]> git.uio.no Git - u/mrichter/AliRoot.git/blob - ITS/AliITSClusterFinderSDD.cxx
47932b15b14a1a4a0de7d5617935cdc9e16c600b
[u/mrichter/AliRoot.git] / ITS / AliITSClusterFinderSDD.cxx
1 /**************************************************************************
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3  *                                                                        *
4  * Author: The ALICE Off-line Project.                                    *
5  * Contributors are mentioned in the code where appropriate.              *
6  *                                                                        *
7  * Permission to use, copy, modify and distribute this software and its   *
8  * documentation strictly for non-commercial purposes is hereby granted   *
9  * without fee, provided that the above copyright notice appears in all   *
10  * copies and that both the copyright notice and this permission notice   *
11  * appear in the supporting documentation. The authors make no claims     *
12  * about the suitability of this software for any purpose. It is          *
13  * provided "as is" without express or implied warranty.                  *
14  **************************************************************************/
15 #include <iostream.h>
16 #include <TFile.h>
17 #include <TMath.h>
18 #include <math.h>
19
20 #include "AliITSClusterFinderSDD.h"
21 #include "AliITSMapA1.h"
22 #include "AliITS.h"
23 #include "AliITSdigit.h"
24 #include "AliITSRawCluster.h"
25 #include "AliITSRecPoint.h"
26 #include "AliITSsegmentation.h"
27 #include "AliITSresponseSDD.h"
28 #include "AliRun.h"
29
30 ClassImp(AliITSClusterFinderSDD)
31
32 //______________________________________________________________________
33 AliITSClusterFinderSDD::AliITSClusterFinderSDD(AliITSsegmentation *seg,
34                                                AliITSresponse *response,
35                                                TClonesArray *digits,
36                                                TClonesArray *recp){
37     // standard constructor
38
39     fSegmentation = seg;
40     fResponse     = response;
41     fDigits       = digits;
42     fClusters     = recp;
43     fNclusters    = fClusters->GetEntriesFast();
44     SetCutAmplitude();
45     SetDAnode();
46     SetDTime();
47     SetMinPeak();
48     SetMinNCells();
49     SetMaxNCells();
50     SetTimeCorr();
51     SetMinCharge();
52     fMap = new AliITSMapA1(fSegmentation,fDigits,fCutAmplitude);
53 }
54 //______________________________________________________________________
55 AliITSClusterFinderSDD::AliITSClusterFinderSDD(){
56     // default constructor
57
58     fSegmentation = 0;
59     fResponse     = 0;
60     fDigits       = 0;
61     fClusters     = 0;
62     fNclusters    = 0;
63     fMap          = 0;
64     fCutAmplitude = 0;
65     SetDAnode();
66     SetDTime();
67     SetMinPeak();
68     SetMinNCells();
69     SetMaxNCells();
70     SetTimeCorr();
71     SetMinCharge();
72 }
73 //____________________________________________________________________________
74 AliITSClusterFinderSDD::~AliITSClusterFinderSDD(){
75     // destructor
76
77     if(fMap) delete fMap;
78 }
79 //______________________________________________________________________
80 void AliITSClusterFinderSDD::SetCutAmplitude(Float_t nsigma){
81     // set the signal threshold for cluster finder
82     Float_t baseline,noise,noise_after_el;
83
84     fResponse->GetNoiseParam(noise,baseline);
85     noise_after_el = ((AliITSresponseSDD*)fResponse)->GetNoiseAfterElectronics();
86     fCutAmplitude = (Int_t)((baseline + nsigma*noise_after_el));
87 }
88 //______________________________________________________________________
89 void AliITSClusterFinderSDD::Find1DClusters(){
90     // find 1D clusters
91     static AliITS *iTS = (AliITS*)gAlice->GetModule("ITS");
92   
93     // retrieve the parameters 
94     Int_t fNofMaps       = fSegmentation->Npz();
95     Int_t fMaxNofSamples = fSegmentation->Npx();
96     Int_t fNofAnodes     = fNofMaps/2;
97     Int_t dummy          = 0;
98     Float_t fTimeStep    = fSegmentation->Dpx(dummy);
99     Float_t fSddLength   = fSegmentation->Dx();
100     Float_t fDriftSpeed  = fResponse->DriftSpeed();  
101     Float_t anodePitch   = fSegmentation->Dpz(dummy);
102
103     // map the signal
104     fMap->ClearMap();
105     fMap->SetThreshold(fCutAmplitude);
106     fMap->FillMap();
107   
108     Float_t noise;
109     Float_t baseline;
110     fResponse->GetNoiseParam(noise,baseline);
111   
112     Int_t nofFoundClusters = 0;
113     Int_t i;
114     Float_t **dfadc = new Float_t*[fNofAnodes];
115     for(i=0;i<fNofAnodes;i++) dfadc[i] = new Float_t[fMaxNofSamples];
116     Float_t fadc  = 0.;
117     Float_t fadc1 = 0.;
118     Float_t fadc2 = 0.;
119     Int_t j,k,idx,l,m;
120     for(j=0;j<2;j++) {
121         for(k=0;k<fNofAnodes;k++) {
122             idx = j*fNofAnodes+k;
123             // signal (fadc) & derivative (dfadc)
124             dfadc[k][255]=0.;
125             for(l=0; l<fMaxNofSamples; l++) {
126                 fadc2=(Float_t)fMap->GetSignal(idx,l);
127                 if(l>0) fadc1=(Float_t)fMap->GetSignal(idx,l-1);
128                 if(l>0) dfadc[k][l-1] = fadc2-fadc1;
129             } // samples
130         } // anodes
131
132         for(k=0;k<fNofAnodes;k++) {
133         //cout << "Anode: " << k+1 << ", Wing: " << j+1 << endl;
134             idx = j*fNofAnodes+k;
135             Int_t imax  = 0;
136             Int_t imaxd = 0;
137             Int_t it    = 0;
138             while(it <= fMaxNofSamples-3) {
139                 imax  = it;
140                 imaxd = it;
141                 // maximum of signal          
142                 Float_t fadcmax  = 0.;
143                 Float_t dfadcmax = 0.;
144                 Int_t lthrmina   = 1;
145                 Int_t lthrmint   = 3;
146                 Int_t lthra      = 1;
147                 Int_t lthrt      = 0;
148                 for(m=0;m<20;m++) {
149                     Int_t id = it+m;
150                     if(id>=fMaxNofSamples) break;
151                     fadc=(float)fMap->GetSignal(idx,id);
152                     if(fadc > fadcmax) { fadcmax = fadc; imax = id;}
153                     if(fadc > (float)fCutAmplitude) { 
154                         lthrt++; 
155                     } // end if
156                     if(dfadc[k][id] > dfadcmax) {
157                         dfadcmax = dfadc[k][id];
158                         imaxd    = id;
159                     } // end if
160                 } // end for m
161                 it = imaxd;
162                 if(fMap->TestHit(idx,imax) == kEmpty) {it++; continue;}
163                 // cluster charge
164                 Int_t tstart = it-2;
165                 if(tstart < 0) tstart = 0;
166                 Bool_t ilcl = 0;
167                 if(lthrt >= lthrmint && lthra >= lthrmina) ilcl = 1;
168                 if(ilcl) {
169                     nofFoundClusters++;
170                     Int_t tstop      = tstart;
171                     Float_t dfadcmin = 10000.;
172                     Int_t ij;
173                     for(ij=0; ij<20; ij++) {
174                         if(tstart+ij > 255) { tstop = 255; break; }
175                         fadc=(float)fMap->GetSignal(idx,tstart+ij);
176                         if((dfadc[k][tstart+ij] < dfadcmin) && 
177                            (fadc > fCutAmplitude)) {
178                             tstop = tstart+ij+5;
179                             if(tstop > 255) tstop = 255;
180                             dfadcmin = dfadc[k][it+ij];
181                         } // end if
182                     } // end for ij
183
184                     Float_t clusterCharge = 0.;
185                     Float_t clusterAnode  = k+0.5;
186                     Float_t clusterTime   = 0.;
187                     Int_t   clusterMult   = 0;
188                     Float_t clusterPeakAmplitude = 0.;
189                     Int_t its,peakpos     = -1;
190                     Float_t n, baseline;
191                     fResponse->GetNoiseParam(n,baseline);
192                     for(its=tstart; its<=tstop; its++) {
193                         fadc=(float)fMap->GetSignal(idx,its);
194                         if(fadc>baseline) fadc -= baseline;
195                         else fadc = 0.;
196                         clusterCharge += fadc;
197                         // as a matter of fact we should take the peak
198                         // pos before FFT
199                         // to get the list of tracks !!!
