]> git.uio.no Git - u/mrichter/AliRoot.git/blob - PWG2/FLOW/AliFlowCommon/AliFlowAnalysisWithMixedHarmonics.h
b99fbbdfcede49976795dcbebbfdcf7c269c54b6
[u/mrichter/AliRoot.git] / PWG2 / FLOW / AliFlowCommon / AliFlowAnalysisWithMixedHarmonics.h
1 /* 
2  * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. 
3  * See cxx source for full Copyright notice 
4  * $Id$ 
5  */
6
7 /********************************************************** 
8  * In this class azimuthal correlators in mixed harmonics *
9  * are implemented in terms of Q-vectors. This approach   *
10  * doesn't require evaluation of nested loops. This class *
11  * can be used to:                                        *
12  *                                                        *  
13  *  a) Extract subdominant harmonics (like v1 and v4);    *
14  *  b) Study flow of two-particle resonances;             *
15  *  c) Study strong parity violation.                     * 
16  *                                                        * 
17  *     Author: Ante Bilandzic (abilandzic@gmail.com)      *
18  *********************************************************/ 
19
20 #ifndef ALIFLOWANALYSISWITHMIXEDHARMONICS_H
21 #define ALIFLOWANALYSISWITHMIXEDHARMONICS_H
22
23 #include "AliFlowCommonConstants.h" // needed as include
24 #include "TMatrixD.h"
25
26 class TDirectoryFile;
27 class TList;
28 class TFile;
29 class TH1F;
30 class TH1D;
31 class TH2D;
32 class TProfile;
33 class TProfile2D;
34
35 class AliFlowEventSimple;
36 class AliFlowCommonHist;
37 class AliFlowCommonHistResults;
38
39 //================================================================================================================
40
41 class AliFlowAnalysisWithMixedHarmonics
42 {
43  public:
44   AliFlowAnalysisWithMixedHarmonics();
45   virtual ~AliFlowAnalysisWithMixedHarmonics(); 
46   // 0.) Methods called in the constructor:
47   virtual void InitializeArrays();
48
49   // 1.) Method Init() and methods called within Init():
50   virtual void Init();
51   virtual void CrossCheckSettings();
52   virtual void AccessConstants();
53   virtual void BookAndNestAllLists();
54   virtual void BookProfileHoldingSettings();
55   virtual void BookCommonHistograms();
56   virtual void BookAllEventByEventQuantities();
57   virtual void BookAllAllEventQuantities();
58   virtual void BookDefault(); // book histos and profiles without any binning in multiplicity, pt or eta
59   virtual void BookVsM();
60   virtual void BookDifferential();
61   virtual void BookAndFillWeightsHistograms();
62   virtual void StoreHarmonic();    
63   
64   // 2.) Method Make() and methods called within Make():
65   virtual void Make(AliFlowEventSimple *anEvent);
66   virtual void CheckPointersUsedInMake();
67   virtual void Calculate3pCorrelator();
68   virtual void CalculateNonIsotropicTerms();
69   virtual void CalculateDifferential3pCorrelator(Double_t &gIntegratedValue);
70                                                  
71   virtual void ResetEventByEventQuantities();
72   
73   // 3.) Method Finish() and methods called within Finish():
74   virtual void Finish();  
75   virtual void AccessSettings();       
