]> git.uio.no Git - u/mrichter/AliRoot.git/blame - EMCAL/AliEMCALUnfolding.cxx
Macro and default object for the new Pb-Pb entry.
[u/mrichter/AliRoot.git] / EMCAL / AliEMCALUnfolding.cxx
CommitLineData
71332f0e 1/**************************************************************************\r\r
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *\r\r
3 * *\r\r
4 * Author: The ALICE Off-line Project. *\r\r
5 * Contributors are mentioned in the code where appropriate. *\r\r
6 * *\r\r
7 * Permission to use, copy, modify and distribute this software and its *\r\r
8 * documentation strictly for non-commercial purposes is hereby granted *\r\r
9 * without fee, provided that the above copyright notice appears in all *\r\r
10 * copies and that both the copyright notice and this permission notice *\r\r
11 * appear in the supporting documentation. The authors make no claims *\r\r
12 * about the suitability of this software for any purpose. It is *\r\r
13 * provided "as is" without express or implied warranty. *\r\r
14 **************************************************************************/\r\r
15\r\r
16//_________________________________________________________________________\r\r
17// Base class for the cluster unfolding algorithm \r\r
18//*-- Author: Adam Matyja (SUBATECH)\r\r
19// Based on unfolding in clusterizerv1 done by Cynthia Hadjidakis\r\r
20//-- Unfolding for eta~0: Cynthia Hadjidakis - still in AliEMCALCLusterizerv1\r\r
21//-- Unfolding extension for whole EMCAL: Adam Matyja (SUBATECH & INP PAN)\r\r
22//\r\r
23// unfolds the clusters having several local maxima. \r\r
24//////////////////////////////////////////////////////////////////////////////\r\r
25\r\r
26// --- ROOT system ---\r\r
27#include "TClonesArray.h"\r\r
28//#include "TTree.h"\r\r
29//#include <TFile.h> \r\r
30//class TFolder;\r\r
31#include <TMath.h> \r\r
32#include <TMinuit.h>\r\r
33//#include <TTree.h> \r\r
34//class TSystem; \r\r
35//#include <TBenchmark.h>\r\r
36//#include <TBrowser.h>\r\r
37//#include <TROOT.h>\r\r
38\r\r
39// --- Standard library ---\r\r
40#include <cassert>\r\r
41\r\r
42// --- AliRoot header files ---\r\r
43#include "AliEMCALUnfolding.h"\r\r
44#include "AliEMCALGeometry.h"\r\r
45#include "AliRunLoader.h"\r\r
46#include "AliRun.h"\r\r
47#include "AliEMCAL.h"\r\r
48#include "AliEMCALRecParam.h"\r\r
49#include "AliEMCALRecPoint.h"\r\r
50#include "AliEMCALDigit.h"\r\r
51#include "AliEMCALReconstructor.h"\r\r
52//#include "AliEMCALClusterizer.h"\r\r
53\r\r
54\r\r
55\r\r
56#include "AliLog.h"\r\r
57\r\r
58#include "AliCDBManager.h"\r\r
59//#include "AliCaloCalibPedestal.h"\r\r
60//#include "AliEMCALCalibData.h"\r\r
61class AliCDBStorage;\r\r
62#include "AliCDBEntry.h"\r\r
63\r\r
64Double_t AliEMCALUnfolding::fSSPars[8]={0.9262,3.365,1.548,0.1625,-0.4195,0.,0.,2.332};\r\r
65Double_t AliEMCALUnfolding::fPar5[3]={12.31,-0.007381,-0.06936};\r\r
66Double_t AliEMCALUnfolding::fPar6[3]={0.05452,0.0001228,0.001361};\r\r
67\r\r
68ClassImp(AliEMCALUnfolding)\r\r
69 \r\r
70//____________________________________________________________________________\r\r
71AliEMCALUnfolding::AliEMCALUnfolding():\r\r
72 fNumberOfECAClusters(0),\r\r
73 fECALocMaxCut(0),\r\r
74 fThreshold(0.01),//10 MeV\r\r
75 fGeom(NULL),\r\r
76 fRecPoints(NULL),\r\r
77 fDigitsArr(NULL)\r\r
78{\r\r
79 // ctor with the indication of the file where header Tree and digits Tree are stored\r\r
80 \r\r
81 Init() ;\r\r
82}\r\r
83\r\r
84//____________________________________________________________________________\r\r
85AliEMCALUnfolding::AliEMCALUnfolding(AliEMCALGeometry* geometry):\r\r
86 fNumberOfECAClusters(0),\r\r
87 fECALocMaxCut(0),\r\r
88 fThreshold(0.01),//10 MeV\r\r
89 fGeom(geometry),\r\r
90 fRecPoints(NULL),\r\r
91 fDigitsArr(NULL)\r\r
92{\r\r
93 // ctor with the indication of the file where header Tree and digits Tree are stored\r\r
94 // use this contructor to avoid usage of Init() which uses runloader\r\r
95 // change needed by HLT - MP\r\r
96 if (!fGeom)\r\r
97 {\r\r
98 AliFatal("AliEMCALUnfolding: Geometry not initialized.");\r\r
99 }\r\r
100 \r\r
101}\r\r
102\r\r
103//____________________________________________________________________________\r\r