200                         if(fadc > clusterPeakAmplitude) {
201                             clusterPeakAmplitude = fadc;
202                             //peakpos=fMap->GetHitIndex(idx,its);
203                             Int_t shift = (int)(fTimeCorr/fTimeStep);
204                             if(its>shift && its<(fMaxNofSamples-shift))
205                                 peakpos  = fMap->GetHitIndex(idx,its+shift);
206                             else peakpos = fMap->GetHitIndex(idx,its);
207                             if(peakpos<0) peakpos =fMap->GetHitIndex(idx,its);
208                         } // end if
209                         clusterTime += fadc*its;
210                         if(fadc > 0) clusterMult++;
211                         if(its == tstop) {
212                             clusterTime /= (clusterCharge/fTimeStep);   // ns
213                             if(clusterTime>fTimeCorr) clusterTime -=fTimeCorr;
214                             //ns
215                         } // end if
216                     } // end for its
217
218                     Float_t clusteranodePath = (clusterAnode - fNofAnodes/2)*
219                                                anodePitch;
220                     Float_t clusterDriftPath = clusterTime*fDriftSpeed;
221                     clusterDriftPath = fSddLength-clusterDriftPath;
222                     if(clusterCharge <= 0.) break;
223                     AliITSRawClusterSDD clust(j+1,//i
224                                               clusterAnode,clusterTime,//ff
225                                               clusterCharge, //f
226                                               clusterPeakAmplitude, //f
227                                               peakpos, //i
228                                               0.,0.,clusterDriftPath,//fff
229                                               clusteranodePath, //f
230                                               clusterMult, //i
231                                               0,0,0,0,0,0,0);//7*i
232                     iTS->AddCluster(1,&clust);
233                     it = tstop;
234                 } // ilcl
235                 it++;
236             } // while (samples)
237         } // anodes
238     } // detectors (2)
239
240     for(i=0;i<fNofAnodes;i++) delete[] dfadc[i];
241     delete [] dfadc;
242
243     return;
244 }
245
246
247
248 //______________________________________________________________________
249 void AliITSClusterFinderSDD::Find1DClustersE(){
250     // find 1D clusters
251     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
252     // retrieve the parameters 
253     Int_t fNofMaps = fSegmentation->Npz();
254     Int_t fMaxNofSamples = fSegmentation->Npx();
255     Int_t fNofAnodes = fNofMaps/2;
256     Int_t dummy=0;
257     Float_t fTimeStep = fSegmentation->Dpx( dummy );
258     Float_t fSddLength = fSegmentation->Dx();
259     Float_t fDriftSpeed = fResponse->DriftSpeed();
260     Float_t anodePitch = fSegmentation->Dpz( dummy );
261     Float_t n, baseline;
262     fResponse->GetNoiseParam( n, baseline );
263     // map the signal
264     fMap->ClearMap();
265     fMap->SetThreshold( fCutAmplitude );
266     fMap->FillMap();
267     
268     Int_t nClu = 0;
269     //        cout << "Search  cluster... "<< endl;
270     for( Int_t j=0; j<2; j++ ){
271         for( Int_t k=0; k<fNofAnodes; k++ ){
272             Int_t idx = j*fNofAnodes+k;
273             Bool_t on = kFALSE;
274             Int_t start = 0;
275             Int_t nTsteps = 0;
276             Float_t fmax = 0.;
277             Int_t lmax = 0;
278             Float_t charge = 0.;
279             Float_t time = 0.;
280             Float_t anode = k+0.5;
281             Int_t peakpos = -1;
282             for( Int_t l=0; l<fMaxNofSamples; l++ ){
283                 Float_t fadc = (Float_t)fMap->GetSignal( idx, l );
284                 if( fadc > 0.0 ){
285                     if( on == kFALSE && l<fMaxNofSamples-4){
286                         // star RawCluster (reset var.)
287                         Float_t fadc1 = (Float_t)fMap->GetSignal( idx, l+1 );
288                         if( fadc1 < fadc ) continue;
289                         start = l;
290                         fmax = 0.;
291                         lmax = 0;
292                         time = 0.;
293                         charge = 0.; 
294                         on = kTRUE; 
295                         nTsteps = 0;
296                     } // end if on...
297                     nTsteps++ ;
298                     if( fadc > baseline ) fadc -= baseline;
299                     else fadc=0.;
300                     charge += fadc;
301                     time += fadc*l;
302                     if( fadc > fmax ){ 
303                         fmax = fadc; 
304                         lmax = l; 
305                         Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
306                         if( l > shift && l < (fMaxNofSamples-shift) )  
307                             peakpos = fMap->GetHitIndex( idx, l+shift );
308                         else
309                             peakpos = fMap->GetHitIndex( idx, l );
310                         if( peakpos < 0) peakpos = fMap->GetHitIndex( idx, l );
311                     } // end if fadc
312                 }else{ // end fadc>0
313                     if( on == kTRUE ){        
314                         if( nTsteps > 2 ){
315                             //  min # of timesteps for a RawCluster
316                             // Found a RawCluster...
317                             Int_t stop = l-1;
318                             time /= (charge/fTimeStep);   // ns
319                                 // time = lmax*fTimeStep;   // ns
320                             if( time > fTimeCorr ) time -= fTimeCorr;   // ns
321                             Float_t anodePath = (anode - fNofAnodes/2)*anodePitch;
322                             Float_t driftPath = time*fDriftSpeed;
323                             driftPath = fSddLength-driftPath;
324                             AliITSRawClusterSDD clust(j+1,anode,time,charge,
325                                                       fmax, peakpos,0.,0.,
326                                                       driftPath,anodePath,
327                                                       nTsteps,start,stop,
328                                                       start, stop, 1, k, k );
329                             iTS->AddCluster( 1, &clust );
330                             //        clust.PrintInfo();
331                             nClu++;
332                         } // end if nTsteps
333                         on = kFALSE;
334                     } // end if on==kTRUE
335                 } // end if fadc>0
336             } // samples
337         } // anodes
338     } // wings
339     //        cout << "# Rawclusters " << nClu << endl;         
340     return; 
341 }
342 //_______________________________________________________________________
343 Int_t AliITSClusterFinderSDD::SearchPeak(Float_t *spect,Int_t xdim,Int_t zdim,
344                                          Int_t *peakX, Int_t *peakZ, 
345                                          Float_t *peakAmp, Float_t minpeak ){
346     // search peaks on a 2D cluster
347     Int_t npeak = 0;    // # peaks
348     Int_t i,j;
349     // search peaks
350     for( Int_t z=1; z<zdim-1; z++ ){
351         for( Int_t x=2; x<xdim-3; x++ ){
352             Float_t sxz = spect[x*zdim+z];
353             Float_t sxz1 = spect[(x+1)*zdim+z];
354             Float_t sxz2 = spect[(x-1)*zdim+z];
355             // search a local max. in s[x,z]
356             if( sxz < minpeak || sxz1 <= 0 || sxz2 <= 0 ) continue;
357             if( sxz >= spect[(x+1)*zdim+z  ] && sxz >= spect[(x-1)*zdim+z  ] &&
358                 sxz >= spect[x*zdim    +z+1] && sxz >= spect[x*zdim    +z-1] &&
359                 sxz >= spect[(x+1)*zdim+z+1] && sxz >= spect[(x+1)*zdim+z-1] &&
360                 sxz >= spect[(x-1)*zdim+z+1] && sxz >= spect[(x-1)*zdim+z-1] ){
361                 // peak found
362                 peakX[npeak] = x;
363                 peakZ[npeak] = z;
364                 peakAmp[npeak] = sxz;
365                 npeak++;
366             } // end if ....
