]> git.uio.no Git - u/mrichter/AliRoot.git/blame - GEANT321/geant321/nucgeo.inc
Bugfix in AliPoints2Memory
[u/mrichter/AliRoot.git] / GEANT321 / geant321 / nucgeo.inc
CommitLineData
fe4da5cc 1*
2* $Id$
3*
4* $Log$
5* Revision 1.1.1.1 1995/10/24 10:20:40 cernlib
6* Geant
7*
8*
9#ifndef CERNLIB_GEANT321_NUCGEO_INC
10#define CERNLIB_GEANT321_NUCGEO_INC
11*
12*
13* nucgeo.inc
14*
15*
16*=== nucgeo ===========================================================*
17*
18*----------------------------------------------------------------------*
19* *
20* NUClear GEOmetry common: *
21* *
22* Created on 20 july 1991 by Alfredo Ferrari & Paola Sala *
23* Infn - Milan *
24* *
25* Last change on 24-mar-93 by Alfredo Ferrari *
26* *
27* Included in the following routines: *
28* *
29* BIMSEL *
30* NUCNUC *
31* NWISEL *
32* PHDSET *
33* PIOABS *
34* PIONUC *
35* PRENUC *
36* PREPRE *
37* RSTSEL *
38* SBCOMP *
39* SIGFER *
40* UMOFIN *
41* *
42* Description of the variables (NUCGEO): *
43* *
44* Radtot = total radius of the nucleus *
45* Radiu0 = radius of the nucleus constant *
46* density core *
47* Radiu1 = radius at the nucleus skin depth *
48* end *
49* Rad1o2 = half density radius of the nucleus *
50* Skindp = Skin depth of the nucleus ( where *
51* density decreases linearly with the *
52* radius from rhocen to rhoskn, *
53* Radiu1 = Radiu0 + Skindp and *
54* Rad1o2 = Radiu0 + 1/(2 Omalhl) *
55* x Skindp ) *
56* Rhoskn = Rhocen * Alphal *
57* Halodp = Halo depth of the nucleus ( where *
58* density decreases linearly with the *
59* radius from rhoskn to 0, *
60* Radtot = Radiu0 + Skindp + Halodp *
61* Alphal = fraction of the central density the *
62* transition from skin to halo occurs *
63* at *
64* Omalhl = 1 - Alphal *
65* Radskn = Radius at which the density would be *
66* zero if the skin depth behaviour is *
67* continued (Radskn = Radiu0 + Skindp *
68* / Omalhl) *
69* Skneff = "effective" skin depth corresponding *
70* to Radskn, Skneff = Skindp / Omalhl *
71* Radpro = equivalent radius of the projectile *
72* Bimptr = "true" impact parameter of the proj- *
73* ectile (referred to the centre of *
74* the projectile) *
75* Rimptr = "true" radius of the interaction *
76* point (referred to the centre of *
77* the projectile) *
78* X,Y,Zimptr = "true" position of the interaction *
79* point (referred to the centre of *
80* the projectile) *
81* Rhocen = central density of the nucleus *
82* Rhocor = density at the transition point from *
83* core to skin *
84* Rhoskn = density at the transition point from *
85* skin to halo, Rhoskn = Alphal Rhocen *
86* Rhoimp = density of the nucleus at the "ef- *
87* fective interaction point" *
88* Rhoimt = density of the nucleus at the "true" *
89* position of the interaction point *
90* Pfr,Ekfcen = Maximum Fermi momentum/energy in the *
91* central core *
92* Pfr,Ekfpro = Maximum Fermi momentum/energy at the *
93* true interaction point for the proj- *