104AliEMCALUnfolding::AliEMCALUnfolding(AliEMCALGeometry* geometry,Float_t ECALocMaxCut,Double_t *SSPars,Double_t *Par5,Double_t *Par6):\r\r
105 fNumberOfECAClusters(0),\r\r
106 fECALocMaxCut(ECALocMaxCut),\r\r
107 fThreshold(0.01),//10 MeV\r\r
108 fGeom(geometry),\r\r
109 fRecPoints(NULL),\r\r
110 fDigitsArr(NULL)\r\r
111{\r\r
112 // ctor with the indication of the file where header Tree and digits Tree are stored\r\r
113 // use this contructor to avoid usage of Init() which uses runloader\r\r
114 // change needed by HLT - MP\r\r
115 if (!fGeom)\r\r
116 {\r\r
117 AliFatal("AliEMCALUnfolding: Geometry not initialized.");\r\r
118 }\r\r
119 Int_t i=0;\r\r
120 for (i = 0; i < 8; i++) fSSPars[i] = SSPars[i];\r\r
121 for (i = 0; i < 3; i++) {\r\r
122 fPar5[i] = Par5[i];\r\r
123 fPar6[i] = Par6[i];\r\r
124 }\r\r
125\r\r
126}\r\r
127\r\r
128//____________________________________________________________________________\r\r
129void AliEMCALUnfolding::Init()\r\r
130{\r\r
131 // Make all memory allocations which can not be done in default constructor.\r\r
132 // Attach the Clusterizer task to the list of EMCAL tasks\r\r
133\r\r
134 AliRunLoader *rl = AliRunLoader::Instance();\r\r
135 if (rl && rl->GetAliRun()){\r\r
136 AliEMCAL* emcal = dynamic_cast<AliEMCAL*>(rl->GetAliRun()->GetDetector("EMCAL"));\r\r
137 if(emcal)fGeom = emcal->GetGeometry();\r\r
138 }\r\r
139 \r\r
140 if(!fGeom)\r\r
141 fGeom = AliEMCALGeometry::GetInstance(AliEMCALGeometry::GetDefaultGeometryName());\r\r
142 \r\r
143 AliDebug(1,Form("geom %p",fGeom));\r\r
144 \r\r
145 if(!gMinuit) \r\r
146 gMinuit = new TMinuit(100) ;\r\r
147 \r\r
148}\r\r
149\r\r
150//____________________________________________________________________________\r\r
151 AliEMCALUnfolding::~AliEMCALUnfolding()\r\r
152{\r\r
153 // dtor\r\r
154}\r\r
155\r\r
156//____________________________________________________________________________\r\r
157void AliEMCALUnfolding::SetInput(Int_t numberOfECAClusters,TObjArray *recPoints,TClonesArray *digitsArr)\r\r
158{\r\r
159 //\r\r
160 //Set input for unfolding purposes\r\r
161 SetNumberOfECAClusters(numberOfECAClusters);\r\r
162 SetRecPoints(recPoints);\r\r
163 SetDigitsArr(digitsArr);\r\r
164}\r\r
165\r\r
166//____________________________________________________________________________\r\r
167void AliEMCALUnfolding::MakeUnfolding()\r\r
168{\r\r
169 // Unfolds clusters using the shape of an ElectroMagnetic shower\r\r
170 // Performs unfolding of all clusters\r\r
171 \r\r
172 if(fNumberOfECAClusters > 0){\r\r
173 if (fGeom==0)\r\r
174 AliFatal("Did not get geometry from EMCALLoader") ;\r\r
175 //Int_t nModulesToUnfold = fGeom->GetNCells();\r\r
176 \r\r
177 Int_t numberofNotUnfolded = fNumberOfECAClusters ;\r\r
178 Int_t index ;\r\r
179 for(index = 0 ; index < numberofNotUnfolded ; index++){\r\r
180 AliEMCALRecPoint * recPoint = dynamic_cast<AliEMCALRecPoint *>( fRecPoints->At(index) ) ;\r\r
181 if(recPoint){\r\r
182 //do we really need it?\r\r
183 // TVector3 gpos;\r\r
184 // Int_t absId = -1;\r\r
185 // recPoint->GetGlobalPosition(gpos);\r\r
186 // fGeom->GetAbsCellIdFromEtaPhi(gpos.Eta(),gpos.Phi(),absId);\r\r
187 // if(absId > nModulesToUnfold)\r\r
188 // break ;\r\r
189 \r\r
190 Int_t nMultipl = recPoint->GetMultiplicity() ;\r\r
191 AliEMCALDigit ** maxAt = new AliEMCALDigit*[nMultipl] ;\r\r
192 Float_t * maxAtEnergy = new Float_t[nMultipl] ;\r\r
193 Int_t nMax = recPoint->GetNumberOfLocalMax(maxAt, maxAtEnergy,fECALocMaxCut,fDigitsArr) ;\r\r
194 \r\r
195 if( nMax > 1 ) { // if cluster is very flat (no pronounced maximum) then nMax = 0\r\r
196 if(UnfoldClusterV2(recPoint, nMax, maxAt, maxAtEnergy) ){\r\r
197 fRecPoints->Remove(recPoint);\r\r
198 fRecPoints->Compress() ;//is it really needed\r\r
199 index-- ;\r\r
200 fNumberOfECAClusters-- ;\r\r
201 numberofNotUnfolded-- ;\r\r
202 }\r\r
203 }\r\r
204 else{\r\r
205 recPoint->SetNExMax(1) ; //Only one local maximum\r\r
206 }\r\r
207 \r\r
208 delete[] maxAt ;\r\r
209 delete[] maxAtEnergy ;\r\r
210 } else AliError("RecPoint NULL");\r\r
211 } // rec point loop\r\r
212 }\r\r
213 // End of Unfolding of clusters\r\r
214}\r\r
215\r\r
216//____________________________________________________________________________\r\r
217Bool_t AliEMCALUnfolding::UnfoldClusterV2(AliEMCALRecPoint * iniTower, \r\r