367         } // end for x
368     } // end for z
369     // search groups of peaks with same amplitude.
370     Int_t *flag = new Int_t[npeak];
371     for( i=0; i<npeak; i++ ) flag[i] = 0;
372     for( i=0; i<npeak; i++ ){
373         for( j=0; j<npeak; j++ ){
374             if( i==j) continue;
375             if( flag[j] > 0 ) continue;
376             if( peakAmp[i] == peakAmp[j] && 
377                 TMath::Abs(peakX[i]-peakX[j])<=1 && 
378                 TMath::Abs(peakZ[i]-peakZ[j])<=1 ){
379                 if( flag[i] == 0) flag[i] = i+1;
380                 flag[j] = flag[i];
381             } // end if ...
382         } // end for j
383     } // end for i
384     // make average of peak groups        
385     for( i=0; i<npeak; i++ ){
386         Int_t nFlag = 1;
387         if( flag[i] <= 0 ) continue;
388         for( j=0; j<npeak; j++ ){
389             if( i==j ) continue;
390             if( flag[j] != flag[i] ) continue;
391             peakX[i] += peakX[j];
392             peakZ[i] += peakZ[j];
393             nFlag++;
394             npeak--;
395             for( Int_t k=j; k<npeak; k++ ){
396                 peakX[k] = peakX[k+1];
397                 peakZ[k] = peakZ[k+1];
398                 peakAmp[k] = peakAmp[k+1];
399                 flag[k] = flag[k+1];
400             } // end for k        
401             j--;
402         } // end for j
403         if( nFlag > 1 ){
404             peakX[i] /= nFlag;
405             peakZ[i] /= nFlag;
406         } // end fi nFlag
407     } // end for i
408     delete [] flag;
409     return( npeak );
410 }
411 //______________________________________________________________________
412 void AliITSClusterFinderSDD::PeakFunc( Int_t xdim, Int_t zdim, Float_t *par,
413                                        Float_t *spe, Float_t *integral){
414     // function used to fit the clusters
415     // par -> parameters..
416     // par[0]  number of peaks.
417     // for each peak i=1, ..., par[0]
418     //                 par[i] = Ampl.
419     //                 par[i+1] = xpos
420     //                 par[i+2] = zpos
421     //                 par[i+3] = tau
422     //                 par[i+4] = sigma.
423     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
424     const Int_t knParam = 5;
425     Int_t npeak = (Int_t)par[0];
426
427     memset( spe, 0, sizeof( Float_t )*zdim*xdim );
428
429     Int_t k = 1;
430     for( Int_t i=0; i<npeak; i++ ){
431         if( integral != 0 ) integral[i] = 0.;
432         Float_t sigmaA2 = par[k+4]*par[k+4]*2.;
433         Float_t T2 = par[k+3];   // PASCAL
434         if( electronics == 2 ) { T2 *= T2; T2 *= 2; } // OLA
435         for( Int_t z=0; z<zdim; z++ ){
436             for( Int_t x=0; x<xdim; x++ ){
437                 Float_t z2 = (z-par[k+2])*(z-par[k+2])/sigmaA2;
438                 Float_t x2 = 0.;
439                 Float_t signal = 0.;
440                 if( electronics == 1 ){ // PASCAL
441                     x2 = (x-par[k+1]+T2)/T2;
442                     signal = (x2>0.) ? par[k]*x2*exp(-x2+1.-z2) :0.0; // RCCR2
443                 //  signal =(x2>0.) ? par[k]*x2*x2*exp(-2*x2+2.-z2 ):0.0;//RCCR
444                 }else if( electronics == 2 ) { // OLA
445                     x2 = (x-par[k+1])*(x-par[k+1])/T2;
446                     signal = par[k]  * exp( -x2 - z2 );
447                 } else {
448                     cout << "Wrong SDD Electronics =" << electronics << endl;
449                     // exit( 1 );
450                 } // end if electronicx
451                 spe[x*zdim+z] += signal;
452                 if( integral != 0 ) integral[i] += signal;
453             } // end for x
454         } // end for z
455         k += knParam;
456     } // end for i
457     return;
458 }
459 //__________________________________________________________________________
460 Float_t AliITSClusterFinderSDD::ChiSqr( Int_t xdim, Int_t zdim, Float_t *spe,
461                                         Float_t *speFit ){
462     // EVALUATES UNNORMALIZED CHI-SQUARED
463     Float_t chi2 = 0.;
464     for( Int_t z=0; z<zdim; z++ ){
465         for( Int_t x=1; x<xdim-1; x++ ){
466             Int_t index = x*zdim+z;
467             Float_t tmp = spe[index] - speFit[index];
468             chi2 += tmp*tmp;
469         } // end for x
470     } // end for z
471     return( chi2 );
472 }
473 //_______________________________________________________________________
474 void AliITSClusterFinderSDD::Minim( Int_t xdim, Int_t zdim, Float_t *param,
475                                     Float_t *prm0,Float_t *steprm,
476                                     Float_t *chisqr,Float_t *spe,
477                                     Float_t *speFit ){
478     // 
479     Int_t   k, nnn, mmm, i;
480     Float_t p1, delta, d1, chisq1, p2, chisq2, t, p3, chisq3, a, b, p0, chisqt;
481     const Int_t knParam = 5;
482     Int_t npeak = (Int_t)param[0];
483     for( k=1; k<(npeak*knParam+1); k++ ) prm0[k] = param[k];
484     for( k=1; k<(npeak*knParam+1); k++ ){
485         p1 = param[k];
486         delta = steprm[k];
487         d1 = delta;
488         // ENSURE THAT STEP SIZE IS SENSIBLY LARGER THAN MACHINE ROUND OFF
489         if( fabs( p1 ) > 1.0E-6 ) 
490             if ( fabs( delta/p1 ) < 1.0E-4 ) delta = p1/1000;
491             else  delta = (Float_t)1.0E-4;
492         //  EVALUATE CHI-SQUARED AT FIRST TWO SEARCH POINTS
493         PeakFunc( xdim, zdim, param, speFit );
494         chisq1 = ChiSqr( xdim, zdim, spe, speFit );
495         p2 = p1+delta;
496         param[k] = p2;
497         PeakFunc( xdim, zdim, param, speFit );
498         chisq2 = ChiSqr( xdim, zdim, spe, speFit );
499         if( chisq1 < chisq2 ){
500             // REVERSE DIRECTION OF SEARCH IF CHI-SQUARED IS INCREASING
501             delta = -delta;
502             t = p1;
503             p1 = p2;
504             p2 = t;
505             t = chisq1;
506             chisq1 = chisq2;
507             chisq2 = t;
508         } // end if
509         i = 1; nnn = 0;
510         do {   // INCREMENT param(K) UNTIL CHI-SQUARED STARTS TO INCREASE
511             nnn++;
512             p3 = p2 + delta;
513             mmm = nnn - (nnn/5)*5;  // multiplo de 5
514             if( mmm == 0 ){
515                 d1 = delta;
516                 // INCREASE STEP SIZE IF STEPPING TOWARDS MINIMUM IS TOO SLOW 
517                 delta *= 5;
518             } // end if
519             param[k] = p3;
520             // Constrain paramiters
521             Int_t kpos = (k-1) % knParam;
522             switch( kpos ){
523             case 0 :
524                 if( param[k] <= 20 ) param[k] = fMinPeak;
525                 break;
526             case 1 :
527                 if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
528                 break;
529             case 2 :
530                 if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
531                 break;
532             case 3 :
533                 if( param[k] < .5 ) param[k] = .5;        
534                 break;
535             case 4 :
536                 if( param[k] < .288 ) param[k] = .288;        // 1/sqrt(12) = 0.288
537                 if( param[k] > zdim*.5 ) param[k] = zdim*.5;
538                 break;
539             }; // end switch
540             PeakFunc( xdim, zdim, param, speFit );
