]> git.uio.no Git - u/mrichter/AliRoot.git/blame - EVGEN/AliGenHIJINGparaBa.cxx
Transition to NewIO
[u/mrichter/AliRoot.git] / EVGEN / AliGenHIJINGparaBa.cxx
CommitLineData
388f2c07 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
88cb7938 18Revision 1.1.4.1 2003/04/14 17:33:50 hristov
19Merging with v3-09-08 (part1)
20
21Revision 1.2 2003/01/14 10:50:18 alibrary
22Cleanup of STEER coding conventions
23
116cbefd 24Revision 1.1 2002/01/08 09:47:28 morsch
25HIJING parameterisation including baryons, first commit.
26
388f2c07 27*/
28///////////////////////////////////////////////////////////////////
29// Parameterisation of pi, K, n and p eta and pt distributions //
30// eta: according to HIJING (shadowing + quenching) //
31// pT : according to CDF measurement at 1.8 TeV //
32// Author: andreas.morsch@cern.ch //
33// //
34///////////////////////////////////////////////////////////////////
35
116cbefd 36#include <TArrayF.h>
37#include <TF1.h>
38#include <TPDGCode.h>
39
40#include "AliConst.h"
388f2c07 41#include "AliGenEventHeader.h"
116cbefd 42#include "AliGenHIJINGparaBa.h"
388f2c07 43#include "AliRun.h"
388f2c07 44
45ClassImp(AliGenHIJINGparaBa)
46
47
48static Double_t ptpi(Double_t *px, Double_t *)
49{
50 //
51 // PT-PARAMETERIZATION CDF, PRL 61(88) 1819
52 // POWER LAW FOR PT > 500 MEV
53 // MT SCALING BELOW (T=160 MEV)
54 //
55 const Double_t kp0 = 1.3;
56 const Double_t kxn = 8.28;
57 const Double_t kxlim=0.5;
58 const Double_t kt=0.160;
59 const Double_t kxmpi=0.139;
60 const Double_t kb=1.;
61 Double_t y, y1, xmpi2, ynorm, a;
62 Double_t x=*px;
63 //
64 y1=TMath::Power(kp0/(kp0+kxlim),kxn);
65 xmpi2=kxmpi*kxmpi;
66 ynorm=kb*(TMath::Exp(-sqrt(kxlim*kxlim+xmpi2)/kt));
67 a=ynorm/y1;
68 if (x > kxlim)
69 y=a*TMath::Power(kp0/(kp0+x),kxn);
70 else
71 y=kb*TMath::Exp(-sqrt(x*x+xmpi2)/kt);
72 return y*x;
73}
74
75//_____________________________________________________________________________
76static Double_t ptscal(Double_t pt, Int_t np)
77{
78 // SCALING EN MASSE PAR RAPPORT A PTPI
79 // MASS PI,K,ETA,RHO,OMEGA,ETA',PHI
80 const Double_t khm[10] = {.13957,.493,.5488,.769,.7826,.958,1.02,0,0,0};
81 // VALUE MESON/PI AT 5 GEV
82 const Double_t kfmax[10]={1.,0.3,0.55,1.0,1.0,1.0,1.0,0,0,0};
83 np--;
84 Double_t f5=TMath::Power(((
85 sqrt(100.018215)+2.)/(sqrt(100.+khm[np]*khm[np])+2.0)),12.3);
86 Double_t fmax2=f5/kfmax[np];
87 // PIONS
88 Double_t ptpion=100.*ptpi(&pt, (Double_t*) 0);
89 Double_t fmtscal=TMath::Power(((
90 sqrt(pt*pt+0.018215)+2.)/ (sqrt(pt*pt+khm[np]*khm[np])+2.0)),12.3)/
91 fmax2;
92 return fmtscal*ptpion;
93}
94
95//_____________________________________________________________________________
96static Double_t ptka( Double_t *px, Double_t *)
97{
98 //
99 // pt parametrisation for k
100 //
101 return ptscal(*px,2);
102}
103
104
105//_____________________________________________________________________________
106static Double_t etapic( Double_t *py, Double_t *)
107{
108 //
109 // eta parametrisation for pi
110 //
111 const Double_t ka1 = 4913.;
112 const Double_t ka2 = 1819.;
113 const Double_t keta1 = 0.22;
114 const Double_t keta2 = 3.66;
115 const Double_t kdeta1 = 1.47;
116 const Double_t kdeta2 = 1.51;
117 Double_t y=TMath::Abs(*py);
118 //
119 Double_t ex1 = (y-keta1)*(y-keta1)/(2*kdeta1*kdeta1);
120 Double_t ex2 = (y-keta2)*(y-keta2)/(2*kdeta2*kdeta2);
121 return ka1*TMath::Exp(-ex1)+ka2*TMath::Exp(-ex2);
122}
123
124//_____________________________________________________________________________
125static Double_t etakac( Double_t *py, Double_t *)
126{
127 //
