]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSBaseGeometry.cxx
New version and structure of ITS V11 geometry. Work still in progress.
[u/mrichter/AliRoot.git] / ITS / AliITSBaseGeometry.cxx
CommitLineData
aa9bc63b 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
18
19$Id$
20*/
21
22/*
23 A base geometry class defining all of the ITS volumes that make up an ITS
24geometry.
25Auhors: B. S. Nilsen
26Version 0
27Created February 2003.
28*/
29
30#include <Riostream.h>
31#include <stdio.h>
32#include <stdlib.h>
33#include <string.h>
34#include <TMath.h>
35#include <TGeometry.h>
36#include <TNode.h>
37#include <TTUBE.h>
38#include <TTUBS.h>
39#include <TPCON.h>
40#include <TFile.h> // only required for Tracking function?
41#include <TCanvas.h>
42#include <TObjArray.h>
43#include <TLorentzVector.h>
44#include <TObjString.h>
45#include <TClonesArray.h>
46#include <TBRIK.h>
47#include <TSystem.h>
48#include <AliRun.h>
49#include <AliMagF.h>
50#include <AliConst.h>
51#include "AliITSBaseGeometry.h"
52
53ClassImp(AliITSBaseGeometry)
54//______________________________________________________________________
55AliITSBaseGeometry::AliITSBaseGeometry(){
56 // Default construtor for the ITS Base Geometry class.
57 // Inputs:
58 // none.
59 // Outputs:
60 // none.
61 // Return:
62 // none.
63
64 fScale = 1.0; // Default value.
65 fits = 0; // zero pointers.
66 fNCreates++; // incrament this creation counter.
67}
68//______________________________________________________________________
69AliITSBaseGeometry::AliITSBaseGeometry(AliModule *its,Int_t iflag){
70 // Standard construtor for the ITS Base Geometry class.
71 // Inputs:
72 // Int_t iflag flag to indecate specific swiches in the geometry
73 // Outputs:
74 // none.
75 // Return:
76 // none.
77
78 fScale = 1.0; // Default value.
79 fits = its; // get a copy of the pointer to the ITS.
80 fNCreates++; // incrament this creation counter.
81}
82//______________________________________________________________________
83AliITSBaseGeometry::~AliITSBaseGeometry(){
84 // Standeard destructor for the ITS Base Geometry class.
85 // Inputs:
86 // Int_t iflag flag to indecate specific swiches in the geometry
87 // Outputs:
88 // none.
89 // Return:
90 // none.
91
92 fits = 0; // This class does not own this class. It contaitns a pointer
93 // to it for conveniance.
94 fidmed = 0; // This class does not own this array of media indexs. It
95 fNCreates--;
96 if(fNCreates==0){ // Now delete the static members
97 Int_t i;
98 if(fVolName!=0){
99 for(i=0;i<fVolNameLast;i++) delete fVolName[i];
100 fVolNameSize = 0;
101 fVolNameLast = 0;
102 delete[] fVolName;
103 }// end if
104 delete[] fidrot;
105 fidrotsize = fidrotlast = 0;
106 }// end if
107}
108//______________________________________________________________________
109Int_t AliITSBaseGeometry::AddVolName(const TString name){
110 // Checks if the volume name already exist, if not it adds it to
111 // the list of volume names and returns an index to that volume name.
112 // it will create and expand the array of volume names as needed.
113 // If the volume name already exists, it will give an error message and
114 // return an index <0.
115 // Inputs:
116 // const TString name Volume name to be added to the list.
117 // Outputs:
118 // none.
119 // Return:
120 // The index where this volume name is stored.
121 Int_t i;
122
123 if(fVolName==0){ // must create array.
124 fVolNameSize = 1000;
125 fVolName = new TString[fVolNameSize];
126 fVolNameLast = 0;
127 } // end if
128 for(i=0;i<fVolNameLast;i++) if(fVolName[i].CompareTo(name)==0){ // Error
129 Error("AddVolName","Volume name already exists for volume %d",i);
130 return -1;
131 } // end for i
132 if(fVolNameSize==fVolNameLast-1){ // Array is full must expand.
133 Int_t size = fVolNameSize*2;
134 TString *old = fVolName;
135 fVolName = new TString[fVolNameSize];
136 for(i=0;i<fVolNameLast;i++) fVolName[i] = old[i];
137 delete[] old;
138 fVolNameSize = size;
139 } // end if
140 if(strcmp(ITSIndexToITSG3name(fVolNameLast),"ITSV")==0){
141 // Special Reserved Geant 3 volumen name. Skip it
142 // fill it with explination for conveniance.