541             chisq3 = ChiSqr( xdim, zdim, spe, speFit );
542             if( chisq3 < chisq2 && nnn < 50 ){
543                 p1 = p2;
544                 p2 = p3;
545                 chisq1 = chisq2;
546                 chisq2 = chisq3;
547             }else i=0;
548         } while( i );
549         // FIND MINIMUM OF PARABOLA DEFINED BY LAST THREE POINTS
550         a = chisq1*(p2-p3)+chisq2*(p3-p1)+chisq3*(p1-p2);
551         b = chisq1*(p2*p2-p3*p3)+chisq2*(p3*p3-p1*p1)+chisq3*(p1*p1-p2*p2);
552         if( a!=0 ) p0 = (Float_t)(0.5*b/a);
553         else p0 = 10000;
554         //--IN CASE OF NEARLY EQUAL CHI-SQUARED AND TOO SMALL STEP SIZE PREVENT
555         //   ERRONEOUS EVALUATION OF PARABOLA MINIMUM
556         //---NEXT TWO LINES CAN BE OMITTED FOR HIGHER PRECISION MACHINES
557         //dp = (Float_t) max (fabs(p3-p2), fabs(p2-p1));
558         //if( fabs( p2-p0 ) > dp ) p0 = p2;
559         param[k] = p0;
560         // Constrain paramiters
561         Int_t kpos = (k-1) % knParam;
562         switch( kpos ){
563         case 0 :
564             if( param[k] <= 20 ) param[k] = fMinPeak;   
565             break;
566         case 1 :
567             if( fabs( param[k] - prm0[k] ) > 1.5 ) param[k] = prm0[k];
568             break;
569         case 2 :
570             if( fabs( param[k] - prm0[k] ) > 1. ) param[k] = prm0[k];
571             break;
572         case 3 :
573             if( param[k] < .5 ) param[k] = .5;        
574             break;
575         case 4 :
576             if( param[k] < .288 ) param[k] = .288;  // 1/sqrt(12) = 0.288
577             if( param[k] > zdim*.5 ) param[k] = zdim*.5;
578             break;
579         }; // end switch
580         PeakFunc( xdim, zdim, param, speFit );
581         chisqt = ChiSqr( xdim, zdim, spe, speFit );
582         // DO NOT ALLOW ERRONEOUS INTERPOLATION
583         if( chisqt <= *chisqr ) *chisqr = chisqt;
584         else param[k] = prm0[k];
585         // OPTIMIZE SEARCH STEP FOR EVENTUAL NEXT CALL OF MINIM
586         steprm[k] = (param[k]-prm0[k])/5;
587         if( steprm[k] >= d1 ) steprm[k] = d1/5;
588     } // end for k
589     // EVALUATE FIT AND CHI-SQUARED FOR OPTIMIZED PARAMETERS
590     PeakFunc( xdim, zdim, param, speFit );
591     *chisqr = ChiSqr( xdim, zdim, spe, speFit );
592     return;
593 }
594 //_________________________________________________________________________
595 Int_t AliITSClusterFinderSDD::NoLinearFit( Int_t xdim, Int_t zdim, 
596                                            Float_t *param, Float_t *spe, 
597                                            Int_t *niter, Float_t *chir ){
598     // fit method from Comput. Phys. Commun 46(1987) 149
599     const Float_t kchilmt = 0.01;  //        relative accuracy           
600     const Int_t   knel = 3;        //        for parabolic minimization  
601     const Int_t   knstop = 50;     //        Max. iteration number          
602     const Int_t   knParam = 5;
603     Int_t npeak = (Int_t)param[0];
604     // RETURN IF NUMBER OF DEGREES OF FREEDOM IS NOT POSITIVE 
605     if( (xdim*zdim - npeak*knParam) <= 0 ) return( -1 );
606     Float_t degFree = (xdim*zdim - npeak*knParam)-1;
607     Int_t   n, k, iterNum = 0;
608     Float_t *prm0 = new Float_t[npeak*knParam+1];
609     Float_t *step = new Float_t[npeak*knParam+1];
610     Float_t *schi = new Float_t[npeak*knParam+1]; 
611     Float_t *sprm[3];
612     sprm[0] = new Float_t[npeak*knParam+1];
613     sprm[1] = new Float_t[npeak*knParam+1];
614     sprm[2] = new Float_t[npeak*knParam+1];
615     Float_t  chi0, chi1, reldif, a, b, prmin, dp;
616     Float_t *speFit = new Float_t[ xdim*zdim ];
617     PeakFunc( xdim, zdim, param, speFit );
618     chi0 = ChiSqr( xdim, zdim, spe, speFit );
619     chi1 = chi0;
620     for( k=1; k<(npeak*knParam+1); k++) prm0[k] = param[k];
621         for( k=1 ; k<(npeak*knParam+1); k+=knParam ){
622             step[k] = param[k] / 20.0 ;
623             step[k+1] = param[k+1] / 50.0;
624             step[k+2] = param[k+2] / 50.0;                 
625             step[k+3] = param[k+3] / 20.0;                 
626             step[k+4] = param[k+4] / 20.0;                 
627         } // end for k
628     Int_t out = 0;
629     do{
630         iterNum++;
631             chi0 = chi1;
632             Minim( xdim, zdim, param, prm0, step, &chi1, spe, speFit );
633             reldif = ( chi1 > 0 ) ? ((Float_t) fabs( chi1-chi0)/chi1 ) : 0;
634         // EXIT conditions
635         if( reldif < (float) kchilmt ){
636             *chir  = (chi1>0) ? (float) TMath::Sqrt (chi1/degFree) :0;
637             *niter = iterNum;
638             out = 0;
639             break;
640         } // end if
641         if( (reldif < (float)(5*kchilmt)) && (iterNum > knstop) ){
642             *chir = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
643             *niter = iterNum;
644             out = 0;
645             break;
646         } // end if
647         if( iterNum > 5*knstop ){
648             *chir  = (chi1>0) ?(float) TMath::Sqrt (chi1/degFree):0;
649             *niter = iterNum;
650             out = 1;
651             break;
652         } // end if
653         if( iterNum <= knel ) continue;
654         n = iterNum - (iterNum/knel)*knel; // EXTRAPOLATION LIMIT COUNTER N
655         if( n > 3 || n == 0 ) continue;
656         schi[n-1] = chi1;
657         for( k=1; k<(npeak*knParam+1); k++ ) sprm[n-1][k] = param[k];
658         if( n != 3 ) continue;
659         // -EVALUATE EXTRAPOLATED VALUE OF EACH PARAMETER BY FINDING MINIMUM OF
660         //    PARABOLA DEFINED BY LAST THREE CALLS OF MINIM
661         for( k=1; k<(npeak*knParam+1); k++ ){
662             Float_t tmp0 = sprm[0][k];
663             Float_t tmp1 = sprm[1][k];
664             Float_t tmp2 = sprm[2][k];
665             a  = schi[0]*(tmp1-tmp2) + schi[1]*(tmp2-tmp0);
666             a += (schi[2]*(tmp0-tmp1));
667             b  = schi[0]*(tmp1*tmp1-tmp2*tmp2);
668             b += (schi[1]*(tmp2*tmp2-tmp0*tmp0)+(schi[2]*
669                                              (tmp0*tmp0-tmp1*tmp1)));
670             if ((double)a < 1.0E-6) prmin = 0;
671             else prmin = (float) (0.5*b/a);
672             dp = 5*(tmp2-tmp0);
673             if( fabs(prmin-tmp2) > fabs(dp) ) prmin = tmp2+dp;
674             param[k] = prmin;
675             step[k]  = dp/10; // OPTIMIZE SEARCH STEP
676         } // end for k
677     } while( kTRUE );
678     delete [] prm0;
679     delete [] step;
680     delete [] schi; 
681     delete [] sprm[0];
682     delete [] sprm[1];
683     delete [] sprm[2];
684     delete [] speFit;
685     return( out );
686 }
687
688 //______________________________________________________________________
689 void AliITSClusterFinderSDD::ResolveClustersE(){
690     // The function to resolve clusters if the clusters overlapping exists
691     Int_t i;
692     static AliITS *iTS = (AliITS*)gAlice->GetModule( "ITS" );
693     // get number of clusters for this module
694     Int_t nofClusters = fClusters->GetEntriesFast();
695     nofClusters -= fNclusters;
696     Int_t fNofMaps = fSegmentation->Npz();
697     Int_t fNofAnodes = fNofMaps/2;
698     Int_t fMaxNofSamples = fSegmentation->Npx();
699     Int_t dummy=0;
700     Double_t fTimeStep = fSegmentation->Dpx( dummy );