128 // eta parametrisation for ka
129 //
130 const Double_t ka1 = 497.6;
131 const Double_t ka2 = 215.6;
132 const Double_t keta1 = 0.79;
133 const Double_t keta2 = 4.09;
134 const Double_t kdeta1 = 1.54;
135 const Double_t kdeta2 = 1.40;
136 Double_t y=TMath::Abs(*py);
137 //
138 Double_t ex1 = (y-keta1)*(y-keta1)/(2*kdeta1*kdeta1);
139 Double_t ex2 = (y-keta2)*(y-keta2)/(2*kdeta2*kdeta2);
140 return ka1*TMath::Exp(-ex1)+ka2*TMath::Exp(-ex2);
141}
142
143 static Double_t ptbaryon( Double_t *px, Double_t *)
144{
145// baryons
146// pt-distribution
147//____________________________________________________________
148
149 return ptscal(*px,7); // 7==> Baryon in the PtScal function
150}
151
152 static Double_t etabaryon( Double_t *py, Double_t *)
153{
154// eta-distribution
155//____________________________________________________________
156 const Float_t p0 = 1.10343e+02;
157 const Float_t p1 = 1.73247e+01;
158 const Float_t p2 = -7.23808e+00;
159 const Float_t p3 = 4.48334e-01;
160 const Double_t y = TMath::Abs(*py);
161//
162 return (p0+p1*y+p2*y*y+p3*y*y*y)/20.;
163}
164
165AliGenHIJINGparaBa::AliGenHIJINGparaBa()
166 :AliGenHIJINGpara()
167{
168 //
169 // Default constructor
170 //
171 fName="HIGINGparaBa";
172 fTitle="HIJING Parametrisation Particle Generator with Baryons";
173 fETAba = 0;
174 fPtba = 0;
175}
176
177//_____________________________________________________________________________
178AliGenHIJINGparaBa::AliGenHIJINGparaBa(Int_t npart)
179 :AliGenHIJINGpara(npart)
180{
181 //
182 // Standard constructor
183 //
184 fName="HIGINGparaBa";
185 fTitle="HIJING Parametrisation Particle Generator with Baryons";
186 fETAba = 0;
187 fPtba = 0;
188}
189
190//_____________________________________________________________________________
191AliGenHIJINGparaBa::~AliGenHIJINGparaBa()
192{
193 //
194 // Standard destructor
195 //
196 delete fPtba;
197 delete fETAba;
198}
199
200//_____________________________________________________________________________
201void AliGenHIJINGparaBa::Init()
202{
203 //
204 // Initialise the HIJING parametrisation
205 //
206 Float_t etaMin =-TMath::Log(TMath::Tan(
207 TMath::Min((Double_t)fThetaMax/2,TMath::Pi()/2-1.e-10)));
208 Float_t etaMax = -TMath::Log(TMath::Tan(
209 TMath::Max((Double_t)fThetaMin/2,1.e-10)));
210 fPtpi = new TF1("ptpi",&ptpi,0,20,0);
211 fPtka = new TF1("ptka",&ptka,0,20,0);
212 fPtba = new TF1("ptbaryon",&ptbaryon,0,20,0);
213 fETApic = new TF1("etapic",&etapic,etaMin,etaMax,0);
214 fETAkac = new TF1("etakac",&etakac,etaMin,etaMax,0);
215 fETAba = new TF1("etabaryon",&etabaryon,etaMin,etaMax,0);
216
217 TF1 *etaPic0 = new TF1("etapic",&etapic, -7, 7, 0);
218 TF1 *etaKac0 = new TF1("etakac",&etakac, -7, 7, 0);
219 TF1 *etaBar0 = new TF1("etabar",&etabaryon, -7, 7, 0);
220
221 TF1 *ptPic0 = new TF1("ptpi", &ptpi, 0., 15., 0);
222 TF1 *ptKac0 = new TF1("ptka", &ptka, 0., 15., 0);
223 TF1 *ptBar0 = new TF1("ptbar", &ptbaryon, 0., 15., 0);
224
225 Float_t intETApi = etaPic0->Integral(-0.5, 0.5);
226 Float_t intETAka = etaKac0->Integral(-0.5, 0.5);
227 Float_t intETAba = etaBar0->Integral(-0.5, 0.5);
228
229 Float_t scalePi = 6979./(intETApi/1.5);
230 Float_t scaleKa = 657./(intETAka/2.0);
231 Float_t scaleBa = 364./(intETAba/2.0);
232
233// Fraction of events corresponding to the selected pt-range
234 Float_t intPt = (0.837*ptPic0->Integral(0, 15)+
235 0.105*ptKac0->Integral(0, 15)+
236 0.058*ptBar0->Integral(0, 15));
237 Float_t intPtSel = (0.837*ptPic0->Integral(fPtMin, fPtMax)+
238 0.105*ptKac0->Integral(fPtMin, fPtMax)+
239 0.058*ptBar0->Integral(fPtMin, fPtMax));