94* ectile (they are computed as for nu- *
95* cleons without any reduction factor) *
96* Pfr,Ekfimp = Maximum Fermi momentum/energy at the *
97* "effective" interaction point for *
98* the target nucleon *
99* Pfr,Ekfbim = Maximum Fermi momentum/energy at *
100* r = " effective" impact parameter *
101* (Bimpct) for the nucleon with the *
102* deepest well *
103* Vprwll = well depth for the present projectile*
104* at the "true" interaction point *
105* Bimpct = "effective" impact parameter of the *
106* projectile (referred to the centre *
107* of the target nucleon) *
108* Rimpct = "effective" radius of the interac- *
109* tion point (referred to the centre *
110* of the target nucleon) *
111* X,Y,Zimpct = "effective" position of the interac- *
112* tion point (referred to the centre *
113* of the target nucleon) *
114* Wllred = reduction factor to be applied to *
115* the Ipwell well to get the proper *
116* well for the projectile *
117* Clmbbr = Coulomb barrier for the present pro- *
118* jectile *
119* Rdclmb = radius corresponding to the Coulomb *
120* barrier at which Coulomb effects are *
121* supposed to be overcome by the nuc- *
122* lear potential: *
123* Rdclmb = Clmbbr / (zZe^2) *
124* Bfclmb = correction factor for the impact pa- *
125* rameter, for boo such that the actual*
126* b =< Rdclmb: *
127* Bfclmb = sqrt ( 1 - Clmbbr/Ekproj ) *
128* Bfceff = actual correction factor for the imp-*
129* act parameter, b = boo / Bfceff *
130* for boo =< Rdclmb x Bfclmb: *
131* Bfceff = Bfclmb *
132* for boo > Rdclmb x Bfclmb: *
133* Bfceff = 1 / ( x + sqrt (1+x^2) ) *
134* x = Clmbbr x Rdclmb / (2 Ekproj boo)*
135* Ipwell = index of the target nucleon well to *
136* be used in computing the one for the *
137* projectile *
138* ( 1 = proton, 2 = neutron ) *
139* Itncmx = index of the target nucleon with *
140* largest Fermi momentum *
141* ( 1 = proton, 2 = neutron ) *
142* Kprin = particle index of the projectile *
143* Ntargt = number of target nucleons (2 at max) *
144* Knucim = particle index of the target nucleon *
145* ( 1 = proton, 8 = neutron ) *
146* Knuci2 = particle index of the 2nd target *
147* nucleon for absorption on a couple *
148* of nucleons *
149* *
150* Description of the variables (NUCPWI): *
151* *
152* Almbar = Reduced De Broglie wavelength *
153* Bimmax = maximum impact parameter (at oo from *
154* the nucleus) *
155* Siggeo = Geometrical cross section summed *
156* over all partial waves (assuming *
157* opacity=1 for any l) *
158* Siggeo = pi ( Almbar(lmax+1) )^2 *
159* Lllmax = highest partial wave, it corresponds *
160* to: Almbar Lllmax >= Bimmax, where *
161* the >= means that the smallest *
162* integer >= Bimmax / Almbar is used *
163* Lllact = partial wave index of the present *
164* interaction *
165* *
166*----------------------------------------------------------------------*
167*
168 PARAMETER ( PI = 3.14159265358979322702D+00 )