143 fVolName[fVolNameLast] = "ITS Master Mother Volume";
144 fVolNameLast++;
145 } // end if
146 fVolName[fVolNameLast] = name;
147 fVolNameLast++;
148 return fVolNameLast-1; // return the index
149}
150//______________________________________________________________________
151char* AliITSBaseGeometry::ITSIndexToITSG3name(const Int_t i){
152 // Given the ITS volume index i, it returns the Geant3 ITS volume
153 // name. The valid characters must be in the range
154 // '0' through 'Z'. This will include all upper case letter and the
155 // numbers 0-9. In addition it does not will include the following simbols
156 // ":;<=>?@"
157 // Inputs:
158 // const Int_t i the ITS volume index
159 // Output:
160 // none.
161 // Return:
162 // char[4] with the ITS volume name starting from "I000" to "IZZZ"
163 const Int_t rangen=(Int_t)('9'-'0'+1); // range of numbers
164 const Int_t rangel=(Int_t)('Z'-'A'+1); // range of letters
165 const Int_t range = rangen+rangel; // the number of characters between
166 // 0-9 and A-Z.
167 char a[4];
168 Int_t j = i;
169
170 a[0] = (char)('I');
171 a[1] = (char)('0'+j/(range*range));
172 if(a[1]>'9') a[1] += 'A'-'0'; // if it is a letter add in gap for simples.
173 j -= range*range*(a[1]-'0');
174 a[2] = (char)('0'+j/range);
175 if(a[2]>'9') a[2] += 'A'-'0'; // if it is a letter add in gap for simples.
176 j -= range*(a[2]-'0');
177 a[3] = (char)('0'+j);
178 if(a[3]>'9') a[3] += 'A'-'0'; // if it is a letter add in gap for simples.
179 return a;
180}
181//______________________________________________________________________
182Int_t AliITSBaseGeometry::ITSG3VnameToIndex(const char name[3])const{
183 // Given the last three characters of the ITS Geant3 volume name,
184 // this returns the index. The valid characters must be in the range
185 // '0' through 'Z'. This will include all upper case letter and the
186 // numbers 0-9. In addition it will include the following simbles
187 // ":;<=>?@"
188 // Inputs:
189 // const char name[3] The last three characters of the ITS Geant3
190 // volume name
191 // Output:
192 // none.
193 // Return:
194 // Int_t the index.
195 const Int_t rangen=(Int_t)('9'-'0'+1); // range of numbers
196 const Int_t rangel=(Int_t)('Z'-'A'+1); // range of letters
197 const Int_t range = rangen+rangel; // the number of characters between
198 // 0-9 and A-Z.
199 Int_t i,j;
200
201 i = 0;
202 for(j=3;j>-1;j--){
203 if(isdigit(name[j])){ // number
204 i += (Int_t)(name[j]-'0')*TMath::Power(range,(Double_t)j);
205 }else{ // Letter
206 i += (Int_t)(name[j]-'A'+rangen)*TMath::Power(range,(Double_t)j);
207 } // end if
208 } // end for j
209 return i;
210}
211//______________________________________________________________________
212TString AliITSBaseGeometry::GetVolName(const Int_t i)const{
213 // Returns the volume name at a given index i. Index must be in
214 // range and the array of volume names must exist. If there is an
215 // error, a message is written and 0 is returned.
216 // Inputs:
217 // const Int_t i Index
218 // Output:
219 // none.
220 // Return:
221 // A TString contianing the ITS volume name.
222
223 if(i<0||i>=fVolNameLast){
224 Error("GetVolName","Index=%d out of range but be witin 0<%d",i,
225 fVolName-1);
226 return 0;
227 } // end if Error
228 return fVolName[i];
229}
230//______________________________________________________________________
231Int_t AliITSBaseGeometry::GetVolumeIndex(const TString &a){
232 // Return the index corresponding the the volume name a. If the
233 // Volumen name is not found, return -1, and a warning message given.
234 // Inputs:
235 // const TString &a Name of volume for which index is wanted.
236 // Output:
237 // none.
238 // Return:
239 // Int_t Index corresponding the volume a. If not found -1 is returned.
240 Int_t i;
241
242 for(i=0;i<fVolNameLast;i++) if(fVolName[i].CompareTo(a)==0) return i;
243 Info("GetVolumeIndex","Volume name %s not found",a.Data());
244 return -1;
245}
246//______________________________________________________________________
247void AliITSBaseGeometry::Box(const char gnam[3],const TString &dis,
248 Double_t dx,Double_t dy,Double_t dz,Int_t med){
249 // Interface to TMC->Gsvolu() for ITS bos geometries. Box with faces
250 // perpendicular to the axes. It has 3 paramters. See SetScale() for
251 // units. Default units are geant 3 [cm].
