]> git.uio.no Git - u/mrichter/AliRoot.git/blame - HMPID/AliHMPIDParam.cxx
- Warnings corrected
[u/mrichter/AliRoot.git] / HMPID / AliHMPIDParam.cxx
CommitLineData
d3da6dc4 1// **************************************************************************
2// * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3// * *
4// * Author: The ALICE Off-line Project. *
5// * Contributors are mentioned in the code where appropriate. *
6// * *
7// * Permission to use, copy, modify and distribute this software and its *
8// * documentation strictly for non-commercial purposes is hereby granted *
9// * without fee, provided that the above copyright notice appears in all *
10// * copies and that both the copyright notice and this permission notice *
11// * appear in the supporting documentation. The authors make no claims *
12// * about the suitability of this software for any purpose. It is *
13// * provided "as is" without express or implied warranty. *
14// **************************************************************************
15#include "AliHMPIDParam.h" //class header
16#include "AliHMPIDDigit.h" //ctor
a8ff381e 17#include "AliLog.h" //general
18#include <AliRunLoader.h> //Stack()
19#include <AliStack.h> //Stack()
20#include <TLatex.h> //TestTrans()
21#include <TView.h> //TestTrans()
22#include <TPolyMarker3D.h> //TestTrans()
d3da6dc4 23#include <TRotation.h>
a8ff381e 24#include <TParticle.h> //Stack()
97eadc2b 25#include <TGeoPhysicalNode.h> //ctor
ae5a42aa 26#include <TGeoBBox.h>
d3da6dc4 27ClassImp(AliHMPIDParam)
28
ae5a42aa 29
30Float_t AliHMPIDParam::fgkMinPcX[]={0.,0.,0.,0.,0.,0.};
31Float_t AliHMPIDParam::fgkMaxPcX[]={0.,0.,0.,0.,0.,0.};
32Float_t AliHMPIDParam::fgkMinPcY[]={0.,0.,0.,0.,0.,0.};
33Float_t AliHMPIDParam::fgkMaxPcY[]={0.,0.,0.,0.,0.,0.};
34
35Float_t AliHMPIDParam::fgCellX=0.;
36Float_t AliHMPIDParam::fgCellY=0.;
37
38Float_t AliHMPIDParam::fgPcX=0;
39Float_t AliHMPIDParam::fgPcY=0;
40
41Float_t AliHMPIDParam::fgAllX=0;
42Float_t AliHMPIDParam::fgAllY=0;
43
b87365d5 44Bool_t AliHMPIDParam::fgInstanceType=kTRUE;
ae5a42aa 45
d3da6dc4 46AliHMPIDParam* AliHMPIDParam::fgInstance=0x0; //singleton pointer
47//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
58fc9564 48AliHMPIDParam::AliHMPIDParam(Bool_t noGeo=kFALSE):TNamed("HmpidParam","default version")
d3da6dc4 49{
50// Here all the intitializition is taken place when AliHMPIDParam::Instance() is invoked for the first time.
58fc9564 51// In particular, matrices to be used for LORS<->MARS trasnformations are initialized from TGeo structure.
d3da6dc4 52// Note that TGeoManager should be already initialized from geometry.root file
ae5a42aa 53
b38ac33a 54 fgSigmas=4;
55
a8ff381e 56 fRadNmean = MeanIdxRad(); //initialization of the running ref. index of freon
57
8e2a911a 58 Float_t dead=2.6;// cm of the dead zones between PCs-> See 2CRC2099P1
b87365d5 59
60
61 if(noGeo==kTRUE) fgInstanceType=kFALSE; //instance from ideal geometry, no actual geom is present
62
58fc9564 63 if(noGeo==kFALSE && !gGeoManager)
64 {
65 TGeoManager::Import("geometry.root");
66 if(!gGeoManager) AliFatal("!!!!!!No geometry loaded!!!!!!!");
67 }
68
8e2a911a 69 fgCellX=0.8;fgCellY=0.84;
58fc9564 70
8e2a911a 71 if(!noGeo==kTRUE){
72 TGeoVolume *pCellVol = gGeoManager->GetVolume("Hcel");
73 if(pCellVol) {
74 TGeoBBox *bcell = (TGeoBBox *)pCellVol->GetShape();
75 fgCellX=2.*bcell->GetDX(); fgCellY = 2.*bcell->GetDY(); // overwrite the values with the read ones
76 }
77 }
58fc9564 78 fgPcX=80.*fgCellX; fgPcY = 48.*fgCellY;
79 fgAllX=2.*fgPcX+dead;
80 fgAllY=3.*fgPcY+2.*dead;
ae5a42aa 81
58fc9564 82 fgkMinPcX[1]=fgPcX+dead; fgkMinPcX[3]=fgkMinPcX[1]; fgkMinPcX[5]=fgkMinPcX[3];