169 PARAMETER ( PISQ = 9.86960440108935854694D+00 )
170 PARAMETER ( SQRT12 = 3.464101615137755D+00 )
171* This is log(11)/(4log(3)), it is ok for alphal = 0.1, bethal = 0.01 )
172 PARAMETER ( SKTOHL = 0.5456645846610345D+00 )
173* This is log(99/19)/(4log(3)), it is ok for alphal = 0.05,
174* bethal = 0.01 )
175* PARAMETER ( SKTOHL = 0.3756286198494407D+00 )
176* This is log(99/4)/(4log(3)), it is ok for alphal = 0.2,
177* bethal = 0.01 )
178* PARAMETER ( SKTOHL = 0.7301997078753058D+00 )
179* This is log(99/4)/(4log(3)), it is ok for alphal = 0.02,
180* bethal = 0.001 )
181* PARAMETER ( SKTOHL = 0.7301997078753058D+00 )
182 PARAMETER ( RZNUCL = 1.12 D+00 )
183 PARAMETER ( RMSPRO = 0.8 D+00 )
184 PARAMETER ( R0PROT = RMSPRO / SQRT12 )
185 PARAMETER ( ARHPRO = 1.D+00 / 8.D+00 / PI / R0PROT / R0PROT
186 & / R0PROT )
187 PARAMETER ( RLLE04 = RZNUCL )
188 PARAMETER ( RLLE16 = RZNUCL )
189 PARAMETER ( RLGT16 = RZNUCL )
190 PARAMETER ( RCLE04 = 0.75D+00 / PI / RLLE04 / RLLE04 / RLLE04 )
191 PARAMETER ( RCLE16 = 0.75D+00 / PI / RLLE16 / RLLE16 / RLLE16 )
192 PARAMETER ( RCGT16 = 0.75D+00 / PI / RLGT16 / RLGT16 / RLGT16 )
193 PARAMETER ( SKLE04 = 1.4D+00 )
194 PARAMETER ( SKLE16 = 1.9D+00 )
195 PARAMETER ( SKGT16 = 2.4D+00 )
196 PARAMETER ( HLLE04 = SKTOHL * SKLE04 )
197 PARAMETER ( HLLE16 = SKTOHL * SKLE16 )
198 PARAMETER ( HLGT16 = SKTOHL * SKGT16 )
199 PARAMETER ( ALPHA0 = 0.1D+00 )
200*2 PARAMETER ( ALPHA0 = 0.05D+00 )
201*0 PARAMETER ( ALPHA0 = 0.2D+00 )
202*3 PARAMETER ( ALPHA0 = 0.02D+00 )
203*4 PARAMETER ( ALPHA0 = 0.25D+00 )
204 PARAMETER ( OMALH0 = 1.D+00 - ALPHA0 )
205 PARAMETER ( GAMSK0 = 0.9D+00 )
206*0 PARAMETER ( GAMSK0 = 0.8D+00 )
207*2 PARAMETER ( GAMSK0 = 0.9D+00 )
208*3 PARAMETER ( GAMSK0 = 0.9D+00 )
209*4 PARAMETER ( GAMSK0 = 0.75D+00 )
210 PARAMETER ( OMGAS0 = 1.D+00 - GAMSK0 )
211 PARAMETER ( POTME0 = 0.6666666666666667D+00 )
212 PARAMETER ( POTBA0 = 1.D+00 )
213* This parameter is the Panofsky ratio
214 PARAMETER ( PNFRAT = 1.533D+00 )
215* This parameter set the branching ratio for radiative pi- capture
216* at rest in complex nuclei (it is a bit larger than the experimental
217* one to compensate for Pauli blocking etc etc ). This value is
218* for A=oo
219 PARAMETER ( RADPIM = 0.035D+00 )
220 PARAMETER ( RDPMHL = 14.D+00 )
221* Probability for pi- absorption to have a second proton in the couple
222* of nucleons ( the first one must be a proton )
223 PARAMETER ( APMRST = 4.D+00 / 44.D+00 )
224* Probability for pi- absorption to have a second proton in the couple
225* of nucleons ( the first one must be a proton )
226 PARAMETER ( APMPRO = 1.D+00 / 6.D+00 )
227* Probability for pi+ absorption to have a proton in the couple
228* of nucleons ( the first one must be a neutron )
229 PARAMETER ( APPPRO = 1.D+00 / 6.D+00 )
230* Probability for pi0 absorption to have a p in the couple
231* as first particle
232 PARAMETER ( AP0PFS = 0.5D+00 )