252 // Inputs:
253 // const char gnam[3] 3 character geant volume name. The letter "I"
254 // is appended to the front to indecate that this
255 // is an ITS volume.
256 // TString &dis String containging part discription.
257 // Double_t dx half-length of box in x-axis
258 // Double_t dy half-length of box in y-axis
259 // Double_t dz half-length of box in z-axis
260 // Int_t med media index number.
261 // Output:
262 // none.
263 // Return.
264 // none.
265 char name[4];
266 Float_t param[3];
267
268 if(fidmed==0) SetMedArray();
269 param[0] = fScale*dx;
270 param[1] = fScale*dy;
271 param[2] = fScale*dz;
272 name[3] = 'I';
273 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
274 gMC->Gsvolu(name,"BOX ",fidmed[med],param,3);
275}
276//______________________________________________________________________
277void AliITSBaseGeometry::Trapezoid1(const char gnam[3],const TString &dis,
278 Double_t dxn,Double_t dxp,Double_t dy,
279 Double_t dz,Int_t med){
280 // Interface to TMC->Gsvolu() for ITS TRD1 geometries. Trapezoid with the
281 // x dimension varing along z. It has 4 parameters. See SetScale() for
282 // units. Default units are geant 3 [cm].
283 // Inputs:
284 // const char gnam[3] 3 character geant volume name. The letter "I"
285 // is appended to the front to indecate that this
286 // is an ITS volume.
287 // TString &dis String containging part discription.
288 // Double_t dxn half-length along x at the z surface positioned
289 // at -DZ
290 // Double_t dxp half-length along x at the z surface positioned
291 // at +DZ
292 // Double_t dy half-length along the y-axis
293 // Double_t dz half-length along the z-axis
294 // Int_t med media index number.
295 // Output:
296 // none.
297 // Return.
298 // none.
299 char name[4];
300 Float_t param[4];
301
302 if(fidmed==0) SetMedArray();
303 param[0] = fScale*dxn;
304 param[1] = fScale*dxp;
305 param[2] = fScale*dy;
306 param[3] = fScale*dz;
307 name[3] = 'I';
308 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
309 gMC->Gsvolu(name,"TRD1",fidmed[med],param,4);
310}
311//______________________________________________________________________
312void AliITSBaseGeometry::Trapezoid2(const char gnam[3],const TString &dis,
313 Double_t dxn,Double_t dxp,Double_t dyn,
314 Double_t dyp,Double_t dz,Int_t med){
315 // Interface to TMC->Gsvolu() for ITS TRD2 geometries. Trapezoid with the
316 // x and y dimension varing along z. It has 5 parameters. See SetScale()
317 // for units. Default units are geant 3 [cm].
318 // Inputs:
319 // const char gnam[3] 3 character geant volume name. The letter "I"
320 // is appended to the front to indecate that this
321 // is an ITS volume.
322 // TString &dis String containging part discription.
323 // Double_t dxn half-length along x at the z surface positioned
324 // at -DZ
325 // Double_t dxp half-length along x at the z surface positioned
326 // at +DZ
327 // Double_t dyn half-length along x at the z surface positioned
328 // at -DZ
329 // Double_t dyp half-length along x at the z surface positioned
330 // at +DZ
331 // Double_t dz half-length along the z-axis
332 // Int_t med media index number.
333 // Output:
334 // none.
335 // Return.
336 // none.
337 char name[4];
338 Float_t param[5];
339
340 if(fidmed==0) SetMedArray();
341 param[0] = fScale*dxn;
342 param[1] = fScale*dxp;
343 param[2] = fScale*dyn;
344 param[3] = fScale*dyp;
345 param[4] = fScale*dz;
346 name[3] = 'I';
347 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
348 gMC->Gsvolu(name,"TRD2",fidmed[med],param,5);
349}
350//______________________________________________________________________
351void AliITSBaseGeometry::Trapezoid(const char gnam[3],const TString &dis,
352 Double_t dz,Double_t thet,Double_t phi,
353 Double_t h1,Double_t bl1,Double_t tl1,
354 Double_t alp1,Double_t h2,Double_t bl2,
355 Double_t tl2,Double_t alp2,Int_t med){
356 // Interface to TMC->Gsvolu() for ITS TRAP geometries. General Trapezoid,
357 // The faces perpendicular to z are trapezia and their centers are not
358 // necessarily on a line parallel to the z axis. This shape has 11
359 // parameters, but only cosidering that the faces should be planar, only 9
360 // are really independent. A check is performed on the user parameters and
361 // a message is printed in case of non-planar faces. Ignoring this warning
362 // may cause unpredictable effects at tracking time. See SetScale()
363 // for units. Default units are geant 3 [cm].
