]> git.uio.no Git - u/mrichter/AliRoot.git/blame - EMCAL/AliEMCALPID.cxx
discard assert
[u/mrichter/AliRoot.git] / EMCAL / AliEMCALPID.cxx
CommitLineData
dc293ae9 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17/* History of cvs commits:
18 *
19 * $Log$
d69ab345 20 * Revision 1.8 2006/12/19 08:49:35 gustavo
21 * New PID class for EMCAL, bayesian analysis done with ESD data, PID information filled when calling AliEMCALPID in AliEMCALReconstructor::FillESD()
22 *
dc293ae9 23 *
24 */
25// to compute PID for all the clusters in ESDs.root file
26// the ESDs.root have to be in the same directory as the class
27//
28//
29//
30//
31//
32// AliEMCALPID::CalculPID(Energy,Lambda0)
33// Calcul PID for all clusters in AliESDs.root file
34// keep this function for the moment for a simple verification, could be removed
35//
36//
37//
38// AliEMCALPID::CalculPID(Energy,Lambda0)
39// calcul PID Weght for a cluster with Energy, Lambda0 .
40// Double_t PIDFinal[AliPID::kSPECIESN] is the standard PID for :
41//
42//
43//
44// kElectron : fPIDFinal[0]
45// kMuon : fPIDFinal[1]
46// kPion : fPIDFinal[2]
47// kKaon : fPIDFinal[3]
48// kProton : fPIDFinal[4]
49// kPhoton : fPIDFinal[5]
50// kPi0 : fPIDFinal[6]
51// kNeutron : fPIDFinal[7]
52// kKaon0 : fPIDFinal[8]
53// kEleCon : fPIDFinal[9]
54// kUnknown : fPIDFinal[10]
55//
56//
57// PID[3] is a simple PID for
58// Electron & Photon PID[0]
59// Pi0 PID[1]
60// Hadron PID[2]
61//
62//
63//
64//
65//
66// --- ROOT system ---
67
68// standard C++ includes
69#include <Riostream.h>
70// #include <cstdlib>
71// #include <cmath>
72
73// ROOT includes
74#include "TTree.h"
75#include "TStyle.h"
76#include "TVector3.h"
77#include "TBranch.h"
78#include "TClonesArray.h"
79#include "TCanvas.h"
80#include "TLorentzVector.h"
81#include "TMath.h"
82#include "TFile.h"
83#include "TH1.h"
84#include "TH2.h"
85#include "TParticle.h"
86
87// // STEER includes
88// #include "AliRun.h"
89// #include "AliRunLoader.h"
90// #include "AliHeader.h"
91// #include "AliLoader.h"
92// #include "AliStack.h"
93// #include "AliESDtrack.h"
94// #include "AliESD.h"
95#include "AliLog.h"
96#include "AliEMCALPID.h"
97
98ClassImp(AliEMCALPID)
99
100AliEMCALPID::AliEMCALPID()
101{
102//
103// Constructor.
104// Initialize all constant values which have to be used
105// during PID algorithm execution
106//
107
108 // set flag for printing to FALSE by default
109 fPrintInfo = kFALSE;
110
111 // as a first step, all array elements are initialized to 0.0
112 Int_t i, j;
113 for (i = 0; i < 6; i++) {
114 for (j = 0; j < 6; j++) {
115 fGamma[i][j] = fHadron[i][j] = fPiZero5to10[i][j] = fPiZero10to60[i][j] = 0.;
116 }
117 }
118
119 // then, only the ones which must be not zero are initialized
120 // while the others will remain to the value 0.0
121
122 fGamma[0][0] = 0.038022;
123 fGamma[0][1] = -0.0001883;
124 fGamma[0][2] = 5.449e-06;
125
126 fGamma[1][0] = 0.207313;
127 fGamma[1][1] = -0.000978;
128 fGamma[1][2] = 0.00001634;
129
130 fGamma[2][0] = 0.043364;
131 fGamma[2][1] = -0.0002048;