76   virtual void CheckPointersUsedInFinish(); 
77   virtual void CorrectForDetectorEffects();
78   virtual void CorrectForDetectorEffectsVsM();
79   virtual void PrintOnTheScreen();  
80   
81   // 4.) Method GetOutputHistograms and method called within it:
82   virtual void GetOutputHistograms(TList *outputListHistos);
83   virtual void GetPointersForBaseHistograms();
84   virtual void GetPointersForCommonHistograms();
85   virtual void GetPointersForAllEventProfiles();
86   virtual void GetPointersForResultsHistograms();
87   
88   // 5.) Other methods:   
89   virtual void WriteHistograms(TString outputFileName);
90   virtual void WriteHistograms(TDirectoryFile *outputFileName);  
91   
92   // 6.) Setters and getters:
93   void SetHistList(TList* const hl) {this->fHistList = hl;}
94   TList* GetHistList() const {return this->fHistList;}  
95   void SetHistListName(const char *hln) {this->fHistListName->Append(*hln);}; 
96   TString *GetHistListName() const {return this->fHistListName;};
97   void SetHarmonic(Int_t const harmonic) {this->fHarmonic = harmonic;};
98   Int_t GetHarmonic() const {return this->fHarmonic;};  
99   void SetAnalysisLabel(const char *al) {this->fAnalysisLabel->Append(*al);}; 
100   TString *GetAnalysisLabel() const {return this->fAnalysisLabel;};
101   void SetAnalysisSettings(TProfile* const as) {this->fAnalysisSettings = as;};
102   TProfile* GetAnalysisSettings() const {return this->fAnalysisSettings;};
103   void SetNoOfMultipicityBins(Int_t const nomb) {this->fNoOfMultipicityBins = nomb;};
104   Int_t GetNoOfMultipicityBins() const {return this->fNoOfMultipicityBins;};   
105   void SetMultipicityBinWidth(Double_t const mbw) {this->fMultipicityBinWidth = mbw;};
106   Double_t GetMultipicityBinWidth() const {return this->fMultipicityBinWidth;};   
107   void SetMinMultiplicity(Double_t const mm) {this->fMinMultiplicity = mm;};
108   Double_t GetMinMultiplicity() const {return this->fMinMultiplicity;}; 
109   void SetOppositeChargesPOI(Bool_t const ocp) {this->fOppositeChargesPOI = ocp;};
110   Bool_t GetOppositeChargesPOI() const {return this->fOppositeChargesPOI;};   
111   void SetEvaluateDifferential3pCorrelator(Bool_t const ed3pc) {this->fEvaluateDifferential3pCorrelator = ed3pc;};
112   Bool_t GetEvaluateDifferential3pCorrelator() const {return this->fEvaluateDifferential3pCorrelator;}; 
113   void SetCorrectForDetectorEffects(Bool_t const cfde) {this->fCorrectForDetectorEffects = cfde;};
114   Bool_t GetCorrectForDetectorEffects() const {return this->fCorrectForDetectorEffects;}; 
115   void SetPrintOnTheScreen(Bool_t const pots) {this->fPrintOnTheScreen = pots;};
116   Bool_t GetPrintOnTheScreen() const {return this->fPrintOnTheScreen;};  
117   void SetCalculateVsM(Bool_t const cvm) {this->fCalculateVsM = cvm;};
118   Bool_t GetCalculateVsM() const {return this->fCalculateVsM;};  
119   void SetShowBinLabelsVsM(Bool_t const sblvm) {this->fShowBinLabelsVsM = sblvm;};
120   Bool_t GetShowBinLabelsVsM() const {return this->fShowBinLabelsVsM;};  
121   void SetCommonHists(AliFlowCommonHist* const ch) {this->fCommonHists = ch;};