364 // Inputs:
365 // const char gnam[3] 3 character geant volume name. The letter "I"
366 // is appended to the front to indecate that this
367 // is an ITS volume.
368 // TString &dis String containging part discription.
369 // Double_t dz Half-length along the z-asix
370 // Double_t thet Polar angle of the line joing the center of the
371 // face at -dz to the center of the one at dz
372 // [degree].
373 // Double_t phi aximuthal angle of the line joing the center of
374 // the face at -dz to the center of the one at +dz
375 // [degree].
376 // Double_t h1 half-length along y of the face at -dz.
377 // Double_t bl1 half-length along x of the side at -h1 in y of
378 // the face at -dz in z.
379 // Double_t tl1 half-length along x of teh side at +h1 in y of
380 // the face at -dz in z.
381 // Double_t alp1 angle with respect to the y axis from the center
382 // of the side at -h1 in y to the cetner of the
383 // side at +h1 in y of the face at -dz in z
384 // [degree].
385 // Double_t h2 half-length along y of the face at +dz
386 // Double_t bl2 half-length along x of the side at -h2 in y of
387 // the face at +dz in z.
388 // Double_t tl2 half-length along x of the side at _h2 in y of
389 // the face at +dz in z.
390 // Double_t alp2 angle with respect to the y axis from the center
391 // of the side at -h2 in y to the center of the
392 // side at +h2 in y of the face at +dz in z
393 // [degree].
394 // Int_t med media index number.
395 // Output:
396 // none.
397 // Return.
398 // none.
399 char name[4];
400 Float_t param[11];
401
402 if(fidmed==0) SetMedArray();
403 param[0] = fScale*dz;
404 param[1] = thet;
405 param[2] = phi;
406 param[3] = fScale*h1;
407 param[4] = fScale*bl1;
408 param[5] = fScale*tl1;
409 param[6] = alp1;
410 param[7] = fScale*h2;
411 param[8] = fScale*bl2;
412 param[9] = fScale*tl2;
413 param[10] = alp2;
414 name[3] = 'I';
415 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
416 gMC->Gsvolu(name,"TRAP",fidmed[med],param,11);
417}
418//______________________________________________________________________
419void AliITSBaseGeometry::Tube(const char gnam[3],const TString &dis,
420 Double_t rmin,Double_t rmax,Double_t dz,
421 Int_t med){
422 // Interface to TMC->Gsvolu() for ITS TUBE geometries. Simple Tube. It has
423 // 3 parameters. See SetScale()
424 // for units. Default units are geant 3 [cm].
425 // Inputs:
426 // const char gnam[3] 3 character geant volume name. The letter "I"
427 // is appended to the front to indecate that this
428 // is an ITS volume.
429 // TString &dis String containging part discription.
430 // Double_t rmin Inside Radius.
431 // Double_t rmax Outside Radius.
432 // Double_t dz half-length along the z-axis
433 // Int_t med media index number.
434 // Output:
435 // none.
436 // Return.
437 // none.
438 char name[4];
439 Float_t param[3];
440
441 if(fidmed==0) SetMedArray();
442 param[0] = fScale*rmin;
443 param[1] = fScale*rmax;
444 param[2] = fScale*dz;
445 name[3] = 'I';
446 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
447 gMC->Gsvolu(name,"TUBE",fidmed[med],param,3);
448}
449//______________________________________________________________________
450void AliITSBaseGeometry::TubeSegment(const char gnam[3],const TString &dis,
451 Double_t rmin,Double_t rmax,Double_t dz,
452 Double_t phi1,Double_t phi2,Int_t med){
453 // Interface to TMC->Gsvolu() for ITS TUBE geometries. Phi segment of a
454 // tube. It has 5 parameters. Phi1 should be smaller than phi2. If this is
455 // not the case, the system adds 360 degrees to phi2. See SetScale()
456 // for units. Default units are geant 3 [cm].
457 // Inputs:
458 // const char gnam[3] 3 character geant volume name. The letter "I"
459 // is appended to the front to indecate that this
460 // is an ITS volume.
461 // TString &dis String containging part discription.
462 // Double_t rmin Inside Radius.
463 // Double_t rmax Outside Radius.
464 // Double_t dz half-length along the z-axis
465 // Double_t phi1 Starting angle of the segment [degree].
466 // Double_t phi2 Ending angle of the segment [degree].
467 // Int_t med media index number.
468 // Output:
469 // none.
470 // Return.
471 // none.