132 fGamma[2][2] = 8.661e-06;
133 fGamma[2][3] = -1.353e-07;
134
135 fGamma[3][0] = 0.265004;
136 fGamma[3][1] = 0.061298;
137 fGamma[3][2] = -0.003203;
138 fGamma[3][3] = 4.73e-05;
139
140 fGamma[4][0] = 0.243579;
141 fGamma[4][1] = -1.614e-05;
142
143 fGamma[5][0] = 0.002942;
144 fGamma[5][1] = -3.976e-05;
145
146 fHadron[0][0] = 0.011945 / 3.;
147 fHadron[0][1] = 0.000386 / 3.;
148 fHadron[0][2] = -0.000014 / 3.;
149 fHadron[0][3] = 1.336e-07 / 3.;
150
151 fHadron[1][0] = 0.496544;
152 fHadron[1][1] = -0.003226;
153 fHadron[1][2] = 0.00001678;
154
155 fHadron[2][0] = 0.144838;
156 fHadron[2][1] = -0.002954;
157 fHadron[2][2] = 0.00008754;
158 fHadron[2][3] = -7.587e-07;
159
160 fHadron[3][0] = 1.264461 / 7.;
161 fHadron[3][1] = 0.002097 / 7.;
162
163 fHadron[4][0] = 0.261950;
164 fHadron[4][1] = -0.001078;
165 fHadron[4][2] = 0.00003237;
166 fHadron[4][3] = -3.241e-07;
167 fHadron[4][4] = 0.;
168 fHadron[4][5] = 0.;
169 fHadron[5][0] = 0.010317;
170 fHadron[5][1] = 0.;
171 fHadron[5][2] = 0.;
172 fHadron[5][3] = 0.;
173 fHadron[5][4] = 0.;
174 fHadron[5][5] = 0.;
175
176 fPiZero5to10[0][0] = 0.009138;
177 fPiZero5to10[0][1] = 0.0006377;
178
179 fPiZero5to10[1][0] = 0.08;
180
181 fPiZero5to10[2][0] = -0.061119;
182 fPiZero5to10[2][1] = 0.019013;
183
184 fPiZero5to10[3][0] = 0.2;
185
186 fPiZero5to10[4][0] = 0.252044;
187 fPiZero5to10[4][1] = -0.002315;
188
189 fPiZero5to10[5][0] = 0.002942;
190 fPiZero5to10[5][1] = -3.976e-05;
191
192 fPiZero10to60[0][0] = 0.009138;
193 fPiZero10to60[0][1] = 0.0006377;
194
195 fPiZero10to60[1][0] = 1.272837;
196 fPiZero10to60[1][1] = -0.069708;
197 fPiZero10to60[1][2] = 0.001568;
198 fPiZero10to60[1][3] = -1.162e-05;
199
200 fPiZero10to60[2][0] = 0.139703;
201 fPiZero10to60[2][1] = 0.003687;
202 fPiZero10to60[2][2] = -0.000568;
203 fPiZero10to60[2][3] = 1.498e-05;
204 fPiZero10to60[2][4] = -1.174e-07;
205
206 fPiZero10to60[3][0] = -0.826367;
207 fPiZero10to60[3][1] = 0.096951;
208 fPiZero10to60[3][2] = -0.002215;
209 fPiZero10to60[3][3] = 2.523e-05;
210
211 fPiZero10to60[4][0] = 0.249890;
212 fPiZero10to60[4][1] = -0.000063;
213
214 fPiZero10to60[5][0] = 0.002942;
215 fPiZero10to60[5][1] = -3.976e-05;
216
217 fPIDWeight[0] = -1;
218 fPIDWeight[1] = -1;
219 fPIDWeight[2] = -1;
220 fReconstructor = kFALSE;
221}
222//
223//
224void AliEMCALPID::RunPID(AliESD *esd)
225{
226//
227// Make the PID for all the EMCAL clusters containedin the ESDs File
228// but just gamma/PiO/Hadron
229//
230 // trivial check against NULL object passed
231
232 if (esd == 0x0) {
233 AliInfo("NULL ESD object passed!!" );
234 return ;
235 }
236 Int_t nClusters = esd->GetNumberOfEMCALClusters();
237 Int_t firstCluster = esd->GetFirstEMCALCluster();
238 Double_t energy, lambda0;
239 for (Int_t iCluster = firstCluster; iCluster < (nClusters + firstCluster); iCluster++) {
240
241 AliESDCaloCluster *clust = esd->GetCaloCluster(iCluster);
242 energy = clust->GetClusterEnergy();
243 lambda0 = clust->GetM02();
244 // verify cluster type
245 Int_t clusterType= clust->GetClusterType();