218 Int_t nMax, \r\r
219 AliEMCALDigit ** maxAt, \r\r
220 Float_t * maxAtEnergy)\r\r
221{\r\r
222 // Extended to whole EMCAL \r\r
223\r\r
224 //**************************** part 1 *******************************************\r\r
225 // Performs the unfolding of a cluster with nMax overlapping showers \r\r
226 \r\r
227 Int_t nPar = 3 * nMax ;\r\r
228 Float_t * fitparameters = new Float_t[nPar] ;\r\r
229 \r\r
230 if (fGeom==0)\r\r
231 AliFatal("Did not get geometry from EMCALLoader") ;\r\r
232 \r\r
233 Bool_t rv = FindFitV2(iniTower, maxAt, maxAtEnergy, nPar, fitparameters) ;\r\r
234 if( !rv ) {\r\r
235 // Fit failed, return (and remove cluster? - why? I leave the cluster)\r\r
236 iniTower->SetNExMax(-1) ;\r\r
237 delete[] fitparameters ;\r\r
238 return kFALSE;\r\r
239 }\r\r
240 \r\r
241 //**************************** part 2 *******************************************\r\r
242 // create unfolded rec points and fill them with new energy lists\r\r
243 // First calculate energy deposited in each sell in accordance with\r\r
244 // fit (without fluctuations): efit[]\r\r
245 // and later correct this number in acordance with actual energy\r\r
246 // deposition\r\r
247 \r\r
248 Int_t nDigits = iniTower->GetMultiplicity() ;\r\r
249 Float_t * efit = new Float_t[nDigits] ;//new fitted energy in cells\r\r
250 Float_t xpar=0.,zpar=0.,epar=0. ;//center of gravity in cell units\r\r
251 \r\r
252 AliEMCALDigit * digit = 0 ;\r\r
253 Int_t * digitsList = iniTower->GetDigitsList() ;\r\r
254 \r\r
255 Int_t iSupMod = 0 ;\r\r
256 Int_t iTower = 0 ;\r\r
257 Int_t iIphi = 0 ;\r\r
258 Int_t iIeta = 0 ;\r\r
259 Int_t iphi = 0 ;//x direction\r\r
260 Int_t ieta = 0 ;//z direstion\r\r
261 \r\r
262 Int_t iparam = 0 ;\r\r
263 Int_t iDigit = 0 ;\r\r
264 \r\r
265 for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){\r\r
266 digit = dynamic_cast<AliEMCALDigit*>( fDigitsArr->At(digitsList[iDigit] ) ) ;\r\r
267 if(digit){\r\r
268 fGeom->GetCellIndex(digit->GetId(),iSupMod,iTower,iIphi,iIeta); \r\r
269 fGeom->GetCellPhiEtaIndexInSModule(iSupMod,iTower,\r\r
270 iIphi, iIeta,iphi,ieta);\r\r
271 EvalParsPhiDependence(digit->GetId(),fGeom);\r\r
272 \r\r
273 efit[iDigit] = 0.;\r\r
274 iparam = 0;\r\r
275 while(iparam < nPar ){\r\r
276 xpar = fitparameters[iparam] ;\r\r
277 zpar = fitparameters[iparam+1] ;\r\r
278 epar = fitparameters[iparam+2] ;\r\r
279 iparam += 3 ;\r\r
280 \r\r
281 efit[iDigit] += epar * ShowerShapeV2((Float_t)iphi - xpar,(Float_t)ieta - zpar) ;\r\r
282 }\r\r
283 } else AliError("Digit NULL!");\r\r
284 \r\r
285 }//digit loop\r\r
286 \r\r
287 //**************************** part 3 *******************************************\r\r
288 // Now create new RecPoints and fill energy lists with efit corrected to fluctuations\r\r
289 // so that energy deposited in each cell is distributed between new clusters proportionally\r\r
290 // to its contribution to efit\r\r
291 \r\r
292 Float_t * energiesList = iniTower->GetEnergiesList() ;\r\r
293 Float_t ratio = 0 ;\r\r
294 Float_t eDigit = 0. ;\r\r
295 Int_t nSplittedClusters=(Int_t)nPar/3;\r\r
296 \r\r
297 Float_t * correctedEnergyList = new Float_t[nDigits*nSplittedClusters];\r\r
298 //above - temporary table with energies after unfolding.\r\r
299 //the orderis following: \r\r
300 //first cluster <first cell - last cell>, \r\r
301 //second cluster <first cell - last cell>, etc.\r\r
302\r\r
303 //**************************** sub-part 3.1 *************************************\r\r
304 //here we check if energy of the cell in the cluster after unfolding is above threshold. \r\r
305 //If not the energy from a given cell in the cluster is divided in correct proportions \r\r
306 //in accordance to the other clusters and added to them and set to 0.\r\r
307\r\r
308 iparam = 0 ;\r\r
309 while(iparam < nPar ){\r\r
310 xpar = fitparameters[iparam] ;\r\r
311 zpar = fitparameters[iparam+1] ;\r\r
312 epar = fitparameters[iparam+2] ;\r\r
313\r\r
314\r\r
315 for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){\r\r
316 digit = dynamic_cast<AliEMCALDigit*>( fDigitsArr->At( digitsList[iDigit] ) ) ;\r\r
317 if(digit){\r\r
318 fGeom->GetCellIndex(digit->GetId(),iSupMod,iTower,iIphi,iIeta); \r\r
319 fGeom->GetCellPhiEtaIndexInSModule(iSupMod,iTower,\r\r