701     Double_t fSddLength = fSegmentation->Dx();
702     Double_t fDriftSpeed = fResponse->DriftSpeed();
703     Double_t anodePitch = fSegmentation->Dpz( dummy );
704     Float_t n, baseline;
705     fResponse->GetNoiseParam( n, baseline );
706     Int_t electronics = fResponse->Electronics(); // 1 = PASCAL, 2 = OLA
707
708     for( Int_t j=0; j<nofClusters; j++ ){ 
709         // get cluster information
710         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
711         Int_t astart = clusterJ->Astart();
712         Int_t astop = clusterJ->Astop();
713         Int_t tstart = clusterJ->Tstartf();
714         Int_t tstop = clusterJ->Tstopf();
715         Int_t wing = (Int_t)clusterJ->W();
716         if( wing == 2 ){
717             astart += fNofAnodes; 
718             astop  += fNofAnodes;
719         } // end if 
720         Int_t xdim = tstop-tstart+3;
721         Int_t zdim = astop-astart+3;
722         if(xdim > 50 || zdim > 30) { cout << "Warning: xdim: " << xdim << ", zdim: " << zdim << endl; continue; }
723         Float_t *sp = new Float_t[ xdim*zdim+1 ];
724         memset( sp, 0, sizeof(Float_t)*(xdim*zdim+1) );
725         
726         // make a local map from cluster region
727         for( Int_t ianode=astart; ianode<=astop; ianode++ ){
728             for( Int_t itime=tstart; itime<=tstop; itime++ ){
729                 Float_t fadc = fMap->GetSignal( ianode, itime );
730                 if( fadc > baseline ) fadc -= (Double_t)baseline;
731                 else fadc = 0.;
732                 Int_t index = (itime-tstart+1)*zdim+(ianode-astart+1);
733                 sp[index] = fadc;
734             } // time loop
735         } // anode loop
736         
737         // search peaks on cluster
738         const Int_t kNp = 150;
739         Int_t peakX1[kNp];
740         Int_t peakZ1[kNp];
741         Float_t peakAmp1[kNp];
742         Int_t npeak = SearchPeak(sp,xdim,zdim,peakX1,peakZ1,peakAmp1,fMinPeak);
743
744         // if multiple peaks, split cluster
745         if( npeak >= 1 )
746         {
747             //        cout << "npeak " << npeak << endl;
748             //        clusterJ->PrintInfo();
749             Float_t *par = new Float_t[npeak*5+1];
750             par[0] = (Float_t)npeak;                
751             // Initial paramiters in cell dimentions
752             Int_t k1 = 1;
753             for( i=0; i<npeak; i++ ){
754                 par[k1] = peakAmp1[i];
755                 par[k1+1] = peakX1[i]; // local time pos. [timebin]
756                 par[k1+2] = peakZ1[i]; // local anode pos. [anodepitch]
757                 if( electronics == 1 ) 
758                     par[k1+3] = 2.; // PASCAL
759                 else if( electronics == 2 ) 
760                     par[k1+3] = 0.7; // tau [timebin]  OLA 
761                 par[k1+4] = .4;    // sigma        [anodepich]
762                 k1+=5;
763             } // end for i                        
764             Int_t niter;
765             Float_t chir;                        
766             NoLinearFit( xdim, zdim, par, sp, &niter, &chir );
767             Float_t peakX[kNp];
768             Float_t peakZ[kNp];
769             Float_t sigma[kNp];
770             Float_t tau[kNp];
771             Float_t peakAmp[kNp];
772             Float_t integral[kNp];
773             //get integrals => charge for each peak
774             PeakFunc( xdim, zdim, par, sp, integral );
775             k1 = 1;
776             for( i=0; i<npeak; i++ ){
777                 peakAmp[i] = par[k1];
778                 peakX[i] = par[k1+1];
779                 peakZ[i] = par[k1+2];
780                 tau[i] = par[k1+3];
781                 sigma[i] = par[k1+4];
782                 k1+=5;
783             } // end for i
784             // calculate parameter for new clusters
785             for( i=0; i<npeak; i++ ){
786                 AliITSRawClusterSDD clusterI( *clusterJ );
787                 Int_t newAnode = peakZ1[i]-1 + astart;
788                 Int_t newiTime = peakX1[i]-1 + tstart;
789                 Int_t shift = (Int_t)(fTimeCorr/fTimeStep + 0.5);
790                 if( newiTime > shift && newiTime < (fMaxNofSamples-shift) ) 
791                     shift = 0;
792                 Int_t peakpos = fMap->GetHitIndex( newAnode, newiTime+shift );
793                 clusterI.SetPeakPos( peakpos );
794                 clusterI.SetPeakAmpl( peakAmp1[i] );
795                 Float_t newAnodef = peakZ[i] - 0.5 + astart;
796                 Float_t newiTimef = peakX[i] - 1 + tstart;
797                 if( wing == 2 ) newAnodef -= fNofAnodes; 
798                 Float_t anodePath = (newAnodef - fNofAnodes/2)*anodePitch;
799                 newiTimef *= fTimeStep;
800                 if( newiTimef > fTimeCorr ) newiTimef -= fTimeCorr;
801                 if( electronics == 1 ){
802                     newiTimef *= 0.999438;    // PASCAL
803                     newiTimef += (6./fDriftSpeed - newiTimef/3000.);
804                 }else if( electronics == 2 )
805                     newiTimef *= 0.99714;    // OLA
806                 Float_t driftPath = fSddLength - newiTimef * fDriftSpeed;
807                 Float_t sign = ( wing == 1 ) ? -1. : 1.;
808                 clusterI.SetX( driftPath*sign * 0.0001 );        
809                 clusterI.SetZ( anodePath * 0.0001 );
810                 clusterI.SetAnode( newAnodef );
811                 clusterI.SetTime( newiTimef );
812                 clusterI.SetAsigma( sigma[i]*anodePitch );
813                 clusterI.SetTsigma( tau[i]*fTimeStep );
814                 clusterI.SetQ( integral[i] );
815                 //        clusterI.PrintInfo();
816                 iTS->AddCluster( 1, &clusterI );
817             } // end for i
818             fClusters->RemoveAt( j );
819             delete [] par;
820         } else {
821             clusterJ->PrintInfo(); 
822             cout <<" --- Peak not found!!!!  minpeak=" << fMinPeak<< 
823                    " cluster peak=" << clusterJ->PeakAmpl() << 
824                    " npeak=" << npeak << endl << "xdim=" << xdim-2 << " zdim="
825                    << zdim-2 << endl << endl;
826         }
827         delete [] sp;
828     } // cluster loop
829     fClusters->Compress();
830 //    fMap->ClearMap(); 
831 }
832
833
834 //________________________________________________________________________
835 void  AliITSClusterFinderSDD::GroupClusters(){
836     // group clusters
837     Int_t dummy=0;
838     Float_t fTimeStep = fSegmentation->Dpx(dummy);
839     // get number of clusters for this module
840     Int_t nofClusters = fClusters->GetEntriesFast();
841     nofClusters -= fNclusters;
842     AliITSRawClusterSDD *clusterI;
843     AliITSRawClusterSDD *clusterJ;
844     Int_t *label = new Int_t [nofClusters];
845     Int_t i,j;
846     for(i=0; i<nofClusters; i++) label[i] = 0;
847     for(i=0; i<nofClusters; i++) { 
848         if(label[i] != 0) continue;
849         for(j=i+1; j<nofClusters; j++) { 
850             if(label[j] != 0) continue;
851             clusterI = (AliITSRawClusterSDD*) fClusters->At(i);
852             clusterJ = (AliITSRawClusterSDD*) fClusters->At(j);
853             // 1.3 good
854             if(clusterI->T() < fTimeStep*60) fDAnode = 4.2;  // TB 3.2  
855             if(clusterI->T() < fTimeStep*10) fDAnode = 1.5;  // TB 1.