246 if (clusterType == AliESDCaloCluster::kClusterv1 && lambda0 != 0 && energy > 5 && energy < 1000) {
247 // reject clusters with lambda0 = 0
248 // reject clusters with energy < 5 GeV
249 ComputePID(energy, lambda0);
250 if (fPrintInfo) {
251 AliInfo("___________________________________________________");
252 AliInfo(Form( "Particle Energy = %f",energy));
253 AliInfo(Form( "Particle Lambda0 of the particle = %f", lambda0) );
254 AliInfo("PIDWeight of the particle :" );
255 AliInfo(Form( " GAMMA : %f",fPID[0] ));
256 AliInfo(Form( " PiZero : %f",fPID[1] ));
257 AliInfo(Form( " HADRON : %f", fPID[2] ));
258 AliInfo("_________________________________________");
259 AliInfo(Form( " kElectron : %f", fPIDFinal[0]) );
260 AliInfo(Form( " kMuon : %f", fPIDFinal[1] ));
261 AliInfo(Form( " kPion : %f", fPIDFinal[2] ));
262 AliInfo(Form( " kKaon : %f", fPIDFinal[3] ));
263 AliInfo(Form( " kProton : %f", fPIDFinal[4] ));
264 AliInfo(Form( " kPhoton : %f", fPIDFinal[5] ));
265 AliInfo(Form( " kPi0 : %f", fPIDFinal[6] ));
266 AliInfo(Form( " kNeutron : %f", fPIDFinal[7] ));
267 AliInfo(Form( " kKaon0 : %f", fPIDFinal[8] ));
268 AliInfo(Form( " kEleCon : %f", fPIDFinal[9] ));
269 AliInfo(Form( " kUnknown : %f", fPIDFinal[10] ));
270 AliInfo("___________________________________________________");
271 }
272 if(fReconstructor) // In case it is called during reconstruction.
273 clust->SetPid(fPIDFinal);
274 } // end if (clusterType...)
275 } // end for (iCluster...)
276}
277//
278//
279void AliEMCALPID::ComputePID(Double_t energy, Double_t lambda0)
280{
281//
282// This is the main command, which uses the distributions computed and parametrised,
283// and gives the PID by the bayesian method.
284//
285 TArrayD paramDistribGamma = DistLambda0(energy, 1);
286 TArrayD paramDistribPiZero = DistLambda0(energy, 2);
287 TArrayD paramDistribHadron = DistLambda0(energy, 3);
288
289 Bool_t norm = kFALSE;
290
291 fProbGamma = TMath::Gaus(lambda0, paramDistribGamma[1], paramDistribGamma[2], norm) * paramDistribGamma[0];
292 fProbGamma += TMath::Landau(lambda0, paramDistribGamma[4], paramDistribGamma[5], norm) * paramDistribGamma[3];
293 fProbPiZero = TMath::Gaus(lambda0, paramDistribPiZero[1], paramDistribPiZero[2], norm) * paramDistribPiZero[0];
294 fProbPiZero += TMath::Landau(lambda0, paramDistribPiZero[4], paramDistribPiZero[5], norm) * paramDistribPiZero[3];
295 fProbHadron = TMath::Gaus(lambda0, paramDistribHadron[1], paramDistribHadron[2], norm) * paramDistribHadron[0];
296 fProbHadron += TMath::Landau(lambda0, paramDistribHadron[4], paramDistribHadron[5], norm) * paramDistribHadron[3];
297
298 // compute PID Weight
299 fPIDWeight[0] = fProbGamma / (fProbGamma + fProbPiZero + fProbHadron);
300 fPIDWeight[1] = fProbPiZero / (fProbGamma+fProbPiZero+fProbHadron);
301 fPIDWeight[2] = fProbHadron / (fProbGamma+fProbPiZero+fProbHadron);
302
303 SetPID(fPIDWeight[0], 0);
304 SetPID(fPIDWeight[1], 1);
305 SetPID(fPIDWeight[2], 2);
306
307 // sortie ecran pid Weight only for control (= in english ???)
