]> git.uio.no Git - u/mrichter/AliRoot.git/blame - EVE/Reve/MCHelixLine.hi
This commit was generated by cvs2svn to compensate for changes in r13732,
[u/mrichter/AliRoot.git] / EVE / Reve / MCHelixLine.hi
CommitLineData
5a5a1232 1#ifndef REVE_MCHelixLine_H
2#define REVE_MCHelixLine_H
3
4#include <Reve/Track.h>
5#include <vector>
6
7namespace Reve {
8
9 struct MCVertex {
10 Float_t x,y,z,t;
11 };
12
13
14 struct MCStruct
15 {
16 TrackRnrStyle* fRnrMod;
17 std::vector<MCVertex>* track_points;
18 MCVertex v;
19 Float_t fVelocity; // size of particle velocity
20
21 MCStruct(TrackRnrStyle* rs, MCVertex* v0 , Float_t vel, std::vector<MCVertex>* tpv)
22 {
23 fRnrMod = rs;
24 v = *v0;
25 fVelocity = vel;
26 track_points = tpv;
27 track_points->push_back(v);
28 }
29 };
30
31 struct MCHelix : public MCStruct {
32 // constant
33 Float_t fA; // contains charge and magnetic field data
34
35 //parameters dependend pT and pZ size, set in init function
36 Float_t fLam; // momentum ratio pT/pZ
37 Float_t fR; // a/pT
38 Float_t fPhiStep; // step size in xy projection, dependent of RnrMode and momentum
39 Float_t fTimeStep;
40
41 Int_t fN; // step number in helix;
42 Int_t NMax; // max number of points in helix
43 Float_t x_off, y_off; // offset for fitting daughters
44 Float_t sin, cos;
45 Bool_t crosR;
46
47 MCHelix(TrackRnrStyle* rs, MCVertex* v0, Float_t vel, std::vector<MCVertex>* tpv, Float_t a):
48 MCStruct(rs, v0 , vel, tpv){
49 fA = a;
50 };
51
52 void Init(Float_t pT, Float_t pZ)
53 {
54 fN=0;
55 crosR = false;
56 x_off = 0; y_off = 0;
57 fLam = pZ/pT;
58 fR = pT/fA;
59
60 fPhiStep = fRnrMod->fMinAng *TMath::Pi()/180;
61 if(fRnrMod->fDelta < TMath::Abs(fR)){
62 Float_t ang = 2*TMath::ACos(1 - fRnrMod->fDelta/TMath::Abs(fR));
63 if (ang < fPhiStep) fPhiStep = ang;
64 }
65 if(fA<0) fPhiStep = -fPhiStep;
66
67 // printf("MCHelix::init (%f/%f) labda %f time step %e phi step %f \n", pT, pZ,fLam, fTimeStep,fPhiStep);
68 fTimeStep = TMath::Abs(fR*fPhiStep)*TMath::Sqrt(1+fLam*fLam)/fVelocity;
69 fTimeStep *= 0.01; //cm->m
70
71 sin = TMath::Sin(fPhiStep);
72 cos = TMath::Cos(fPhiStep);
73 }
74
75 void SetBounds()
76 {
77 // check steps for max orbits
78 NMax = Int_t(fRnrMod->fMaxOrbs*TMath::TwoPi()/TMath::Abs(fPhiStep));
79 // check steps for Z boundaries
80 Float_t nz;
81 if(fLam > 0) {
82 nz = (fRnrMod->fMaxZ - v.z)/(fLam*TMath::Abs(fR*fPhiStep));
83 } else {
84 nz = (-fRnrMod->fMaxZ - v.z)/(fLam*TMath::Abs(fR*fPhiStep));
85 }
86 // printf("steps in helix line %d nz %f vz %f\n", NMax, nz, v.z);
87 if (nz < NMax) NMax = Int_t(nz);
88
89 // check steps if circles intersect
90 if(TMath::Sqrt(v.x*v.x+v.y*v.y) < fRnrMod->fMaxR + TMath::Abs(fR)) {
91 crosR = true;
92 }
93 // printf("end steps in helix line %d \n", NMax);
94 }
95
96
97 void Step(Float_t &px, Float_t &py, Float_t &/*pz*/)
98 {
99 v.t += fTimeStep;
100 v.x += (px*sin - py*(1 - cos))/fA + x_off;
101 v.y += (py*sin + px*(1 - cos))/fA + y_off;
102 v.z += fLam*TMath::Abs(fR*fPhiStep);
103 track_points->push_back(v);
104 Float_t px_t = px*cos - py*sin ;
105 Float_t py_t = py*cos + px*sin ;
106 px = px_t;
107 py = py_t;
108 fN++;
109 }
110
111
112 Bool_t LoopToVertex(Float_t &px, Float_t &py, Float_t &pz,
113 Float_t ex, Float_t ey, Float_t ez)
114 {
115 Float_t p0x = px, p0y = py;
116 Float_t zs = fLam*TMath::Abs(fR*fPhiStep);
117 Float_t fnsteps = (ez - v.z)/zs;
118 Int_t nsteps = Int_t((ez - v.z)/zs);
119 Float_t sinf = TMath::Sin(fnsteps*fPhiStep);
120 Float_t cosf = TMath::Cos(fnsteps*fPhiStep);
121
122 {
123 track_points->push_back(v);
124 if(nsteps > 0){
125 Float_t xf = v.x + (px*sinf - py*(1 - cosf))/fA;