233* Probability for pi0 absorption to have a p in the couple
234* as second particle for a p first particle
235 PARAMETER ( AP0PFP = 1.D+00 / 3.D+00 )
236* Probability for pi0 absorption to have a p in the couple
237* as second particle for a n first particle
238 PARAMETER ( AP0NFP = 2.D+00 / 3.D+00 )
239 PARAMETER ( MXSCIN = 50 )
240*
241 LOGICAL LABRST, LELSTC, LINELS, LCHEXC, LABSRP, LABSTH
242* NUClear Geometry Input data
243 COMMON / FKNUGI / RHOTAB (2:260), RHATAB (2:260), ALPTAB (2:260),
244 & RADTAB (2:260), SKITAB (2:260), HALTAB (2:260),
245 & SK3TAB (2:260), SK4TAB (2:260), HABTAB (2:260),
246 & CWSTAB (2:260), EKATAB (2:260), PFATAB (2:260),
247 & PFRTAB (2:260)
248* NUClear GEOmetry
249 COMMON / FKNUGE / RADTOT, RADIU1, RADIU0, RAD1O2, SKINDP, HALODP,
250 & ALPHAL, OMALHL, RADSKN, SKNEFF, CPARWS, RADPRO,
251 & RADCOR, RADCO2, RADMAX, BIMPTR, RIMPTR, XIMPTR,
252 & YIMPTR, ZIMPTR, RHOIMT, EKFPRO, PFRPRO, RHOCEN,
253 & RHOCOR, RHOSKN, EKFCEN (2), PFRCEN (2), EKFBIM,
254 & PFRBIM, RHOIMP, EKFIMP, PFRIMP, EKFIM2, PFRIM2,
255 & VPRWLL, RIMPCT, BIMPCT, XIMPCT, YIMPCT, ZIMPCT,
256 & XBIMPC, YBIMPC, ZBIMPC, CXIMPC, CYIMPC, CZIMPC,
257 & SQRIMP, SIGMAP, SIGMAN, SIGMAA, RHORED, R0TRAJ,
258 & R1TRAJ, SBUSED, SBTOT , SBRES , RHOAVE, EKFAVE,
259 & PFRAVE, AVEBIN, ACOLL , ZCOLL , RADSIG, OPACTY,
260 & EKECON, PNUCCO, EKEWLL, PPRWLL, PXPROJ, PYPROJ,
261 & PZPROJ, EKFERM, PNFRMI, PXFERM, PYFERM, PZFERM,
262 & EKFER2, PNFRM2, PXFER2, PYFER2, PZFER2, EKFER3
263 COMMON / FKNUGE /
264 & PNFRM3, PXFER3, PYFER3, PZFER3, RHOMEM, EKFMEM,
265 & BIMMEM, WLLRED, VPRBIM, POTINC, POTOUT, EEXMIN,
266 & EEXDEL, EEXANY, CLMBBR, RDCLMB, BFCLMB, BFCEFF,
267 & BNPROJ, BNDNUC, DEBRLM, SK4PAR, UBIMPC, VBIMPC,
268 & WBIMPC, BNDPOT, SIGMAT, WLLRES, POTBAR, POTMES,
269 & HHLP (2), FORTOT (2), BNENRG (3), DEFNUC (2),
270 & SIGMPR (3), SIGMNU (3), SIGMAB (3), IPWELL,
271 & ITNCMX, KPRIN , NTARGT, KNUCIM, KNUCI2, KNUCI3,
272 & IEVPRE, ISFCOL
273* NUClear Partial Waves Informations
274 COMMON / FKNUPW / ALMBAR, BIMMAX, SIGGEO, LLLMAX, LLLACT
275* NUClear Geometry Interaction Informations
276 COMMON / FKNUII / HOLEXP (MXSCIN), XEXPIN (MXSCIN),
277 & YEXPIN (MXSCIN), ZEXPIN (MXSCIN),
278 & RHOEXP, EKFEXP, EHLFIX,
279 & NHLEXP, NHLFIX, IPRTYP, ISCTYP (MXSCIN),
280 & NUSCIN, NEXPEM, LABRST, LELSTC, LINELS, LCHEXC,
281 & LABSRP, LABSTH
282 DIMENSION AWSTAB (2:260)
283 EQUIVALENCE ( DEFPRO, DEFNUC (1) )
284 EQUIVALENCE ( DEFNEU, DEFNUC (2) )
285 EQUIVALENCE ( OMALHL, SK3PAR )
286 EQUIVALENCE ( ALPHAL, HABPAR )
287 EQUIVALENCE ( ALPTAB (2), AWSTAB (2) )
288 EQUIVALENCE ( SIGMPE, SIGMPR (1) )
289 EQUIVALENCE ( SIGMPC, SIGMPR (2) )
290 EQUIVALENCE ( SIGMPI, SIGMPR (3) )
291 EQUIVALENCE ( SIGMNE, SIGMNU (1) )
292 EQUIVALENCE ( SIGMNC, SIGMNU (2) )
293 EQUIVALENCE ( SIGMNI, SIGMNU (3) )
294 EQUIVALENCE ( SIGMA2, SIGMAB (1) )
295 EQUIVALENCE ( SIGMA3, SIGMAB (2) )
296 EQUIVALENCE ( SIGMAS, SIGMAB (3) )
297
298
299#endif