https://www.w3.org/TR/xmlbase/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/rdb-direct-mapping/
https://www.w3.org/TR/rdb-direct-mapping/

	Abstract
	Kurzfassung
	Contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.3 Requirements and goals

	2 Background and related work
	2.1 Background
	2.2 Related work

	3 The OBDA Specification Language (OSL)
	3.1 Specification

	4 The db2osl software
	4.1 Functionality
	4.1.1 Description
	4.1.2 Summary

	4.2 Interface and usage
	4.2.1 User interaction and configuration
	4.2.2 Integration into systems

	4.3 The bootstrapping process
	4.4 Architecture
	4.4.1 Libraries used
	4.4.2 Coarse structuring
	4.4.3 Fine structuring

	4.5 Tools employed
	4.6 Code style
	4.6.1 Comments
	4.6.2 Speaking code
	4.6.3 Robustness against incorrect use
	4.6.4 Classes
	4.6.5 Packages

	4.7 Numbers and statistics
	4.8 Versioning

	5 Summary and future work
	5.1 Summary
	5.2 Future work

	Appendix
	Bibliography