126 Float_t yf = v.y + (py*sinf + px*(1 - cosf))/fA;
127 x_off = (ex - xf)/fnsteps;
128 y_off = (ey - yf)/fnsteps;
129 Float_t xforw, yforw, zforw;
130 for (Int_t l=0; l<nsteps; l++) {
131 xforw = v.x + (px*sin - py*(1 - cos))/fA + x_off;
132 yforw = v.y + (py*sin + px*(1 - cos))/fA + y_off;
133 zforw = v.z + fLam*TMath::Abs(fR*fPhiStep);
134 if ((xforw*xforw+yforw*yforw > fRnrMod->fMaxR*fRnrMod->fMaxR) ||(TMath::Abs(zforw) > fRnrMod->fMaxZ) ) {
135 return false;
136 }
137 Step(px,py,pz);
138 }
139
140 }
141 // set time to the end point
142 v.t += TMath::Sqrt((v.x-ex)*(v.x-ex)+(v.y-ey)*(v.y-ey) +(v.z-ez)*(v.z-ez))/fVelocity;
143 v.x = ex; v.y = ey; v.z = ez;
144 track_points->push_back(v);
145 }
146
147 { // fix momentum in the remaining part
148 Float_t cosr = TMath::Cos((fnsteps-nsteps)*fPhiStep);
149 Float_t sinr = TMath::Sin((fnsteps-nsteps)*fPhiStep);
150 Float_t px_t = px*cosr - py*sinr ;
151 Float_t py_t = py*cosr + px*sinr ;
152 px = px_t;
153 py = py_t;
154 }
155 { // calculate direction of faked px,py
156 Float_t pxf = (p0x*cosf - p0y*sinf)/TMath::Abs(fA) + x_off/fPhiStep;
157 Float_t pyf = (p0y*cosf + p0x*sinf)/TMath::Abs(fA) + y_off/fPhiStep;
158 Float_t fac = TMath::Sqrt(p0x*p0x + p0y*p0y)/TMath::Sqrt(pxf*pxf + pyf*pyf);
159 px = fac*pxf;
160 py = fac*pyf;
161 }
162 return true;
163 }
164
165 Bool_t LoopToBounds(Float_t &px, Float_t &py, Float_t &pz)
166 {
167 // printf("MC helix loop_to_bounds\n");
168 SetBounds();
169 if(NMax > 0){
170 // printf("NMAx MC helix loop_to_bounds\n");
171 track_points->push_back(v);
172 Float_t xforw,yforw,zforw;
173 while(fN < NMax){
174 xforw = v.x + (px*sin - py*(1 - cos))/fA + x_off;
175 yforw = v.y + (py*sin + px*(1 - cos))/fA + y_off;
176 zforw = v.z + fLam*TMath::Abs(fR*fPhiStep);
177
178 if ((crosR && (xforw*xforw+yforw*yforw > fRnrMod->fMaxR*fRnrMod->fMaxR)) ||(TMath::Abs(zforw) > fRnrMod->fMaxZ)) {
179 return false;
180 }
181 Step(px,py,pz);
182 }
183 return true;
184 }
185 return false;
186 }
187 };
188
189 /**************************************************************************/
190 // LINE
191 /**************************************************************************/
192
193 struct MCLine : public MCStruct
194 {
195 MCLine(TrackRnrStyle* rs, MCVertex* v0 ,Float_t vel, std::vector<MCVertex>* tpv):
196 MCStruct(rs, v0 , vel, tpv){};
197
198 Bool_t InBounds(Float_t ex, Float_t ey, Float_t ez)
199 {
200 if(TMath::Abs(ez) > fRnrMod->fMaxZ ||
201 ex*ex + ey*ey > fRnrMod->fMaxR*fRnrMod->fMaxR)
202 return false;
203 else
204 return true;
205 }
206
207 void GotoVertex(Float_t x1, Float_t y1, Float_t z1)
208 {
209 track_points->push_back(v);
210 v.t += TMath::Sqrt((v.x-x1)*(v.x-x1)+(v.y-y1)*(v.y-y1)+(v.z-z1)*(v.z-z1))/fVelocity;
211 v.x=x1; v.y=y1; v.z=z1;
212 track_points->push_back(v);
213 }
214
215
216 void GotoBounds( Float_t px, Float_t py, Float_t pz)
217 {
218 Float_t tZ = 0,Tb = 0;
219 // time where particle intersect +/- fMaxZ
220 if (pz > 0) {
221 tZ = (fRnrMod->fMaxZ - v.z)/pz;
222 }
223 else if (pz < 0 ) {
224 tZ = (-1)*(fRnrMod->fMaxZ + v.z)/pz;
225 }
226 // time where particle intersects cylinder
227 Float_t tR=0;
228 Double_t a = px*px + py*py;
229 Double_t b = 2*(v.x*px + v.y*py);
230 Double_t c = v.x*v.x + v.y*v.y - fRnrMod->fMaxR*fRnrMod->fMaxR;
231 Double_t D = b*b - 4*a*c;
232 if(D >= 0) {
233 Double_t D_sqrt=TMath::Sqrt(D);
234 tR = ( -b - D_sqrt )/(2*a);
235 if( tR < 0) {
236 tR = ( -b + D_sqrt )/(2*a);
237 }
238
239 // compare the two times
240 Tb = tR < tZ ? tR : tZ;
241 } else {
242 Tb = tZ;
243 }
244
245 GotoVertex(v.x+px*Tb, v.y+py*Tb, v.z+ pz*Tb);
246 }
247 }; // struct Line
248
249
250} // namespace Reve
251
252#endif