320 iIphi, iIeta,iphi,ieta);\r\r
321 EvalParsPhiDependence(digit->GetId(),fGeom);\r\r
322 if(efit[iDigit]==0) {//just for sure\r\r
323 correctedEnergyList[iparam/3+iDigit] = 0;\r\r
324 continue;\r\r
325 }\r\r
326 ratio = epar * ShowerShapeV2((Float_t)iphi - xpar,(Float_t)ieta - zpar) / efit[iDigit] ;\r\r
327 eDigit = energiesList[iDigit] * ratio ;\r\r
328\r\r
329 //add energy to temporary matrix\r\r
330 correctedEnergyList[iparam/3+iDigit] = eDigit;\r\r
331\r\r
332 } else AliError("NULL digit");\r\r
333 }//digit loop \r\r
334 iparam += 3 ;\r\r
335 }//while\r\r
336\r\r
337 //**************************** sub-part 3.2 *************************************\r\r
338 //here we correct energy for each cell and cluster\r\r
339 Float_t maximumEne=0;\r\r
340 Int_t maximumIndex=0;\r\r
341 Bool_t isAnyBelowThreshold=kFALSE;\r\r
342 // Float_t Threshold=0.01;\r\r
343 Float_t * energyFraction = new Float_t[nSplittedClusters];\r\r
344 Int_t iparam2 = 0 ;\r\r
345 for(iDigit = 0 ; iDigit < nDigits ; ++iDigit){\r\r
346 isAnyBelowThreshold=kFALSE;\r\r
347 maximumEne=0;\r\r
348 for(iparam = 0 ; iparam < nPar ; iparam+=3){\r\r
349\r\r
350 if(correctedEnergyList[iparam/3+iDigit] < fThreshold ) isAnyBelowThreshold = kTRUE;\r\r
351 if(correctedEnergyList[iparam/3+iDigit] > maximumEne) {\r\r
352 maximumEne = correctedEnergyList[iparam/3+iDigit];\r\r
353 maximumIndex = iparam;\r\r
354 }\r\r
355 }//end of loop over clusters after unfolding\r\r
356\r\r
357 if(!isAnyBelowThreshold) continue; //no cluster-cell below threshold \r\r
358 if(maximumEne < fThreshold) {//add all cluster cells and put energy into max index, other set to 0\r\r
359 maximumEne=0.;\r\r
360 for(iparam = 0 ; iparam < nPar ; iparam+=3){\r\r
361 maximumEne+=correctedEnergyList[iparam/3+iDigit];\r\r
362 correctedEnergyList[iparam/3+iDigit]=0;\r\r
363 }\r\r
364 correctedEnergyList[maximumIndex/3+iDigit]=maximumEne;\r\r
365 continue;\r\r
366 }//end if\r\r
367\r\r
368 //divide energy of cell below threshold in the correct proportion and add to other cells\r\r
369 maximumEne=0;//not used any more so use it for the energy sum\r\r
370 for(iparam = 0 ; iparam < nPar ; iparam+=3){//calculate energy sum\r\r
371 if(correctedEnergyList[iparam/3+iDigit] < fThreshold) energyFraction[iparam/3]=0;\r\r
372 else {\r\r
373 energyFraction[iparam/3]=1;\r\r
374 maximumEne+=correctedEnergyList[iparam/3+iDigit];\r\r
375 }\r\r
376 }//end of loop over clusters after unfolding\r\r
377 for(iparam = 0 ; iparam < nPar ; iparam+=3){//calculate fraction\r\r
378 energyFraction[iparam/3] = energyFraction[iparam/3] * correctedEnergyList[iparam/3+iDigit] / maximumEne;\r\r
379 }\r\r
380 for(iparam = 0 ; iparam < nPar ; iparam+=3){//add energy from cells below threshold to others\r\r
381 if(energyFraction[iparam/3]>0) continue;\r\r
382 else{\r\r
383 for(iparam2 = 0 ; iparam2 < nPar ; iparam2+=3){\r\r
384 correctedEnergyList[iparam2/3+iDigit] += (energyFraction[iparam2/3] * \r\r
385 correctedEnergyList[iparam/3+iDigit]) ;\r\r
386 }//inner loop\r\r
387 correctedEnergyList[iparam/3+iDigit] = 0;\r\r
388 }\r\r
389 }\r\r
390\r\r
391 }//end of loop over digits\r\r
392 delete[] energyFraction;\r\r
393\r\r
394 //**************************** sub-part 3.3 *************************************\r\r
395 //here we add digits to recpoints with corrected energy\r\r
396 iparam = 0 ;\r\r
397 while(iparam < nPar ){\r\r
398 AliEMCALRecPoint * recPoint = 0 ;\r\r
399 \r\r
400 if(fNumberOfECAClusters >= fRecPoints->GetSize())\r\r
401 fRecPoints->Expand(2*fNumberOfECAClusters) ;\r\r
402 \r\r
403 //add recpoint\r\r
404 (*fRecPoints)[fNumberOfECAClusters] = new AliEMCALRecPoint("") ;\r\r
405 recPoint = dynamic_cast<AliEMCALRecPoint *>( fRecPoints->At(fNumberOfECAClusters) ) ;\r\r
406 \r\r
407 if(recPoint){\r\r
408 \r\r
409 fNumberOfECAClusters++ ;\r\r
410 recPoint->SetNExMax(nSplittedClusters) ;\r\r
411 \r\r
412 for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){\r\r
413 digit = dynamic_cast<AliEMCALDigit*>( fDigitsArr->At( digitsList[iDigit] ) ) ;\r\r
414\r\r
415 if(digit && correctedEnergyList[iparam/3+iDigit]>0. ){\r\r
416 recPoint->AddDigit( *digit, correctedEnergyList[iparam/3+iDigit], kFALSE ) ; //FIXME, need to study the shared case\r\r
417 } else AliError("NULL digit");\r\r