240 Float_t ptFrac = intPtSel/intPt;
241
242// Fraction of events corresponding to the selected eta-range
243 Float_t intETASel = (scalePi*etaPic0->Integral(etaMin, etaMax)+
244 scaleKa*etaKac0->Integral(etaMin, etaMax)+
245 scaleBa*etaBar0->Integral(etaMin, etaMax));
246// Fraction of events corresponding to the selected phi-range
247 Float_t phiFrac = (fPhiMax-fPhiMin)/2/TMath::Pi();
248
249 fParentWeight = Float_t(fNpart)/(intETASel*ptFrac*phiFrac);
250
251 printf("%s: The number of particles in the selected kinematic region corresponds to %f percent of a full event \n",
252 ClassName(),100.*fParentWeight);
253
254// Issue warning message if etaMin or etaMax are outside the alowed range
255// of the parametrization
256 if (etaMin < -8.001 || etaMax > 8.001) {
257 printf("\n \n WARNING FROM AliGenHIJINGParaBa !");
258 printf("\n YOU ARE USING THE PARAMETERISATION OUTSIDE ");
259 printf("\n THE ALLOWED PSEUDORAPIDITY RANGE (-8. - 8.)");
260 printf("\n YOUR LIMITS: %f %f \n \n ", etaMin, etaMax);
261 }
262}
263
264//_____________________________________________________________________________
265void AliGenHIJINGparaBa::Generate()
266{
267 //
268 // Generate one trigger
269 //
270
271
272 const Float_t kBorne1 = 0.837;
273 const Float_t kBorne2 = kBorne1+0.105;
274
275 Float_t polar[3]= {0,0,0};
276 //
277 const Int_t kPions[3] = {kPi0, kPiPlus, kPiMinus};
278 const Int_t kKaons[4] = {kK0Long, kK0Short, kKPlus, kKMinus};
279 const Int_t kBaryons[4] = {kProton, kProtonBar, kNeutron, kNeutronBar};
280 //
281 Float_t origin[3];
282 Float_t pt, pl, ptot;
283 Float_t phi, theta;
284 Float_t p[3];
285 Int_t i, part, nt, j;
286 //
287 TF1 *ptf;
288 TF1 *etaf;
289 //
290 Float_t random[6];
291 //
292 for (j=0;j<3;j++) origin[j]=fOrigin[j];
293
294 if(fVertexSmear == kPerEvent) {
295 Float_t dv[3];
296 dv[2] = 1.e10;
297 while(TMath::Abs(dv[2]) > fCutVertexZ*fOsigma[2]) {
298 Rndm(random,6);
299 for (j=0; j < 3; j++) {
300 dv[j] = fOsigma[j]*TMath::Cos(2*random[2*j]*TMath::Pi())*
301 TMath::Sqrt(-2*TMath::Log(random[2*j+1]));
302 }
303 }
304 for (j=0; j < 3; j++) origin[j] += dv[j];
305 } // if kPerEvent
306 TArrayF eventVertex;
307 eventVertex.Set(3);
308 eventVertex[0] = origin[0];
309 eventVertex[1] = origin[1];
310 eventVertex[2] = origin[2];
311
312 for(i=0;i<fNpart;i++) {
313 while(1) {
314 Rndm(random,3);
315 if(random[0] < kBorne1) {
316 part = kPions[Int_t (random[1]*3)];
317 ptf = fPtpi;
318 etaf = fETApic;
319 } else if (random[0] < kBorne2) {
320 part = kKaons[Int_t (random[1]*4)];
321 ptf = fPtka;
322 etaf = fETAkac;
323 } else {
324 part = kBaryons[Int_t (random[1]*4)];
325 ptf = fPtba;
326 etaf = fETAba;
327 }
328
329 phi=fPhiMin+random[2]*(fPhiMax-fPhiMin);
330 theta=2*TMath::ATan(TMath::Exp(-etaf->GetRandom()));
331 if(theta<fThetaMin || theta>fThetaMax) continue;
332 pt=ptf->GetRandom();
333 pl=pt/TMath::Tan(theta);
334 ptot=TMath::Sqrt(pt*pt+pl*pl);
335 if(ptot<fPMin || ptot>fPMax) continue;
336 p[0]=pt*TMath::Cos(phi);
337 p[1]=pt*TMath::Sin(phi);
338 p[2]=pl;
339 if(fVertexSmear==kPerTrack) {
340 Rndm(random,6);
341 for (j=0;j<3;j++) {
342 origin[j]=fOrigin[j]+fOsigma[j]*TMath::Cos(2*random[2*j]*TMath::Pi())*
343 TMath::Sqrt(-2*TMath::Log(random[2*j+1]));
344 }
345 }
346 SetTrack(fTrackIt,-1,part,p,origin,polar,0,kPPrimary,nt,fParentWeight);
347 break;
348 } // while(1)
349 } // Particle loop
350// Header
351 AliGenEventHeader* header = new AliGenEventHeader("HIJINGparam");
352// Event Vertex
353 header->SetPrimaryVertex(eventVertex);
354 gAlice->SetGenEventHeader(header);
355}
356
357
358