83 fgkMaxPcX[0]=fgPcX; fgkMaxPcX[2]=fgkMaxPcX[0]; fgkMaxPcX[4]=fgkMaxPcX[2];
84 fgkMaxPcX[1]=fgAllX; fgkMaxPcX[3]=fgkMaxPcX[1]; fgkMaxPcX[5]=fgkMaxPcX[3];
ae5a42aa 85
58fc9564 86 fgkMinPcY[2]=fgPcY+dead; fgkMinPcY[3]=fgkMinPcY[2];
87 fgkMinPcY[4]=2.*fgPcY+2.*dead; fgkMinPcY[5]=fgkMinPcY[4];
88 fgkMaxPcY[0]=fgPcY; fgkMaxPcY[1]=fgkMaxPcY[0];
89 fgkMaxPcY[2]=2.*fgPcY+dead; fgkMaxPcY[3]=fgkMaxPcY[2];
90 fgkMaxPcY[4]=fgAllY; fgkMaxPcY[5]=fgkMaxPcY[4];
ae5a42aa 91
92 fX=0.5*SizeAllX();
93 fY=0.5*SizeAllY();
58fc9564 94
ae5a42aa 95 for(Int_t i=kMinCh;i<=kMaxCh;i++)
97eadc2b 96 if(gGeoManager && gGeoManager->IsClosed()) {
2df6b16e 97 TGeoPNEntry* pne = gGeoManager->GetAlignableEntry(Form("/HMPID/Chamber%i",i));
97eadc2b 98 if (!pne) {
99 AliErrorClass(Form("The symbolic volume %s does not correspond to any physical entry!",Form("HMPID_%i",i)));
100 fM[i]=new TGeoHMatrix;
101 IdealPosition(i,fM[i]);
102 } else {
103 TGeoPhysicalNode *pnode = pne->GetPhysicalNode();
f80e1da4 104 if(pnode) fM[i]=pnode->GetMatrix();
105 else {
106 fM[i]=new TGeoHMatrix;
107 IdealPosition(i,fM[i]);
108 }
97eadc2b 109 }
110 } else{
1d4857c5 111 fM[i]=new TGeoHMatrix;
112 IdealPosition(i,fM[i]);
113 }
d3da6dc4 114 fgInstance=this;
115}//ctor
116//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
117void AliHMPIDParam::Print(Option_t* opt) const
118{
119// print some usefull (hopefully) info on some internal guts of HMPID parametrisation
120
121 for(Int_t i=0;i<7;i++) fM[i]->Print(opt);
122}//Print()
123//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
1d4857c5 124void AliHMPIDParam::IdealPosition(Int_t iCh, TGeoHMatrix *pMatrix)
125{
126// Construct ideal position matrix for a given chamber
127// Arguments: iCh- chamber ID; pMatrix- pointer to precreated unity matrix where to store the results
128// Returns: none
423554a3 129 const Double_t kAngHor=19.5; // horizontal angle between chambers 19.5 grad
130 const Double_t kAngVer=20; // vertical angle between chambers 20 grad
131 const Double_t kAngCom=30; // common HMPID rotation with respect to x axis 30 grad
132 const Double_t kTrans[3]={490,0,0}; // center of the chamber is on window-gap surface
133 pMatrix->RotateY(90); // rotate around y since initial position is in XY plane -> now in YZ plane
134 pMatrix->SetTranslation(kTrans); // now plane in YZ is shifted along x
1d4857c5 135 switch(iCh){
136 case 0: pMatrix->RotateY(kAngHor); pMatrix->RotateZ(-kAngVer); break; //right and down
137 case 1: pMatrix->RotateZ(-kAngVer); break; //down
138 case 2: pMatrix->RotateY(kAngHor); break; //right
139 case 3: break; //no rotation
140 case 4: pMatrix->RotateY(-kAngHor); break; //left
141 case 5: pMatrix->RotateZ(kAngVer); break; //up
142 case 6: pMatrix->RotateY(-kAngHor); pMatrix->RotateZ(kAngVer); break; //left and up
143 }
144 pMatrix->RotateZ(kAngCom); //apply common rotation in XY plane
145
146}
147//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
d3da6dc4 148Int_t AliHMPIDParam::Stack(Int_t evt,Int_t tid)
149{
d1bf51e1 150// Prints some useful info from stack
d3da6dc4 151// Arguments: evt - event number. if not -1 print info only for that event
152// tid - track id. if not -1 then print it and all it's mothers if any
153// Returns: mother tid of the given tid if any
154 AliRunLoader *pAL=AliRunLoader::Open();
155 if(pAL->LoadHeader()) return -1;
156 if(pAL->LoadKinematics()) return -1;
157
158 Int_t mtid=-1;
cf7e313e 159 Int_t iNevt=pAL->GetNumberOfEvents();
d3da6dc4 160
161 for(Int_t iEvt=0;iEvt<iNevt;iEvt++){//events loop
162 if(evt!=-1 && evt!=iEvt) continue; //in case one needs to print the requested event, ignore all others