856             Bool_t pair = clusterI->Brother(clusterJ,fDAnode,fDTime);
857             if(!pair) continue;
858             //      clusterI->PrintInfo();
859             //      clusterJ->PrintInfo();
860             clusterI->Add(clusterJ);
861             label[j] = 1;
862             fClusters->RemoveAt(j);
863             j=i; // <- Ernesto
864         } // J clusters  
865         label[i] = 1;
866     } // I clusters
867     fClusters->Compress();
868
869     delete [] label;
870     return;
871 }
872 //________________________________________________________________________
873 void AliITSClusterFinderSDD::SelectClusters(){
874     // get number of clusters for this module
875     Int_t nofClusters = fClusters->GetEntriesFast();
876
877     nofClusters -= fNclusters;
878     Int_t i;
879     for(i=0; i<nofClusters; i++) { 
880         AliITSRawClusterSDD *clusterI =(AliITSRawClusterSDD*) fClusters->At(i);
881         Int_t rmflg = 0;
882         Float_t wy = 0.;
883         if(clusterI->Anodes() != 0.) {
884             wy = ((Float_t) clusterI->Samples())/clusterI->Anodes();
885         } // end if
886         Int_t amp = (Int_t) clusterI->PeakAmpl();
887         Int_t cha = (Int_t) clusterI->Q();
888         if(amp < fMinPeak) rmflg = 1;  
889         if(cha < fMinCharge) rmflg = 1;
890         if(wy < fMinNCells) rmflg = 1;
891         //if(wy > fMaxNCells) rmflg = 1;
892         if(rmflg) fClusters->RemoveAt(i);
893     } // I clusters
894     fClusters->Compress();
895     return;
896 }
897 //__________________________________________________________________________
898 void AliITSClusterFinderSDD::ResolveClusters(){
899     // The function to resolve clusters if the clusters overlapping exists
900 /*    AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
901     // get number of clusters for this module
902     Int_t nofClusters = fClusters->GetEntriesFast();
903     nofClusters -= fNclusters;
904     //cout<<"Resolve Cl: nofClusters, fNclusters ="<<nofClusters<<","
905     // <<fNclusters<<endl;
906     Int_t fNofMaps = fSegmentation->Npz();
907     Int_t fNofAnodes = fNofMaps/2;
908     Int_t dummy=0;
909     Double_t fTimeStep = fSegmentation->Dpx(dummy);
910     Double_t fSddLength = fSegmentation->Dx();
911     Double_t fDriftSpeed = fResponse->DriftSpeed();
912     Double_t anodePitch = fSegmentation->Dpz(dummy);
913     Float_t n, baseline;
914     fResponse->GetNoiseParam(n,baseline);
915     Float_t dzz_1A = anodePitch * anodePitch / 12;
916     // fill Map of signals
917     fMap->FillMap(); 
918     Int_t j,i,ii,ianode,anode,itime;
919     Int_t wing,astart,astop,tstart,tstop,nanode;
920     Double_t fadc,ClusterTime;
921     Double_t q[400],x[400],z[400]; // digit charges and coordinates
922     for(j=0; j<nofClusters; j++) { 
923         AliITSRawClusterSDD *clusterJ=(AliITSRawClusterSDD*) fClusters->At(j);
924         Int_t ndigits = 0;
925         astart=clusterJ->Astart();
926         astop=clusterJ->Astop();
927         tstart=clusterJ->Tstartf();
928         tstop=clusterJ->Tstopf();
929         nanode=clusterJ->Anodes();  // <- Ernesto
930         wing=(Int_t)clusterJ->W();
931         if(wing == 2) {
932             astart += fNofAnodes; 
933             astop  += fNofAnodes;
934         }  // end if
935         // cout<<"astart,astop,tstart,tstop ="<<astart<<","<<astop<<","
936         //      <<tstart<<","<<tstop<<endl;
937         // clear the digit arrays
938         for(ii=0; ii<400; ii++) { 
939             q[ii] = 0.; 
940             x[ii] = 0.;
941             z[ii] = 0.;
942         } // end for ii
943
944         for(ianode=astart; ianode<=astop; ianode++) { 
945             for(itime=tstart; itime<=tstop; itime++) { 
946                 fadc=fMap->GetSignal(ianode,itime);
947                 if(fadc>baseline) {
948                     fadc-=(Double_t)baseline;
949                     q[ndigits] = fadc*(fTimeStep/160);  // KeV
950                     anode = ianode;
951                     if(wing == 2) anode -= fNofAnodes;
952                     z[ndigits] = (anode + 0.5 - fNofAnodes/2)*anodePitch;
953                     ClusterTime = itime*fTimeStep;
954                     if(ClusterTime > fTimeCorr) ClusterTime -= fTimeCorr;// ns
955                     x[ndigits] = fSddLength - ClusterTime*fDriftSpeed;
956                     if(wing == 1) x[ndigits] *= (-1);
957                     // cout<<"ianode,itime,fadc ="<<ianode<<","<<itime<<","
958                     //     <<fadc<<endl;
959                     // cout<<"wing,anode,ndigits,charge ="<<wing<<","
960                     //      <<anode<<","<<ndigits<<","<<q[ndigits]<<endl;
961                     ndigits++;
962                     continue;
963                 } //  end if
964                 fadc=0;
965                 //              cout<<"fadc=0, ndigits ="<<ndigits<<endl;
966             } // time loop
967         } // anode loop
968         //     cout<<"for new cluster ndigits ="<<ndigits<<endl;
969         // Fit cluster to resolve for two separate ones --------------------
970         Double_t qq=0., xm=0., zm=0., xx=0., zz=0., xz=0.;
971         Double_t dxx=0., dzz=0., dxz=0.;
972         Double_t scl = 0., tmp, tga, elps = -1.;
973         Double_t xfit[2], zfit[2], qfit[2];
974         Double_t pitchz = anodePitch*1.e-4;             // cm
975         Double_t pitchx = fTimeStep*fDriftSpeed*1.e-4;  // cm
976         Double_t sigma2;
977         Int_t nfhits;
978         Int_t nbins = ndigits;
979         Int_t separate = 0;
980         // now, all lengths are in microns
981         for (ii=0; ii<nbins; ii++) {
982             qq += q[ii];
983             xm += x[ii]*q[ii];
984             zm += z[ii]*q[ii];
985             xx += x[ii]*x[ii]*q[ii];
986             zz += z[ii]*z[ii]*q[ii];
987             xz += x[ii]*z[ii]*q[ii];
988         } // end for ii
989         xm /= qq;
990         zm /= qq;
991         xx /= qq;
992         zz /= qq;
993         xz /= qq;
994         dxx = xx - xm*xm;
995         dzz = zz - zm*zm;
996         dxz = xz - xm*zm;
997
998         // shrink the cluster in the time direction proportionaly to the 
999         // dxx/dzz, which lineary depends from the drift path
1000         // new  Ernesto........         