472 char name[4];
473 Float_t param[5];
474
475 if(fidmed==0) SetMedArray();
476 param[0] = fScale*rmin;
477 param[1] = fScale*rmax;
478 param[2] = fScale*dz;
479 param[3] = phi1;
480 param[4] = phi2;
481 name[3] = 'I';
482 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
483 gMC->Gsvolu(name,"TUBS",fidmed[med],param,5);
484}
485//______________________________________________________________________
486void AliITSBaseGeometry::Cone(const char gnam[3],const TString &dis,
487 Double_t dz,Double_t rmin1,Double_t rmax1,
488 Double_t rmin2,Double_t rmax2,Int_t med){
489 // Interface to TMC->Gsvolu() for ITS Cone geometries. Conical tube. It
490 // has 5 parameters. See SetScale()
491 // for units. Default units are geant 3 [cm].
492 // Inputs:
493 // const char gnam[3] 3 character geant volume name. The letter "I"
494 // is appended to the front to indecate that this
495 // is an ITS volume.
496 // TString &dis String containging part discription.
497 // Double_t dz half-length along the z-axis
498 // Double_t rmin1 Inside Radius at -dz.
499 // Double_t rmax1 Outside Radius at -dz.
500 // Double_t rmin2 inside radius at +dz.
501 // Double_t rmax2 outside radius at +dz.
502 // Int_t med media index number.
503 // Output:
504 // none.
505 // Return.
506 // none.
507 char name[4];
508 Float_t param[5];
509
510 if(fidmed==0) SetMedArray();
511 param[0] = fScale*dz;
512 param[1] = fScale*rmin1;
513 param[2] = fScale*rmax1;
514 param[3] = fScale*rmin2;
515 param[4] = fScale*rmax2;
516 name[3] = 'I';
517 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
518 gMC->Gsvolu(name,"CONS",fidmed[med],param,5);
519}
520//______________________________________________________________________
521void AliITSBaseGeometry::ConeSegment(const char gnam[3],const TString &dis,
522 Double_t dz,Double_t rmin1,Double_t rmax1,
523 Double_t rmin2,Double_t rmax2,
524 Double_t phi1,Double_t phi2,Int_t med){
525 // Interface to TMC->Gsvolu() for ITS ConS geometries. One segment of a
526 // conical tube. It has 7 parameters. Phi1 should be smaller than phi2. If
527 // this is not the case, the system adds 360 degrees to phi2. See
528 // SetScale() for units. Default units are geant 3 [cm].
529 // Inputs:
530 // const char gnam[3] 3 character geant volume name. The letter "I"
531 // is appended to the front to indecate that this
532 // is an ITS volume.
533 // TString &dis String containging part discription.
534 // Double_t dz half-length along the z-axis
535 // Double_t rmin1 Inside Radius at -dz.
536 // Double_t rmax1 Outside Radius at -dz.
537 // Double_t rmin2 inside radius at +dz.
538 // Double_t rmax2 outside radius at +dz.
539 // Double_t phi1 Starting angle of the segment [degree].
540 // Double_t phi2 Ending angle of the segment [degree].
541 // Int_t med media index number.
542 // Output:
543 // none.
544 // Return.
545 // none.
546 char name[4];
547 Float_t param[7];
548
549 if(fidmed==0) SetMedArray();
550 param[0] = fScale*dz;
551 param[1] = fScale*rmin1;
552 param[2] = fScale*rmax1;
553 param[3] = fScale*rmin2;
554 param[4] = fScale*rmax2;
555 param[5] = phi1;
556 param[6] = phi2;
557 name[3] = 'I';
558 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
559 gMC->Gsvolu(name,"CONS",fidmed[med],param,7);
560}
561//______________________________________________________________________
562void AliITSBaseGeometry::Sphere(const char gnam[3],const TString &dis,
563 Double_t rmin,Double_t rmax,Double_t the1,
564 Double_t the2,Double_t phi1,Double_t phi2,
565 Int_t med){
566 // Interface to TMC->Gsvolu() for ITS SPHE geometries. Segment of a
567 // sphereical shell. It has 6 parameters. See SetScale()
568 // for units. Default units are geant 3 [cm].
569 // Inputs:
570 // const char gnam[3] 3 character geant volume name. The letter "I"
571 // is appended to the front to indecate that this
572 // is an ITS volume.
573 // TString &dis String containging part discription.
574 // Double_t rmin Inside Radius.
575 // Double_t rmax Outside Radius.
576 // Double_t the1 staring polar angle of the shell [degree].
577 // Double_t the2 ending polar angle of the shell [degree].
578 // Double_t phui staring asimuthal angle of the shell [degree].
579 // Double_t phi2 ending asimuthal angle of the shell [degree].
580 // Int_t med media index number.