163 pAL->GetEvent(iEvt);
164 AliStack *pStack=pAL->Stack();
165 if(tid==-1){ //print all tids for this event
166 for(Int_t i=0;i<pStack->GetNtrack();i++) pStack->Particle(i)->Print();
a8ff381e 167 Printf("totally %i tracks including %i primaries for event %i out of %i event(s)",
168 pStack->GetNtrack(),pStack->GetNprimary(),iEvt,iNevt);
d3da6dc4 169 }else{ //print only this tid and it;s mothers
170 if(tid<0 || tid>pStack->GetNtrack()) {Printf("Wrong tid, valid tid range for event %i is 0-%i",iEvt,pStack->GetNtrack());break;}
171 TParticle *pTrack=pStack->Particle(tid); mtid=pTrack->GetFirstMother();
172 TString str=pTrack->GetName();
173 while((tid=pTrack->GetFirstMother()) >= 0){
174 pTrack=pStack->Particle(tid);
175 str+=" from ";str+=pTrack->GetName();
176 }
d3da6dc4 177 }//if(tid==-1)
178 }//events loop
179 pAL->UnloadHeader(); pAL->UnloadKinematics();
180 return mtid;
181}
182//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
183Int_t AliHMPIDParam::StackCount(Int_t pid,Int_t evt)
184{
185// Counts total number of particles of given sort (including secondary) for a given event
186 AliRunLoader *pAL=AliRunLoader::Open();
187 pAL->GetEvent(evt);
188 if(pAL->LoadHeader()) return 0;
189 if(pAL->LoadKinematics()) return 0;
190 AliStack *pStack=pAL->Stack();
191
192 Int_t iCnt=0;
193 for(Int_t i=0;i<pStack->GetNtrack();i++) if(pStack->Particle(i)->GetPdgCode()==pid) iCnt++;
194
195 pAL->UnloadHeader(); pAL->UnloadKinematics();
196 return iCnt;
197}
198//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
3278403b 199Double_t AliHMPIDParam::Sigma2(Double_t trkTheta,Double_t trkPhi,Double_t ckovTh, Double_t ckovPh)
200{
201// Analithical calculation of total error (as a sum of localization, geometrical and chromatic errors) on Cerenkov angle for a given Cerenkov photon
202// created by a given MIP. Fromulae according to CERN-EP-2000-058
203// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians]
204// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians]
205// MIP beta
206// Returns: absolute error on Cerenkov angle, [radians]
207
208 TVector3 v(-999,-999,-999);
209 Double_t trkBeta = 1./(TMath::Cos(ckovTh)*GetRefIdx());
210
211 if(trkBeta > 1) trkBeta = 1; //protection against bad measured thetaCer
212 if(trkBeta < 0) trkBeta = 0.0001; //
213
214 v.SetX(SigLoc (trkTheta,trkPhi,ckovTh,ckovPh,trkBeta));
215 v.SetY(SigGeom(trkTheta,trkPhi,ckovTh,ckovPh,trkBeta));
216 v.SetZ(SigCrom(trkTheta,trkPhi,ckovTh,ckovPh,trkBeta));
217
218 return v.Mag2();
219}
220//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
221Double_t AliHMPIDParam::SigLoc(Double_t trkTheta,Double_t trkPhi,Double_t thetaC, Double_t phiC,Double_t betaM)
222{
223// Analitical calculation of localization error (due to finite segmentation of PC) on Cerenkov angle for a given Cerenkov photon
224// created by a given MIP. Fromulae according to CERN-EP-2000-058
225// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians]
226// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians]
227// MIP beta
228// Returns: absolute error on Cerenkov angle, [radians]
229
230 Double_t phiDelta = phiC - trkPhi;
231
232 Double_t sint = TMath::Sin(trkTheta);
233 Double_t cost = TMath::Cos(trkTheta);
234 Double_t sinf = TMath::Sin(trkPhi);
235 Double_t cosf = TMath::Cos(trkPhi);
236 Double_t sinfd = TMath::Sin(phiDelta);
237 Double_t cosfd = TMath::Cos(phiDelta);
238 Double_t tantheta = TMath::Tan(thetaC);
239
240 Double_t alpha =cost-tantheta*cosfd*sint; // formula (11)
241 Double_t k = 1.-GetRefIdx()*GetRefIdx()+alpha*alpha/(betaM*betaM); // formula (after 8 in the text)