418 }//digit loop \r\r
419 } else AliError("NULL RecPoint");\r\r
420 iparam += 3 ;\r\r
421 }//while\r\r
422 \r\r
423 delete[] fitparameters ;\r\r
424 delete[] efit ;\r\r
425 delete[] correctedEnergyList ;\r\r
426\r\r
427 return kTRUE;\r\r
428}\r\r
429\r\r
430\r\r
431//____________________________________________________________________________\r\r
432Bool_t AliEMCALUnfolding::UnfoldClusterV2old(AliEMCALRecPoint * iniTower, \r\r
433 Int_t nMax, \r\r
434 AliEMCALDigit ** maxAt, \r\r
435 Float_t * maxAtEnergy)\r\r
436{\r\r
437 // Extended to whole EMCAL \r\r
438 // Performs the unfolding of a cluster with nMax overlapping showers \r\r
439 \r\r
440 Int_t nPar = 3 * nMax ;\r\r
441 Float_t * fitparameters = new Float_t[nPar] ;\r\r
442 \r\r
443 if (fGeom==0)\r\r
444 AliFatal("Did not get geometry from EMCALLoader") ;\r\r
445 \r\r
446 Bool_t rv = FindFitV2(iniTower, maxAt, maxAtEnergy, nPar, fitparameters) ;\r\r
447 if( !rv ) {\r\r
448 // Fit failed, return (and remove cluster? - why? I leave the cluster)\r\r
449 iniTower->SetNExMax(-1) ;\r\r
450 delete[] fitparameters ;\r\r
451 return kFALSE;\r\r
452 }\r\r
453 \r\r
454 // create unfolded rec points and fill them with new energy lists\r\r
455 // First calculate energy deposited in each sell in accordance with\r\r
456 // fit (without fluctuations): efit[]\r\r
457 // and later correct this number in acordance with actual energy\r\r
458 // deposition\r\r
459 \r\r
460 Int_t nDigits = iniTower->GetMultiplicity() ;\r\r
461 Float_t * efit = new Float_t[nDigits] ;//new fitted energy in cells\r\r
462 Float_t xpar=0.,zpar=0.,epar=0. ;//center of gravity in cell units\r\r
463 \r\r
464 AliEMCALDigit * digit = 0 ;\r\r
465 Int_t * digitsList = iniTower->GetDigitsList() ;\r\r
466 \r\r
467 Int_t iSupMod = 0 ;\r\r
468 Int_t iTower = 0 ;\r\r
469 Int_t iIphi = 0 ;\r\r
470 Int_t iIeta = 0 ;\r\r
471 Int_t iphi = 0 ;//x direction\r\r
472 Int_t ieta = 0 ;//z direstion\r\r
473 \r\r
474 Int_t iparam = 0 ;\r\r
475 Int_t iDigit = 0 ;\r\r
476 \r\r
477 for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){\r\r
478 digit = dynamic_cast<AliEMCALDigit*>( fDigitsArr->At(digitsList[iDigit] ) ) ;\r\r
479 if(digit){\r\r
480 fGeom->GetCellIndex(digit->GetId(),iSupMod,iTower,iIphi,iIeta); \r\r
481 fGeom->GetCellPhiEtaIndexInSModule(iSupMod,iTower,\r\r
482 iIphi, iIeta,iphi,ieta);\r\r
483 EvalParsPhiDependence(digit->GetId(),fGeom);\r\r
484 \r\r
485 efit[iDigit] = 0.;\r\r
486 iparam = 0;\r\r
487 while(iparam < nPar ){\r\r
488 xpar = fitparameters[iparam] ;\r\r
489 zpar = fitparameters[iparam+1] ;\r\r
490 epar = fitparameters[iparam+2] ;\r\r
491 iparam += 3 ;\r\r
492 \r\r
493 efit[iDigit] += epar * ShowerShapeV2((Float_t)iphi - xpar,(Float_t)ieta - zpar) ;\r\r
494 }\r\r
495 } else AliError("Digit NULL!");\r\r
496 \r\r
497 }//digit loop\r\r
498 \r\r
499 // Now create new RecPoints and fill energy lists with efit corrected to fluctuations\r\r
500 // so that energy deposited in each cell is distributed between new clusters proportionally\r\r
501 // to its contribution to efit\r\r
502 \r\r
503 Float_t * energiesList = iniTower->GetEnergiesList() ;\r\r
504 Float_t ratio = 0 ;\r\r
505 \r\r
506 iparam = 0 ;\r\r
507 while(iparam < nPar ){\r\r
508 xpar = fitparameters[iparam] ;\r\r
509 zpar = fitparameters[iparam+1] ;\r\r
510 epar = fitparameters[iparam+2] ;\r\r
511 iparam += 3 ;\r\r
512 \r\r
513 AliEMCALRecPoint * recPoint = 0 ;\r\r
514 \r\r
515 if(fNumberOfECAClusters >= fRecPoints->GetSize())\r\r
516 fRecPoints->Expand(2*fNumberOfECAClusters) ;\r\r
517 \r\r
518 //add recpoint\r\r
519 (*fRecPoints)[fNumberOfECAClusters] = new AliEMCALRecPoint("") ;\r\r
520 recPoint = dynamic_cast<AliEMCALRecPoint *>( fRecPoints->At(fNumberOfECAClusters) ) ;\r\r
521 \r\r
522 if(recPoint){\r\r
523 \r\r
524 fNumberOfECAClusters++ ;\r\r
525 recPoint->SetNExMax((Int_t)nPar/3) ;\r\r
526 \r\r
527 Float_t eDigit = 0. ;\r\r
528 for(iDigit = 0 ; iDigit < nDigits ; iDigit ++){\r\r
529 digit = dynamic_cast<AliEMCALDigit*>( fDigitsArr->At( digitsList[iDigit] ) ) ;\r\r
530 if(digit){\r\r
531 fGeom->GetCellIndex(digit->GetId(),iSupMod,iTower,iIphi,iIeta); \r\r
532 fGeom->GetCellPhiEtaIndexInSModule(iSupMod,iTower,\r\r
533 iIphi, iIeta,iphi,ieta);\r\r