581 // Output:
582 // none.
583 // Return.
584 // none.
585 char name[4];
586 Float_t param[6];
587
588 if(fidmed==0) SetMedArray();
589 param[0] = fScale*rmin;
590 param[1] = fScale*rmax;
591 param[2] = the1;
592 param[3] = the2;
593 param[4] = phi1;
594 param[5] = phi2;
595 name[3] = 'I';
596 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
597 gMC->Gsvolu(name,"SPHE",fidmed[med],param,6);
598}
599//______________________________________________________________________
600void AliITSBaseGeometry::Parallelepiped(const char gnam[3],const TString &dis,
601 Double_t dx,Double_t dy,Double_t dz,
602 Double_t alpha,Double_t thet,
603 Double_t phi,Int_t med){
604 // Interface to TMC->Gsvolu() for ITS PARA geometries. Parallelepiped. It
605 // has 6 parameters. See SetScale() for units. Default units are geant 3
606 // [cm].
607 // Inputs:
608 // const char gnam[3] 3 character geant volume name. The letter "I"
609 // is appended to the front to indecate that this
610 // is an ITS volume.
611 // TString &dis String containging part discription.
612 // Double_t dx half-length allong x-axis
613 // Double_t dy half-length allong y-axis
614 // Double_t dz half-length allong z-axis
615 // Double_t alpha angle formed by the y axis and by the plane
616 // joining the center of teh faces parallel to the
617 // z-x plane at -dY and +dy [degree].
618 // Double_t thet polar angle of the line joining the centers of
619 // the faces at -dz and +dz in z [degree].
620 // Double_t phi azimuthal angle of teh line joing the centers of
621 // the faaces at -dz and +dz in z [degree].
622 // Int_t med media index number.
623 // Output:
624 // none.
625 // Return.
626 // none.
627 char name[4];
628 Float_t param[6];
629
630 if(fidmed==0) SetMedArray();
631 param[0] = fScale*dx;
632 param[1] = fScale*dy;
633 param[2] = fScale*dz;
634 param[3] = alpha;
635 param[4] = thet;
636 param[5] = phi;
637 name[3] = 'I';
638 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
639 gMC->Gsvolu(name,"PARA",fidmed[med],param,6);
640}
641//______________________________________________________________________
642void AliITSBaseGeometry::Polygon(const char gnam[3],const TString &dis,
643 Double_t phi1,Double_t dphi,Int_t npdv,
644 Int_t nz,Double_t *z,Double_t *rmin,
645 Double_t *rmax,Int_t med){
646 // Interface to TMC->Gsvolu() for ITS PGON geometry. Polygon It has 10
647 // parameters or more. See SetScale() for units. Default units are geant 3
648 // [cm].
649 // Inputs:
650 // const char gnam[3] 3 character geant volume name. The letter "I"
651 // is appended to the front to indecate that this
652 // is an ITS volume.
653 // TString &dis String containging part discription.
654 // Double_t phi1 the azimuthal angle at which the volume begins
655 // (angles are counted clouterclockwise) [degrees].
656 // Double_t dphi opening angle of the volume, which extends from
657 // phi1 to phi1+dphi [degree].
658 // Int_t npdv the number of sides of teh cross section between
659 // the given phi limits.
660 // Int_t nz number of planes perpendicular to the z axis
661 // where the dimension of the section is given -
662 // this number should be at least 2 and NP triples
663 // of number must follow.
664 // Double_t *z array [nz] of z coordiates of the sections..
665 // Double_t *rmin array [nz] of radius of teh circle tangent to
666 // the sides of the inner polygon in teh
667 // cross-section.
668 // Double_t *rmax array [nz] of radius of the circle tangent to
669 // the sides of the outer polygon in the
670 // cross-section.
671 // Int_t med media index number.
672 // Output:
673 // none.
674 // Return.
675 // none.
676 char name[4];
677 Float_t *param;
678 Int_t n,i;
679
680 if(fidmed==0) SetMedArray();
681 n = 4+3*nz;
682 param = new Float_t[n];
683 param[0] = phi1;
684 param[1] = dphi;
685 param[2] = (Float_t)npdv;
686 param[3] = (Float_t)nz;
687 for(i=0;i<nz;i++){
688 param[4+3*i] = z[i];
689 param[5+3*i] = rmin[i];
690 param[6+3*i] = rmax[i];
691 } // end for i
692 name[3] = 'I';
693 for(i=0;i<3;i++) name[i+1] = gnam[i];
694 gMC->Gsvolu(name,"PGON",fidmed[med],param,n);
695
696 delete[] param;
697}
698//______________________________________________________________________
699void AliITSBaseGeometry::PolyCone(const char gnam[3],const TString &dis,
700 Double_t phi1,Double_t dphi,Int_t nz,
701 Double_t *z,Double_t *rmin,Double_t *rmax,
702 Int_t med){
703 // Interface to TMC->Gsvolu() for ITS PCON geometry. Poly-cone It has 9
704 // parameters or more. See SetScale() for units. Default units are geant 3
705 // [cm].