242 if (k<0) return 1e10;
243 Double_t mu =sint*sinf+tantheta*(cost*cosfd*sinf+sinfd*cosf); // formula (10)
244 Double_t e =sint*cosf+tantheta*(cost*cosfd*cosf-sinfd*sinf); // formula (9)
245
246 Double_t kk = betaM*TMath::Sqrt(k)/(GapThick()*alpha); // formula (6) and (7)
247 Double_t dtdxc = kk*(k*(cosfd*cosf-cost*sinfd*sinf)-(alpha*mu/(betaM*betaM))*sint*sinfd); // formula (6)
248 Double_t dtdyc = kk*(k*(cosfd*sinf+cost*sinfd*cosf)+(alpha* e/(betaM*betaM))*sint*sinfd); // formula (7) pag.4
249
250 Double_t errX = 0.2,errY=0.25; //end of page 7
251 return TMath::Sqrt(errX*errX*dtdxc*dtdxc + errY*errY*dtdyc*dtdyc);
252}
253//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
254Double_t AliHMPIDParam::SigCrom(Double_t trkTheta,Double_t trkPhi,Double_t thetaC, Double_t phiC,Double_t betaM)
255{
256// Analitical calculation of chromatic error (due to lack of knowledge of Cerenkov photon energy) on Cerenkov angle for a given Cerenkov photon
257// created by a given MIP. Fromulae according to CERN-EP-2000-058
258// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians]
259// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians]
260// MIP beta
261// Returns: absolute error on Cerenkov angle, [radians]
262
263 Double_t phiDelta = phiC - trkPhi;
264
265 Double_t sint = TMath::Sin(trkTheta);
266 Double_t cost = TMath::Cos(trkTheta);
267 Double_t cosfd = TMath::Cos(phiDelta);
268 Double_t tantheta = TMath::Tan(thetaC);
269
270 Double_t alpha =cost-tantheta*cosfd*sint; // formula (11)
271 Double_t dtdn = cost*GetRefIdx()*betaM*betaM/(alpha*tantheta); // formula (12)
272
273// Double_t f = 0.00928*(7.75-5.635)/TMath::Sqrt(12.);
274 Double_t f = 0.0172*(7.75-5.635)/TMath::Sqrt(24.);
275
276 return f*dtdn;
277}//SigCrom()
278//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
279Double_t AliHMPIDParam::SigGeom(Double_t trkTheta,Double_t trkPhi,Double_t thetaC, Double_t phiC,Double_t betaM)
280{
281// Analitical calculation of geometric error (due to lack of knowledge of creation point in radiator) on Cerenkov angle for a given Cerenkov photon
282// created by a given MIP. Formulae according to CERN-EP-2000-058
283// Arguments: Cerenkov and azimuthal angles for Cerenkov photon, [radians]
284// dip and azimuthal angles for MIP taken at the entrance to radiator, [radians]
285// MIP beta
286// Returns: absolute error on Cerenkov angle, [radians]
287
288 Double_t phiDelta = phiC - trkPhi;
289
290 Double_t sint = TMath::Sin(trkTheta);
291 Double_t cost = TMath::Cos(trkTheta);
292 Double_t sinf = TMath::Sin(trkPhi);
293 Double_t cosfd = TMath::Cos(phiDelta);
294 Double_t costheta = TMath::Cos(thetaC);
295 Double_t tantheta = TMath::Tan(thetaC);
296
297 Double_t alpha =cost-tantheta*cosfd*sint; // formula (11)
298
299 Double_t k = 1.-GetRefIdx()*GetRefIdx()+alpha*alpha/(betaM*betaM); // formula (after 8 in the text)
300 if (k<0) return 1e10;
301
302 Double_t eTr = 0.5*RadThick()*betaM*TMath::Sqrt(k)/(GapThick()*alpha); // formula (14)
303 Double_t lambda = 1.-sint*sint*sinf*sinf; // formula (15)
304
305 Double_t c1 = 1./(1.+ eTr*k/(alpha*alpha*costheta*costheta)); // formula (13.a)
306 Double_t c2 = betaM*TMath::Power(k,1.5)*tantheta*lambda/(GapThick()*alpha*alpha); // formula (13.b)
307 Double_t c3 = (1.+eTr*k*betaM*betaM)/((1+eTr)*alpha*alpha); // formula (13.c)
308 Double_t c4 = TMath::Sqrt(k)*tantheta*(1-lambda)/(GapThick()*betaM); // formula (13.d)
309 Double_t dtdT = c1 * (c2+c3*c4);
310 Double_t trErr = RadThick()/(TMath::Sqrt(12.)*cost);
311
312 return trErr*dtdT;
313}//SigGeom()
314//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++