534 EvalParsPhiDependence(digit->GetId(),fGeom);\r\r
535 if(efit[iDigit]==0) continue;//just for sure\r\r
536 ratio = epar * ShowerShapeV2((Float_t)iphi - xpar,(Float_t)ieta - zpar) / efit[iDigit] ;\r\r
537 eDigit = energiesList[iDigit] * ratio ;\r\r
538 recPoint->AddDigit( *digit, eDigit, kFALSE ) ; //FIXME, need to study the shared case\r\r
539 } else AliError("NULL digit");\r\r
540 }//digit loop \r\r
541 } else AliError("NULL RecPoint");\r\r
542 }//while\r\r
543 \r\r
544 delete[] fitparameters ;\r\r
545 delete[] efit ;\r\r
546 \r\r
547 return kTRUE;\r\r
548}\r\r
549\r\r
550\r\r
551//____________________________________________________________________________\r\r
552Bool_t AliEMCALUnfolding::FindFitV2(AliEMCALRecPoint * recPoint, AliEMCALDigit ** maxAt, \r\r
553 const Float_t* maxAtEnergy,\r\r
554 Int_t nPar, Float_t * fitparameters) const\r\r
555{\r\r
556 // Calls TMinuit to fit the energy distribution of a cluster with several maxima\r\r
557 // The initial values for fitting procedure are set equal to the\r\r
558 // positions of local maxima. \r\r
559 // Cluster will be fitted as a superposition of nPar/3\r\r
560 // electromagnetic showers\r\r
561\r\r
562 if (fGeom==0) AliFatal("Did not get geometry from EMCALLoader");\r\r
563 \r\r
564 if(!gMinuit)\r\r
565 gMinuit = new TMinuit(100) ;//max 100 parameters\r\r
566\r\r
567 gMinuit->mncler(); // Reset Minuit's list of paramters\r\r
568 gMinuit->SetPrintLevel(-1) ; // No Printout\r\r
569 gMinuit->SetFCN(AliEMCALUnfolding::UnfoldingChiSquareV2) ;\r\r
570 // To set the address of the minimization function\r\r
571 TList * toMinuit = new TList();\r\r
572 toMinuit->AddAt(recPoint,0) ;\r\r
573 toMinuit->AddAt(fDigitsArr,1) ;\r\r
574 toMinuit->AddAt(fGeom,2) ;\r\r
575\r\r
576 gMinuit->SetObjectFit(toMinuit) ; // To tranfer pointer to UnfoldingChiSquare\r\r
577\r\r
578 // filling initial values for fit parameters\r\r
579 AliEMCALDigit * digit ;\r\r
580\r\r
581 Int_t ierflg = 0;\r\r
582 Int_t index = 0 ;\r\r
583 Int_t nDigits = (Int_t) nPar / 3 ;\r\r
584\r\r
585 Int_t iDigit ;\r\r
586\r\r
587 Int_t iSupMod = 0 ;\r\r
588 Int_t iTower = 0 ;\r\r
589 Int_t iIphi = 0 ;\r\r
590 Int_t iIeta = 0 ;\r\r
591 Int_t iphi = 0 ;//x direction\r\r
592 Int_t ieta = 0 ;//z direstion\r\r
593\r\r
594 for(iDigit = 0; iDigit < nDigits; iDigit++){\r\r
595 digit = maxAt[iDigit];\r\r
596 fGeom->GetCellIndex(digit->GetId(),iSupMod,iTower,iIphi,iIeta); \r\r
597 fGeom->GetCellPhiEtaIndexInSModule(iSupMod,iTower,\r\r
598 iIphi, iIeta,iphi,ieta);\r\r
599\r\r
600 Float_t energy = maxAtEnergy[iDigit] ;\r\r
601\r\r
602 //gMinuit->mnparm(index, "x", iphi, 0.1, 0, 0, ierflg) ;//original\r\r
603 gMinuit->mnparm(index, "x", iphi, 0.05, 0, 0, ierflg) ;\r\r
604 index++ ;\r\r
605 if(ierflg != 0){\r\r
606 Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : x = %d", iphi ) ;\r\r
607 toMinuit->Clear();\r\r
608 delete toMinuit ;\r\r
609 return kFALSE;\r\r
610 }\r\r
611 //gMinuit->mnparm(index, "z", ieta, 0.1, 0, 0, ierflg) ;//original\r\r
612 gMinuit->mnparm(index, "z", ieta, 0.05, 0, 0, ierflg) ;\r\r
613 index++ ;\r\r
614 if(ierflg != 0){\r\r
615 Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : z = %d", ieta) ;\r\r
616 toMinuit->Clear();\r\r
617 delete toMinuit ;\r\r
618 return kFALSE;\r\r
619 }\r\r
620 //gMinuit->mnparm(index, "Energy", energy , 0.05*energy, 0., 4.*energy, ierflg) ;//original\r\r
621 gMinuit->mnparm(index, "Energy", energy , 0.001*energy, 0., 5.*energy, ierflg) ;//was 0.05\r\r
622 index++ ;\r\r
623 if(ierflg != 0){\r\r
624 Error("FindFit", "EMCAL Unfolding Unable to set initial value for fit procedure : energy = %f", energy) ;\r\r
625 toMinuit->Clear();\r\r
626 delete toMinuit ;\r\r
627 return kFALSE;\r\r
628 }\r\r
629 }\r\r
630\r\r
631 Double_t p0 = 0.1 ; // "Tolerance" Evaluation stops when EDM = 0.0001*p0 ; \r\r
632 // The number of function call slightly depends on it.\r\r
633 // Double_t p1 = 1.0 ;// par to gradient \r\r
634 Double_t p2 = 0.0 ;\r\r
635 // Double_t p3 = 3.0 ;\r\r
636 gMinuit->mnexcm("SET STR", &p2, 0, ierflg) ; // force TMinuit to reduce function calls\r\r
637 // gMinuit->mnexcm("SET GRA", &p1, 1, ierflg) ; // force TMinuit to use my gradient\r\r
638 gMinuit->SetMaxIterations(5);//was 5\r\r