706 // Inputs:
707 // const char gnam[3] 3 character geant volume name. The letter "I"
708 // is appended to the front to indecate that this
709 // is an ITS volume.
710 // TString &dis String containging part discription.
711 // Double_t phi1 the azimuthal angle at which the volume begins
712 // (angles are counted clouterclockwise) [degrees].
713 // Double_t dphi opening angle of the volume, which extends from
714 // phi1 to phi1+dphi [degree].
715 // Int_t nz number of planes perpendicular to the z axis
716 // where the dimension of the section is given -
717 // this number should be at least 2 and NP triples
718 // of number must follow.
719 // Double_t *z Array [nz] of z coordinate of the section.
720 // Double_t *rmin Array [nz] of radius of teh inner circle in the
721 // cross-section.
722 // Double_t *rmax Array [nz] of radius of the outer circle in the
723 // cross-section.
724 // Int_t med media index number.
725 // Output:
726 // none.
727 // Return.
728 // none.
729 char name[4];
730 Float_t *param;
731 Int_t n,i;
732
733 if(fidmed==0) SetMedArray();
734 n = 3+3*nz;
735 param = new Float_t[n];
736 param[0] = phi1;
737 param[1] = dphi;
738 param[2] = (Float_t) nz;
739 for(i=0;i<nz;i++){
740 param[3+3*i] = z[i];
741 param[4+3*i] = rmin[i];
742 param[5+3*i] = rmax[i];
743 } // end for i
744 name[3] = 'I';
745 for(i=0;i<3;i++) name[i+1] = gnam[i];
746 gMC->Gsvolu(name,"PCON",fidmed[med],param,n);
747
748 delete[] param;
749}
750//______________________________________________________________________
751void AliITSBaseGeometry::TubeElliptical(const char gnam[3],const TString &dis,
752 Double_t p1,Double_t p2,Double_t dz,Int_t med){
753 // Interface to TMC->Gsvolu() for ITS ELTU geometries. Elliptical
754 // cross-section Tube. It has 3 parameters. See SetScale()
755 // for units. Default units are geant 3 [cm]. The equation of the surface
756 // is x^2 * p1^-2 + y^2 * p2^-2 = 1.
757 // Inputs:
758 // const char gnam[3] 3 character geant volume name. The letter "I"
759 // is appended to the front to indecate that this
760 // is an ITS volume.
761 // TString &dis String containging part discription.
762 // Double_t p1 semi-axis of the elipse along x.
763 // Double_t p2 semi-axis of the elipse along y.
764 // Double_t dz half-length along the z-axis
765 // Int_t med media index number.
766 // Output:
767 // none.
768 // Return.
769 // none.
770 char name[4];
771 Float_t param[3];
772
773 if(fidmed==0) SetMedArray();
774 param[0] = fScale*p1;
775 param[1] = fScale*p2;
776 param[2] = fScale*dz;
777 name[3] = 'I';
778 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
779 gMC->Gsvolu(name,"ELTU",fidmed[med],param,3);
780}
781//______________________________________________________________________
782void AliITSBaseGeometry::HyperbolicTube(const char gnam[3],const TString &dis,
783 Double_t rmin,Double_t rmax,Double_t dz,
784 Double_t thet,Int_t med){
785 // Interface to TMC->Gsvolu() for ITS HYPE geometries. Hyperbolic tube.
786 // Fore example the inner and outer surfaces are hyperboloids, as would be
787 // foumed by a system of cylinderical wires which were then rotated
788 // tangentially about their centers. It has 4 parameters. See SetScale()
789 // for units. Default units are geant 3 [cm]. The hyperbolic surfaces are
790 // given by r^2 = (ztan(thet)^2 + r(z=0)^2.
791 // Inputs:
792 // const char gnam[3] 3 character geant volume name. The letter "I"
793 // is appended to the front to indecate that this
794 // is an ITS volume.
795 // TString &dis String containging part discription.
796 // Double_t rmin Inner radius at z=0 where tube is narrowest.
797 // Double_t rmax Outer radius at z=0 where tube is narrowest.
798 // Double_t dz half-length along the z-axis
799 // Double_t thet stero angel of rotation of the two faces
800 // [degrees].
801 // Int_t med media index number.
802 // Output:
803 // none.