1001         if( nanode == 1 ){
1002             dzz = dzz_1A; // for one anode cluster dzz = anode**2/12
1003             scl = TMath::Sqrt( 7.2/(-0.57*xm*1.e-3+71.8) );
1004         } // end if
1005         if( nanode == 2 ){
1006             scl = TMath::Sqrt( (-0.18*xm*1.e-3+21.3)/(-0.57*xm*1.e-3+71.8) );
1007         } // end if
1008         if( nanode == 3 ){
1009             scl = TMath::Sqrt( (-0.5*xm*1.e-3+34.5)/(-0.57*xm*1.e-3+71.8) );
1010         } // end if
1011         if( nanode > 3 ){
1012             scl = TMath::Sqrt( (1.3*xm*1.e-3+49.)/(-0.57*xm*1.e-3+71.8) );
1013         } // end if
1014         //   cout<<"1 microns: zm,dzz,xm,dxx,dxz,qq ="<<zm<<","<<dzz<<","
1015         //  <<xm<<","<<dxx<<","<<dxz<<","<<qq<<endl;
1016         //  old Boris.........
1017         //  tmp=29730. - 585.*fabs(xm/1000.); 
1018         //  scl=TMath::Sqrt(tmp/130000.);
1019    
1020         xm *= scl;
1021         xx *= scl*scl;
1022         xz *= scl;
1023
1024         dxx = xx - xm*xm;
1025         //   dzz = zz - zm*zm;
1026         dxz = xz - xm*zm;
1027         //   cout<<"microns: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1028         // <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1029         // if(dzz < 7200.) dzz=7200.;//for one anode cluster dzz = anode**2/12
1030   
1031         if (dxx < 0.) dxx=0.;
1032         // the data if no cluster overlapping (the coordunates are in cm) 
1033         nfhits = 1;
1034         xfit[0] = xm*1.e-4;
1035         zfit[0] = zm*1.e-4;
1036         qfit[0] = qq;
1037         //   if(nbins < 7) cout<<"**** nbins ="<<nbins<<endl;
1038   
1039         if (nbins >= 7) {
1040             if (dxz==0.) tga=0.;
1041             else {
1042                 tmp=0.5*(dzz-dxx)/dxz;
1043                 tga = (dxz<0.) ? tmp-TMath::Sqrt(tmp*tmp+1) : 
1044                                                    tmp+TMath::Sqrt(tmp*tmp+1);
1045             } // end if dxz
1046             elps=(tga*tga*dxx-2*tga*dxz+dzz)/(dxx+2*tga*dxz+tga*tga*dzz);
1047             // change from microns to cm
1048             xm *= 1.e-4; 
1049             zm *= 1.e-4; 
1050             zz *= 1.e-8;
1051             xx *= 1.e-8;
1052             xz *= 1.e-8;
1053             dxz *= 1.e-8;
1054             dxx *= 1.e-8;
1055             dzz *= 1.e-8;
1056             //   cout<<"cm: zm,dzz,xm,dxx,xz,dxz,qq ="<<zm<<","<<dzz<<","
1057             //  <<xm<<","<<dxx<<","<<xz<<","<<dxz<<","<<qq<<endl;
1058             for (i=0; i<nbins; i++) {     
1059                 x[i] = x[i] *= scl;
1060                 x[i] = x[i] *= 1.e-4;
1061                 z[i] = z[i] *= 1.e-4;
1062             } // end for i
1063             //     cout<<"!!! elps ="<<elps<<endl;
1064             if (elps < 0.3) { // try to separate hits 
1065                 separate = 1;
1066                 tmp=atan(tga);
1067                 Double_t cosa=cos(tmp),sina=sin(tmp);
1068                 Double_t a1=0., x1=0., xxx=0.;
1069                 for (i=0; i<nbins; i++) {
1070                     tmp=x[i]*cosa + z[i]*sina;
1071                     if (q[i] > a1) {
1072                         a1=q[i];
1073                         x1=tmp;
1074                     } // end if
1075                     xxx += tmp*tmp*tmp*q[i];
1076                 } // end for i
1077                 xxx /= qq;
1078                 Double_t z12=-sina*xm + cosa*zm;
1079                 sigma2=(sina*sina*xx-2*cosa*sina*xz+cosa*cosa*zz) - z12*z12;
1080                 xm=cosa*xm + sina*zm;
1081                 xx=cosa*cosa*xx + 2*cosa*sina*xz + sina*sina*zz;
1082                 Double_t x2=(xx - xm*x1 - sigma2)/(xm - x1);
1083                 Double_t r=a1*2*TMath::ACos(-1.)*sigma2/(qq*pitchx*pitchz);
1084                 for (i=0; i<33; i++) { // solve a system of equations
1085                     Double_t x1_old=x1, x2_old=x2, r_old=r;
1086                     Double_t c11=x1-x2;
1087                     Double_t c12=r;
1088                     Double_t c13=1-r;
1089                     Double_t c21=x1*x1 - x2*x2;
1090                     Double_t c22=2*r*x1;
1091                     Double_t c23=2*(1-r)*x2;
1092                     Double_t c31=3*sigma2*(x1-x2) + x1*x1*x1 - x2*x2*x2;
1093                     Double_t c32=3*r*(sigma2 + x1*x1);
1094                     Double_t c33=3*(1-r)*(sigma2 + x2*x2);
1095                     Double_t f1=-(r*x1 + (1-r)*x2 - xm);
1096                     Double_t f2=-(r*(sigma2+x1*x1)+(1-r)*(sigma2+x2*x2)- xx);
1097                     Double_t f3=-(r*x1*(3*sigma2+x1*x1)+(1-r)*x2*
1098                                                          (3*sigma2+x2*x2)-xxx);
1099                     Double_t d=c11*c22*c33+c21*c32*c13+c12*c23*c31-
1100                                        c31*c22*c13 - c21*c12*c33 - c32*c23*c11;
1101                     if (d==0.) {
1102                         cout<<"*********** d=0 ***********\n";
1103                         break;
1104                     } // end if
1105                     Double_t dr=f1*c22*c33 + f2*c32*c13 + c12*c23*f3 -
1106                         f3*c22*c13 - f2*c12*c33 - c32*c23*f1;
1107                     Double_t d1=c11*f2*c33 + c21*f3*c13 + f1*c23*c31 -
1108                         c31*f2*c13 - c21*f1*c33 - f3*c23*c11;
1109                     Double_t d2=c11*c22*f3 + c21*c32*f1 + c12*f2*c31 -
1110                         c31*c22*f1 - c21*c12*f3 - c32*f2*c11;
1111                     r  += dr/d;
1112                     x1 += d1/d;
1113                     x2 += d2/d;
1114                     if (fabs(x1-x1_old) > 0.0001) continue;
1115                     if (fabs(x2-x2_old) > 0.0001) continue;
1116                     if (fabs(r-r_old)/5 > 0.001) continue;
1117                     a1=r*qq*pitchx*pitchz/(2*TMath::ACos(-1.)*sigma2);
1118                     Double_t a2=a1*(1-r)/r;
1119                     qfit[0]=a1; xfit[0]=x1*cosa - z12*sina; zfit[0]=x1*sina + 
1120                                                                 z12*cosa;
1121                     qfit[1]=a2; xfit[1]=x2*cosa - z12*sina; zfit[1]=x2*sina + 
1122                                                                 z12*cosa;
1123                     nfhits=2;
1124                     break; // Ok !