639 gMinuit->mnexcm("SET NOW", &p2 , 0, ierflg) ; // No Warnings\r\r
640 //gMinuit->mnexcm("SET PRI", &p3 , 3, ierflg) ; // printouts\r\r
641\r\r
642 gMinuit->mnexcm("MIGRAD", &p0, 0, ierflg) ; // minimize\r\r
643 //gMinuit->mnexcm("MINI", &p0, 0, ierflg) ; // minimize\r\r
644 if(ierflg == 4){ // Minimum not found\r\r
645 Error("FindFit", "EMCAL Unfolding Fit not converged, cluster abandoned " ) ;\r\r
646 toMinuit->Clear();\r\r
647 delete toMinuit ;\r\r
648 return kFALSE ;\r\r
649 }\r\r
650 for(index = 0; index < nPar; index++){\r\r
651 Double_t err = 0. ;\r\r
652 Double_t val = 0. ;\r\r
653 gMinuit->GetParameter(index, val, err) ; // Returns value and error of parameter index\r\r
654 fitparameters[index] = val ;\r\r
655 }\r\r
656\r\r
657 toMinuit->Clear();\r\r
658 delete toMinuit ;\r\r
659 return kTRUE;\r\r
660\r\r
661}\r\r
662\r\r
663//____________________________________________________________________________\r\r
664Double_t AliEMCALUnfolding::ShowerShapeV2(Double_t x, Double_t y)\r\r
665{ \r\r
666 // extended to whole EMCAL \r\r
667 // Shape of the shower\r\r
668 // If you change this function, change also the gradient evaluation in ChiSquare()\r\r
669\r\r
670 Double_t r = fSSPars[7]*TMath::Sqrt(x*x+y*y);\r\r
671 Double_t rp1 = TMath::Power(r, fSSPars[1]) ;\r\r
672 Double_t rp5 = TMath::Power(r, fSSPars[5]) ;\r\r
673 Double_t shape = fSSPars[0]*TMath::Exp( -rp1 * (1. / (fSSPars[2] + fSSPars[3] * rp1) + fSSPars[4] / (1 + fSSPars[6] * rp5) ) ) ;\r\r
674 return shape ;\r\r
675}\r\r
676\r\r
677//____________________________________________________________________________\r\r
678void AliEMCALUnfolding::UnfoldingChiSquareV2(Int_t & nPar, Double_t * Grad,\r\r
679 Double_t & fret,\r\r
680 Double_t * x, Int_t iflag)\r\r
681{\r\r
682 // Calculates the Chi square for the cluster unfolding minimization\r\r
683 // Number of parameters, Gradient, Chi squared, parameters, what to do\r\r
684 \r\r
685 TList * toMinuit = dynamic_cast<TList*>( gMinuit->GetObjectFit() ) ;\r\r
686 if(toMinuit){\r\r
687 AliEMCALRecPoint * recPoint = dynamic_cast<AliEMCALRecPoint*>( toMinuit->At(0) ) ;\r\r
688 TClonesArray * digits = dynamic_cast<TClonesArray*>( toMinuit->At(1) ) ;\r\r
689 // A bit buggy way to get an access to the geometry\r\r
690 // To be revised!\r\r
691 AliEMCALGeometry *geom = dynamic_cast<AliEMCALGeometry *>(toMinuit->At(2));\r\r
692 \r\r
693 if(recPoint && digits && geom){\r\r
694 \r\r
695 Int_t * digitsList = recPoint->GetDigitsList() ;\r\r
696 \r\r
697 Int_t nOdigits = recPoint->GetDigitsMultiplicity() ;\r\r
698 \r\r
699 Float_t * energiesList = recPoint->GetEnergiesList() ;\r\r
700 \r\r
701 fret = 0. ;\r\r
702 Int_t iparam = 0 ;\r\r
703 \r\r
704 if(iflag == 2)\r\r
705 for(iparam = 0 ; iparam < nPar ; iparam++)\r\r
706 Grad[iparam] = 0 ; // Will evaluate gradient\r\r
707 \r\r
708 Double_t efit = 0. ;\r\r
709 \r\r
710 AliEMCALDigit * digit ;\r\r
711 Int_t iDigit ;\r\r
712 \r\r
713 Int_t iSupMod = 0 ;\r\r
714 Int_t iTower = 0 ;\r\r
715 Int_t iIphi = 0 ;\r\r
716 Int_t iIeta = 0 ;\r\r
717 Int_t iphi = 0 ;//x direction\r\r
718 Int_t ieta = 0 ;//z direstion\r\r
719 \r\r
720 \r\r
721 for( iDigit = 0 ; iDigit < nOdigits ; iDigit++) {\r\r
722 if(energiesList[iDigit]==0) continue;\r\r
723 \r\r
724 digit = dynamic_cast<AliEMCALDigit*>( digits->At( digitsList[iDigit] ) );\r\r
725 \r\r
726 if(digit){\r\r
727 geom->GetCellIndex(digit->GetId(),iSupMod,iTower,iIphi,iIeta); \r\r
728 geom->GetCellPhiEtaIndexInSModule(iSupMod,iTower,\r\r
729 iIphi, iIeta,iphi,ieta);\r\r
730 EvalParsPhiDependence(digit->GetId(),geom);\r\r
731 \r\r
732 if(iflag == 2){ // calculate gradient\r\r
733 Int_t iParam = 0 ;\r\r
734 efit = 0. ;\r\r
735 while(iParam < nPar ){\r\r
736 Double_t dx = ((Float_t)iphi - x[iParam]) ;\r\r
737 iParam++ ;\r\r
738 Double_t dz = ((Float_t)ieta - x[iParam]) ;\r\r
739 iParam++ ;\r\r
740 efit += x[iParam] * ShowerShapeV2(dx,dz) ;\r\r
741 iParam++ ;\r\r
742 }\r\r
743 \r\r
744 Double_t sum = 2. * (efit - energiesList[iDigit]) / energiesList[iDigit] ; // Here we assume, that sigma = sqrt(E)\r\r
745 iParam = 0 ;\r\r
746 while(iParam < nPar ){\r\r
747 Double_t xpar = x[iParam] ;\r\r
748 Double_t zpar = x[iParam+1] ;\r\r
749 Double_t epar = x[iParam+2] ;\r\r
750 \r\r