308 if (fPrintInfo) {
309 AliInfo(Form( "Energy in loop = %f", energy) );
310 AliInfo(Form( "Lambda0 in loop = %f", lambda0) );
311 AliInfo(Form( "fProbGamma in loop = %f", fProbGamma) );
312 // AliInfo(Form( "fParametresDistribGamma[2] = %f", fParamDistribGamma[2]) );
313 AliInfo(Form( "fProbaPiZero = %f", fProbPiZero ));
314 AliInfo(Form( "fProbaHadron = %f", fProbHadron) );
315 AliInfo(Form( "PIDWeight in loop = %f ||| %f ||| %f", fPIDWeight[0] , fPIDWeight[1], fPIDWeight[2]) );
316 AliInfo(Form( "fGamma[2][2] = %f", fGamma[2][2] ));
317 AliInfo("********************************************************" );
318 }
319
320 fPIDFinal[0] = fPIDWeight[0]/2;
321 fPIDFinal[1] = fPIDWeight[2]/8;
322 fPIDFinal[2] = fPIDWeight[2]/8;
323 fPIDFinal[3] = fPIDWeight[2]/8;
324 fPIDFinal[4] = fPIDWeight[2]/8;
325 fPIDFinal[5] = fPIDWeight[0]/2;
326 fPIDFinal[6] = fPIDWeight[1]/2;
327 fPIDFinal[7] = fPIDWeight[2]/8;
328 fPIDFinal[8] = fPIDWeight[2]/8;
329 fPIDFinal[9] = fPIDWeight[2]/8;
330 fPIDFinal[10] = fPIDWeight[2]/8;
dc293ae9 331}
332//
333//
334TArrayD AliEMCALPID::DistLambda0(Double_t energy, Int_t type)
335{
336//
337// Compute the values of the parametrised distributions using the data initialised before.
338//
339 Double_t constGauss = 0., meanGauss = 0., sigmaGauss = 0.;
340 Double_t constLandau=0., mpvLandau=0., sigmaLandau=0.;
341 TArrayD distributionParam(6);
342
343 switch (type) {
344 case 1:
345 constGauss = Polynomial(energy, fGamma[0]);
346 meanGauss = Polynomial(energy, fGamma[1]);
347 sigmaGauss = Polynomial(energy, fGamma[2]);
348 constLandau = Polynomial(energy, fGamma[3]);
349 mpvLandau = Polynomial(energy, fGamma[4]);
350 sigmaLandau = Polynomial(energy, fGamma[5]);
351 break;
352 case 2:
353 if (energy < 10) {
354 constGauss = Polynomial(energy, fPiZero5to10[0]);
355 meanGauss = Polynomial(energy, fPiZero5to10[1]);
356 sigmaGauss = Polynomial(energy, fPiZero5to10[2]);
357 constLandau = Polynomial(energy, fPiZero5to10[3]);
358 mpvLandau = Polynomial(energy, fPiZero5to10[4]);
359 sigmaLandau = Polynomial(energy, fPiZero5to10[5]);
360 }
361 else {
362 constGauss = Polynomial(energy, fPiZero10to60[0]);
363 meanGauss = Polynomial(energy, fPiZero10to60[1]);
364 sigmaGauss = Polynomial(energy, fPiZero10to60[2]);
365 constLandau = Polynomial(energy, fPiZero10to60[3]);
366 mpvLandau = Polynomial(energy, fPiZero10to60[4]);
367 sigmaLandau = Polynomial(energy, fPiZero10to60[5]);
368 }
369 break;
370 case 3:
371 constGauss = Polynomial(energy, fHadron[0]);
372 meanGauss = Polynomial(energy, fHadron[1]);
373 sigmaGauss = Polynomial(energy, fHadron[2]);
374 constLandau = Polynomial(energy, fHadron[3]);
375 mpvLandau = Polynomial(energy, fHadron[4]);
376 sigmaLandau = Polynomial(energy, fHadron[5]);
377 break;
378 }
379
380 distributionParam[0] = constGauss;
381 distributionParam[1] = meanGauss;
382 distributionParam[2] = sigmaGauss;
383 distributionParam[3] = constLandau;
384 distributionParam[4] = mpvLandau;
385 distributionParam[5] = sigmaLandau;
386
387 return distributionParam;
388}
389//
390//
391Double_t AliEMCALPID::Polynomial(Double_t x, Double_t *params)
392{
393//
394// Compute a polynomial for a given value of 'x'
395// with the array of parameters passed as the second arg
396//
397 Double_t y;
398 y = params[0];
399 y += params[1] * x;
400 y += params[2] * x * x;
401 y += params[3] * x * x * x;
402 y += params[4] * x * x * x * x;
403 y += params[5] * x * x * x * x * x;
404
405 return y;
406}