122   AliFlowCommonHist* GetCommonHists() const {return this->fCommonHists;};
123   void SetWeightsList(TList* const wl) {this->fWeightsList = (TList*)wl->Clone();}
124   TList* GetWeightsList() const {return this->fWeightsList;}  
125   void SetUsePhiWeights(Bool_t const uPhiW) {this->fUsePhiWeights = uPhiW;};
126   Bool_t GetUsePhiWeights() const {return this->fUsePhiWeights;};
127   void SetUsePtWeights(Bool_t const uPtW) {this->fUsePtWeights = uPtW;};
128   Bool_t GetUsePtWeights() const {return this->fUsePtWeights;};
129   void SetUseEtaWeights(Bool_t const uEtaW) {this->fUseEtaWeights = uEtaW;};
130   Bool_t GetUseEtaWeights() const {return this->fUseEtaWeights;};
131   void SetUseParticleWeights(TProfile* const uPW) {this->fUseParticleWeights = uPW;};
132   TProfile* GetUseParticleWeights() const {return this->fUseParticleWeights;};
133   void SetPhiWeights(TH1F* const histPhiWeights) {this->fPhiWeights = histPhiWeights;};
134   TH1F* GetPhiWeights() const {return this->fPhiWeights;};
135   void SetPtWeights(TH1D* const histPtWeights) {this->fPtWeights = histPtWeights;};
136   TH1D* GetPtWeights() const {return this->fPtWeights;};
137   void SetEtaWeights(TH1D* const histEtaWeights) {this->fEtaWeights = histEtaWeights;};
138   TH1D* GetEtaWeights() const {return this->fEtaWeights;};
139   void SetProfileList(TList* const plist) {this->fProfileList = plist;}
140   TList* GetProfileList() const {return this->fProfileList;}  
141   void Set3pCorrelatorPro(TProfile* const s3pPro) {this->f3pCorrelatorPro = s3pPro;};
142   TProfile* Get3pCorrelatorPro() const {return this->f3pCorrelatorPro;};
143   void SetNonIsotropicTermsPro(TProfile* const nitPro) {this->fNonIsotropicTermsPro = nitPro;};
144   TProfile* GetNonIsotropicTermsPro() const {return this->fNonIsotropicTermsPro;};
145   void Set3pCorrelatorVsMPro(TProfile* const s3pVsMPro) {this->f3pCorrelatorVsMPro = s3pVsMPro;};
146   TProfile* Get3pCorrelatorVsMPro() const {return this->f3pCorrelatorVsMPro;};
147   void Set3pPOICorrelatorVsM(TProfile* const s3pPOIVsM) {this->f3pPOICorrelatorVsM = s3pPOIVsM;};
148   TProfile* Get3pPOICorrelatorVsM() const {return this->f3pPOICorrelatorVsM;};
149   void SetNonIsotropicTermsVsMPro(TProfile2D* const nitVsMPro) {this->fNonIsotropicTermsVsMPro = nitVsMPro;};
150   TProfile2D* GetNonIsotropicTermsVsMPro() const {return this->fNonIsotropicTermsVsMPro;};
151   void SetResultsList(TList* const rlist) {this->fResultsList = rlist;}
152   TList* GetResultsList() const {return this->fResultsList;}    
153   void Set3pCorrelatorHist(TH1D* const s3pHist) {this->f3pCorrelatorHist = s3pHist;};
154   TH1D* Get3pCorrelatorHist() const {return this->f3pCorrelatorHist;};    
155   void Set3pCorrelatorVsMHist(TH1D* const s3pVsMHist) {this->f3pCorrelatorVsMHist = s3pVsMHist;};
156   TH1D* Get3pCorrelatorVsMHist() const {return this->f3pCorrelatorVsMHist;};
157   void SetDetectorBiasHist(TH1D* const dbHist) {this->fDetectorBiasHist = dbHist;};
158   TH1D* GetDetectorBiasHist() const {return this->fDetectorBiasHist;};  
159   void SetDetectorBiasVsMHist(TH1D* const dbVsMHist) {this->fDetectorBiasVsMHist = dbVsMHist;};