751 Double_t dr = fSSPars[7]*TMath::Sqrt( ((Float_t)iphi - xpar) * ((Float_t)iphi - xpar) + ((Float_t)ieta - zpar) * ((Float_t)ieta - zpar) );\r\r
752 Double_t shape = sum * ShowerShapeV2((Float_t)iphi - xpar,(Float_t)ieta - zpar) ;\r\r
753 Double_t rp1 = TMath::Power(dr, fSSPars[1]) ;\r\r
754 Double_t rp5 = TMath::Power(dr, fSSPars[5]) ;\r\r
755 \r\r
756 Double_t deriv = -2 * TMath::Power(dr,fSSPars[1]-2.) * fSSPars[7] * fSSPars[7] * \r\r
757 (fSSPars[1] * ( 1/(fSSPars[2]+fSSPars[3]*rp1) + fSSPars[4]/(1+fSSPars[6]*rp5) ) - \r\r
758 (fSSPars[1]*fSSPars[3]*rp1/( (fSSPars[2]+fSSPars[3]*rp1)*(fSSPars[2]+fSSPars[3]*rp1) ) + \r\r
759 fSSPars[4]*fSSPars[5]*fSSPars[6]*rp5/( (1+fSSPars[6]*rp5)*(1+fSSPars[6]*rp5) ) ) );\r\r
760 \r\r
761 //Double_t deriv =-1.33 * TMath::Power(dr,0.33)*dr * ( 1.57 / ( (1.57 + 0.0860 * r133) * (1.57 + 0.0860 * r133) )\r\r
762 // - 0.55 / (1 + 0.000563 * r669) / ( (1 + 0.000563 * r669) * (1 + 0.000563 * r669) ) ) ;\r\r
763 \r\r
764 Grad[iParam] += epar * shape * deriv * ((Float_t)iphi - xpar) ; // Derivative over x\r\r
765 iParam++ ;\r\r
766 Grad[iParam] += epar * shape * deriv * ((Float_t)ieta - zpar) ; // Derivative over z\r\r
767 iParam++ ;\r\r
768 Grad[iParam] += shape ; // Derivative over energy\r\r
769 iParam++ ;\r\r
770 }\r\r
771 }\r\r
772 efit = 0;\r\r
773 iparam = 0 ;\r\r
774 \r\r
775 while(iparam < nPar ){\r\r
776 Double_t xpar = x[iparam] ;\r\r
777 Double_t zpar = x[iparam+1] ;\r\r
778 Double_t epar = x[iparam+2] ;\r\r
779 iparam += 3 ;\r\r
780 efit += epar * ShowerShapeV2((Float_t)iphi - xpar,(Float_t)ieta - zpar) ;\r\r
781 }\r\r
782 \r\r
783 fret += (efit-energiesList[iDigit])*(efit-energiesList[iDigit])/energiesList[iDigit] ;\r\r
784 // Here we assume, that sigma = sqrt(E) \r\r
785 } else printf("AliEMCALUnfoding::UnfoldingChiSquareV2 - NULL digit!\n");\r\r
786 } // digit loop\r\r
787 } // recpoint, digits and geom not NULL\r\r
788 }// List is not NULL\r\r
789 \r\r
790}\r\r
791\r\r
792\r\r
793//____________________________________________________________________________\r\r
794void AliEMCALUnfolding::SetShowerShapeParams(Double_t *pars){\r\r
795 for(UInt_t i=0;i<7;++i)\r\r
796 fSSPars[i]=pars[i];\r\r
797 if(pars[2]==0. && pars[3]==0.) fSSPars[2]=1.;//to avoid dividing by 0\r\r
798}\r\r
799\r\r
800//____________________________________________________________________________\r\r
801void AliEMCALUnfolding::SetPar5(Double_t *pars){\r\r
802 for(UInt_t i=0;i<3;++i)\r\r
803 fPar5[i]=pars[i];\r\r
804}\r\r
805\r\r
806//____________________________________________________________________________\r\r
807void AliEMCALUnfolding::SetPar6(Double_t *pars){\r\r
808 for(UInt_t i=0;i<3;++i)\r\r
809 fPar6[i]=pars[i];\r\r
810}\r\r
811\r\r
812//____________________________________________________________________________\r\r
813void AliEMCALUnfolding::EvalPar5(Double_t phi){\r\r
814 //\r\r
815 //Evaluate the 5th parameter of the shower shape function\r\r
816 //phi in degrees range (-10,10)\r\r
817 //\r\r
818 //fSSPars[5] = 12.31 - phi*0.007381 - phi*phi*0.06936;\r\r
819 fSSPars[5] = fPar5[0] + phi * fPar5[1] + phi*phi * fPar5[2];\r\r
820}\r\r
821\r\r
822//____________________________________________________________________________\r\r
823void AliEMCALUnfolding::EvalPar6(Double_t phi){\r\r
824 //\r\r
825 //Evaluate the 6th parameter of the shower shape function\r\r
826 //phi in degrees range (-10,10)\r\r
827 //\r\r
828 //fSSPars[6] = 0.05452 + phi*0.0001228 + phi*phi*0.001361;\r\r
829 fSSPars[6] = fPar6[0] + phi * fPar6[1] + phi*phi * fPar6[2];\r\r
830}\r\r
831\r\r
832//____________________________________________________________________________\r\r
833void AliEMCALUnfolding::EvalParsPhiDependence(Int_t absId, AliEMCALGeometry *geom){\r\r
834 //\r\r
835 // calculate params p5 and p6 depending on the phi angle in global coordinate\r\r
836 // for the cell with given absId index\r\r
837 //\r\r
838 Double_t etaGlob = 0.;//eta in global c.s. - unused\r\r
839 Double_t phiGlob = 0.;//phi in global c.s. in radians\r\r
840 geom->EtaPhiFromIndex(absId, etaGlob, phiGlob);\r\r
841 phiGlob*=180./TMath::Pi();\r\r
842 phiGlob-=90.;\r\r
843 phiGlob-= (Double_t)((Int_t)geom->GetSuperModuleNumber(absId)/2 * 20);\r\r
844\r\r
845 EvalPar5(phiGlob);\r\r
846 EvalPar6(phiGlob);\r\r
847}\r\r
848\r\r