1125                 } // end for i
1126                 if (i==33) cerr<<"No more iterations ! "<<endl;
1127             } // end of attempt to separate overlapped clusters
1128         } // end of nbins cut 
1129         if(elps < 0.) cout<<" elps=-1 ="<<elps<<endl;
1130         if(elps >0. && elps< 0.3 && nfhits == 1) cout<<" small elps, nfh=1 ="
1131                                                      <<elps<<","<<nfhits<<endl;
1132         if(nfhits == 2) cout<<" nfhits=2 ="<<nfhits<<endl;
1133         for (i=0; i<nfhits; i++) {
1134             xfit[i] *= (1.e+4/scl);
1135             if(wing == 1) xfit[i] *= (-1);
1136             zfit[i] *= 1.e+4;
1137             //       cout<<" ---------  i,xfiti,zfiti,qfiti ="<<i<<","
1138             // <<xfit[i]<<","<<zfit[i]<<","<<qfit[i]<<endl;
1139         } // end for i
1140         Int_t ncl = nfhits;
1141         if(nfhits == 1 && separate == 1) {
1142             cout<<"!!!!! no separate"<<endl;
1143             ncl = -2;
1144         }  // end if
1145         if(nfhits == 2) {
1146             cout << "Split cluster: " << endl;
1147             clusterJ->PrintInfo();
1148             cout << " in: " << endl;
1149             for (i=0; i<nfhits; i++) {
1150                 // AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,
1151                                                -1,-1,(Float_t)qfit[i],ncl,0,0,
1152                                                (Float_t)xfit[i],
1153                                                (Float_t)zfit[i],0,0,0,0,
1154                                                 tstart,tstop,astart,astop);
1155             //        AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,-1,
1156             //                                 -1,(Float_t)qfit[i],0,0,0,
1157             //                                  (Float_t)xfit[i],
1158             //                                  (Float_t)zfit[i],0,0,0,0,
1159             //                                  tstart,tstop,astart,astop,ncl);
1160             // ???????????
1161             // if(wing == 1) xfit[i] *= (-1);
1162             Float_t Anode = (zfit[i]/anodePitch+fNofAnodes/2-0.5);
1163             Float_t Time = (fSddLength - xfit[i])/fDriftSpeed;
1164             Float_t clusterPeakAmplitude = clusterJ->PeakAmpl();
1165             Float_t peakpos = clusterJ->PeakPos();
1166             Float_t clusteranodePath = (Anode - fNofAnodes/2)*anodePitch;
1167             Float_t clusterDriftPath = Time*fDriftSpeed;
1168             clusterDriftPath = fSddLength-clusterDriftPath;
1169             AliITSRawClusterSDD *clust = new AliITSRawClusterSDD(wing,Anode,
1170                                                                  Time,qfit[i],
1171                                                clusterPeakAmplitude,peakpos,
1172                                                0.,0.,clusterDriftPath,
1173                                          clusteranodePath,clusterJ->Samples()/2
1174                                     ,tstart,tstop,0,0,0,astart,astop);
1175             clust->PrintInfo();
1176             iTS->AddCluster(1,clust);
1177             //        cout<<"new cluster added: tstart,tstop,astart,astop,x,ncl ="
1178             // <<tstart<<","<<tstop<<","<<astart<<","<<astop<<","<<xfit[i]
1179             // <<","<<ncl<<endl;
1180             delete clust;
1181         }// nfhits loop
1182         fClusters->RemoveAt(j);
1183     } // if nfhits = 2
1184 } // cluster loop
1185 fClusters->Compress();
1186 fMap->ClearMap(); 
1187 */
1188     return;
1189 }
1190 //______________________________________________________________________
1191 void AliITSClusterFinderSDD::GetRecPoints(){
1192     // get rec points
1193     static AliITS *iTS=(AliITS*)gAlice->GetModule("ITS");
1194     // get number of clusters for this module
1195     Int_t nofClusters = fClusters->GetEntriesFast();
1196     nofClusters -= fNclusters;
1197     const Float_t kconvGeV = 1.e-6; // GeV -> KeV
1198     const Float_t kconv = 1.0e-4; 
1199     const Float_t kRMSx = 38.0*kconv; // microns->cm ITS TDR Table 1.3
1200     const Float_t kRMSz = 28.0*kconv; // microns->cm ITS TDR Table 1.3
1201     Int_t i;
1202     Int_t ix, iz, idx=-1;
1203     AliITSdigitSDD *dig=0;
1204     Int_t ndigits=fDigits->GetEntriesFast();
1205     for(i=0; i<nofClusters; i++) { 
1206         AliITSRawClusterSDD *clusterI = (AliITSRawClusterSDD*)fClusters->At(i);
1207         if(!clusterI) Error("SDD: GetRecPoints","i clusterI ",i,clusterI);
1208         if(clusterI) idx=clusterI->PeakPos();
1209         if(idx>ndigits) Error("SDD: GetRecPoints","idx ndigits",idx,ndigits);
1210         // try peak neighbours - to be done 
1211         if(idx&&idx<= ndigits) dig =(AliITSdigitSDD*)fDigits->UncheckedAt(idx);
1212         if(!dig) {
1213             // try cog
1214             fSegmentation->GetPadIxz(clusterI->X(),clusterI->Z(),ix,iz);
1215             dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix-1);
1216             // if null try neighbours
1217             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix); 
1218             if (!dig) dig = (AliITSdigitSDD*)fMap->GetHit(iz-1,ix+1); 
1219             if (!dig) printf("SDD: cannot assign the track number!\n");
1220         } //  end if !dig
1221         AliITSRecPoint rnew;
1222         rnew.SetX(clusterI->X());
1223         rnew.SetZ(clusterI->Z());
1224         rnew.SetQ(clusterI->Q());   // in KeV - should be ADC
1225         rnew.SetdEdX(kconvGeV*clusterI->Q());
1226         rnew.SetSigmaX2(kRMSx*kRMSx);
1227         rnew.SetSigmaZ2(kRMSz*kRMSz);
1228         if(dig) rnew.fTracks[0]=dig->fTracks[0];
1229         if(dig) rnew.fTracks[1]=dig->fTracks[1];
1230         if(dig) rnew.fTracks[2]=dig->fTracks[2];
1231         //printf("SDD: i %d track1 track2 track3 %d %d %d x y %f %f\n",
1232         //         i,rnew.fTracks[0],rnew.fTracks[1],rnew.fTracks[2],c
1233         //         lusterI->X(),clusterI->Z());
1234         iTS->AddRecPoint(rnew);
1235     } // I clusters
1236 //    fMap->ClearMap();
1237 }
1238 //______________________________________________________________________
1239 void AliITSClusterFinderSDD::FindRawClusters(Int_t mod){
1240     // find raw clusters
1241     
1242     fModule = mod;
1243     
1244     Find1DClustersE();
1245     GroupClusters();
1246     SelectClusters();
1247     ResolveClustersE();
1248     GetRecPoints();
1249 }
1250 //_______________________________________________________________________
1251 void AliITSClusterFinderSDD::Print(){
1252     // Print SDD cluster finder Parameters
1253
1254     cout << "**************************************************" << endl;
1255     cout << " Silicon Drift Detector Cluster Finder Parameters " << endl;
1256     cout << "**************************************************" << endl;
1257     cout << "Number of Clusters: " << fNclusters << endl;
1258     cout << "Anode Tolerance: " << fDAnode << endl;
1259     cout << "Time  Tolerance: " << fDTime << endl;
1260     cout << "Time  correction (electronics): " << fTimeCorr << endl;
1261     cout << "Cut Amplitude (threshold): " << fCutAmplitude << endl;
1262     cout << "Minimum Amplitude: " << fMinPeak << endl;
1263     cout << "Minimum Charge: " << fMinCharge << endl;
1264     cout << "Minimum number of cells/clusters: " << fMinNCells << endl;
1265     cout << "Maximum number of cells/clusters: " << fMaxNCells << endl;
1266     cout << "**************************************************" << endl;
1267 }