160   TH1D* GetDetectorBiasVsMHist() const {return this->fDetectorBiasVsMHist;};  
161   void Set3pCorrelatorVsPtSumDiffPro(TProfile* const s3pcvpsd, Int_t const sd) {this->f3pCorrelatorVsPtSumDiffPro[sd] = s3pcvpsd;};
162   TProfile* Get3pCorrelatorVsPtSumDiffPro(Int_t sd) const {return this->f3pCorrelatorVsPtSumDiffPro[sd];};
163   void Set3pCorrelatorVsEtaSumDiffPro(TProfile* const s3pcvpsd, Int_t const sd) {this->f3pCorrelatorVsEtaSumDiffPro[sd] = s3pcvpsd;};
164   TProfile* Get3pCorrelatorVsEtaSumDiffPro(Int_t sd) const {return this->f3pCorrelatorVsEtaSumDiffPro[sd];};
165
166   void Set2pCorrelatorHist(TH1D* const s2pHist) {this->f2pCorrelatorHist = s2pHist;};
167   TH1D* Get2pCorrelatorHist() const {return this->f2pCorrelatorHist;};    
168
169  private:
170   AliFlowAnalysisWithMixedHarmonics(const AliFlowAnalysisWithMixedHarmonics& afawQc);
171   AliFlowAnalysisWithMixedHarmonics& operator=(const AliFlowAnalysisWithMixedHarmonics& afawQc); 
172   
173   // 0.) Base:
174   TList *fHistList; // base list to hold all output objects
175   TString *fHistListName; // name of base list
176   Int_t fHarmonic; // harmonic n in cos[n*(phi1+phi2-2phi3)] and cos[n*(psi1+psi2-2phi3)]
177   TString *fAnalysisLabel; // analysis label 
178   TProfile *fAnalysisSettings; // profile to hold analysis settings
179   Int_t fNoOfMultipicityBins; // number of multiplicity bins
180   Double_t fMultipicityBinWidth; // width of multiplicity bin
181   Double_t fMinMultiplicity; // minimal multiplicity
182   Bool_t fOppositeChargesPOI; // two POIs, psi1 and psi2, in correlator <<cos[psi1+psi2-2phi3)]>> will be taken with opposite charges
183   Bool_t fEvaluateDifferential3pCorrelator; // evaluate <<cos[psi1+psi2-2phi3)]>>, where psi1 and psi2 are two POIs 
184   Bool_t fCorrectForDetectorEffects; // correct 3-p correlator for detector effects
185   Bool_t fPrintOnTheScreen; // print or not the final results on the screen
186   Bool_t fCalculateVsM; // calculate correlators vs multiplicity
187   Bool_t fShowBinLabelsVsM; // in histograms holding results vs multiplicity show bin labels in the format M_lowEdge \leq M < M_upperEdge
188   
189   // 1.) Common:
190   AliFlowCommonHist *fCommonHists; // common control histograms (filled only with events with 3 or more tracks for 3-p correlators) 
191   Int_t fnBinsPhi; // number of phi bins
192   Double_t fPhiMin; // minimum phi   
193   Double_t fPhiMax; // maximum phi 
194   Double_t fPhiBinWidth; // bin width for phi histograms  
195   Int_t fnBinsPt; // number of pt bins
196   Double_t fPtMin; // minimum pt   
197   Double_t fPtMax; // maximum pt  
198   Double_t fPtBinWidth; // bin width for pt histograms  
199   Int_t fnBinsEta; // number of eta bins
200   Double_t fEtaMin; // minimum eta   
201   Double_t fEtaMax; // maximum eta
202   Double_t fEtaBinWidth; // bin width for eta histograms 
203   
204   // 2a.) Particle weights:
205   TList *fWeightsList; // list to hold all histograms with particle weights: fUseParticleWeights, fPhiWeights, fPtWeights and fEtaWeights
206   Bool_t fUsePhiWeights; // use phi weights
207   Bool_t fUsePtWeights; // use pt weights
208   Bool_t fUseEtaWeights; // use eta weights
209   TProfile *fUseParticleWeights; // profile with three bins to hold values of fUsePhiWeights, fUsePtWeights and fUseEtaWeights
210   TH1F *fPhiWeights; // histogram holding phi weights
211   TH1D *fPtWeights; // histogram holding phi weights
212   TH1D *fEtaWeights; // histogram holding phi weights 
213   
214   // 3.) Event-by-event quantities:
215   TMatrixD *fReQnk; // fReQ[n][k] = Re[Q_{n,k}] = sum_{i=1}^{M} w_{i}^{k} cos(n*phi_{i})
216   TMatrixD *fImQnk; // fImQ[n][k] = Im[Q_{n,k}] = sum_{i=1}^{M} w_{i}^{k} sin(n*phi_{i})
217   TMatrixD *fSpk; // fS[p][k] = S_{p,k} = (sum_{i=1}^{M} w_{i}^{k})^{p+1} // note p+1 in the power to use 0th index in p in non-trivial way
218   TProfile *fRePEBE[2]; // real part of p_n vs [(p1+p2)/2,|p1-p2|]
219   TProfile *fImPEBE[2]; // imaginary part of p_n vs [(p1+p2)/2,|p1-p2|]
220   TProfile *fOverlapEBE[2][2]; // cos[n(psi-phi)] vs [(p1+p2)/2,|p1-p2|], where phi stands for 1st/2nd POI which is also RP 
221   TProfile *fReEtaEBE[2]; // real part of p_n vs [(eta1+eta2)/2,|eta1-eta2|]
222   TProfile *fImEtaEBE[2]; // imaginary part of p_n vs [(eta1+eta2)/2,|eta1-eta2|]
223   TProfile *fOverlapEBE2[2][2]; // cos[n(psi-phi)] vs [(eta1+eta2)/2,|eta1-eta2|], where phi stands for 1st/2nd POI which is also RP 
224   
225   // 4.) Profiles:
226   TList *fProfileList; // list holding all all-event profiles 
227   TProfile *f3pCorrelatorPro; // 3-p correlator <<cos[n(phi1+phi2-2phi3)]>> (not corrected for detector effects)
228   TProfile *fNonIsotropicTermsPro; // non-isotropic terms in the decomposition of 3-p correlator <<cos[n(phi1+phi2-2phi3)]>>
229   TProfile *f3pCorrelatorVsMPro; // 3-p correlator <<cos[n(phi1+phi2-2phi3)]>> vs multiplicity
230   TProfile *f3pPOICorrelatorVsM; // 3-p correlator <<cos[n(psi1+psi2-2phi3)]>> vs multiplicity
231   TProfile2D *fNonIsotropicTermsVsMPro; // non-isotropic terms in the decomposition of <cos[n(phi1+phi2-2phi3))]> vs multiplicity
232   TProfile *f3pCorrelatorVsPtSumDiffPro[2]; // differential 3-p correlator <<cos[psi1+psi2-2phi3)]>> vs [(p1+p2)/2,|p1-p2|]
233   TProfile *f3pCorrelatorVsEtaSumDiffPro[2]; // differential 3-p correlator <<cos[psi1+psi2-2phi3)]>> vs [(eta1+eta2)/2,|eta1-eta2|]
234
235   // 5.) Final results:
236   TList *fResultsList; // list holding objects with final results 
237   TH1D *f3pCorrelatorHist; // 3-p correlator <<cos[n(phi1+phi2-2phi3)]>> corrected for detector effects
238   TH1D *fDetectorBiasHist; // bias coming from detector inefficiencies to 3-p correlator <<cos[n(phi1+phi2-2phi3)]>> (in %)
239   TH1D *f3pCorrelatorVsMHist; // 3-p correlator <<cos[n(phi1+phi2-2phi3)]>> vs multiplicity corrected for detector effects
240   TH1D *fDetectorBiasVsMHist; // bias coming from detector inefficiencies to 3-p correlator <<cos[n(phi1+phi2-2phi3)]>> (in %) versus multiplicity
241   TH1D *f2pCorrelatorHist;//<<cos[(psi1-psi2)]>>
242
243   ClassDef(AliFlowAnalysisWithMixedHarmonics, 0);
244
245 };
246
247 //================================================================================================================
248
249 #endif
250
251
252
253
254