804 // Return.
805 // none.
806 char name[4];
807 Float_t param[4];
808
809 if(fidmed==0) SetMedArray();
810 param[0] = fScale*rmin;
811 param[1] = fScale*rmax;
812 param[2] = fScale*dz;
813 param[3] = thet;
814 name[3] = 'I';
815 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
816 gMC->Gsvolu(name,"HYPE",fidmed[med],param,4);
817}
818//______________________________________________________________________
819void AliITSBaseGeometry::TwistedTrapezoid(const char gnam[3],
820 const TString &dis,
821 Double_t dz,Double_t thet,Double_t phi,
822 Double_t twist,Double_t h1,Double_t bl1,
823 Double_t tl1,Double_t apl1,Double_t h2,
824 Double_t bl2,Double_t tl2,Double_t apl2,
825 Int_t med){
826 // Interface to TMC->Gsvolu() for ITS GTRA geometries. General twisted
827 // trapazoid. The faces perpendicular to z are trapazia and their centers
828 // are not necessarily on a line parallel to the z axis as the TRAP.
829 // Additionally, the faces may be twisted so that none of their edges are
830 // parallel. It is a TRAP shape, exept that it is twisted in the x-y plane
831 // as a function of z. The parallel sides perpendicular to the x axis are
832 // rotated with respect to the x axis by an angle TWIST, which is one of
833 // the parameters. The shape is defined by the eight corners and is assumed
834 // to be constructed of straight lines joingin points on the boundry of the
835 // trapezoidal face at Z=-dz to the coresponding points on the face at
836 // z=+dz. Divisions are not allowed. It has 12 parameters. See SetScale()
837 // for units. Default units are geant 3 [cm]. Note: This shape suffers from
838 // the same limitations than the TRAP. The tracking routines assume that
839 // the faces are planar, but htis constraint is not easily expressed in
840 // terms of the 12 parameters. Additionally, no check on th efaces is
841 // performed in this case. Users should avoid to use this shape as much as
842 // possible, and if they have to do so, they should make sure that the
843 // faces are really planes. If this is not the case, the result of the
844 // trasport is unpredictable. To accelerat ethe computations necessary for
845 // trasport, 18 additioanl parameters are calculated for this shape are
846 // 1 DXODZ dx/dz of the line joing the centers of the faces at z=+_dz.
847 // 2 DYODZ dy/dz of the line joing the centers of the faces at z=+_dz.
848 // 3 XO1 x at z=0 for line joing the + on parallel side, perpendicular
849 // corners at z=+_dz.
850 // 4 YO1 y at z=0 for line joing the + on parallel side, + on
851 // perpendicular corners at z=+-dz.
852 // 5 DXDZ1 dx/dz for line joing the + on parallel side, + on
853 // perpendicular corners at z=+-dz.
854 // 6 DYDZ1 dy/dz for line joing the + on parallel side, + on
855 // perpendicular corners at z=+-dz.
856 // 7 X02 x at z=0 for line joing the - on parallel side, + on
857 // perpendicular corners at z=+-dz.
858 // 8 YO2 y at z=0 for line joing the - on parallel side, + on
859 // perpendicular corners at z=+-dz.
860 // 9 DXDZ2 dx/dz for line joing the - on parallel side, + on
861 // perpendicular corners at z=+-dz.
862 // 10 DYDZ2dy/dz for line joing the - on parallel side, + on
863 // perpendicular corners at z=+-dz.
864 // 11 XO3 x at z=0 for line joing the - on parallel side, - on
865 // perpendicular corners at z=+-dz.
866 // 12 YO3 y at z=0 for line joing the - on parallel side, - on
867 // perpendicular corners at z=+-dz.
868 // 13 DXDZ3 dx/dzfor line joing the - on parallel side, - on
869 // perpendicular corners at z=+-dz.
870 // 14 DYDZ3 dydz for line joing the - on parallel side, - on
871 // perpendicular corners at z=+-dz.
872 // 15 XO4 x at z=0 for line joing the + on parallel side, - on
873 // perpendicular corners at z=+-dz.
874 // 16 YO4 y at z=0 for line joing the + on parallel side, - on
875 // perpendicular corners at z=+-dz.
876 // 17 DXDZ4 dx/dz for line joing the + on parallel side, - on
877 // perpendicular corners at z=+-dz.
878 // 18 DYDZ4 dydz for line joing the + on parallel side, - on
879 // perpendicular corners at z=+-dz.
880 // Inputs:
881 // const char gnam[3] 3 character geant volume name. The letter "I"
882 // is appended to the front to indecate that this
883 // is an ITS volume.
884 // TString &dis String containging part discription.
885 // Double_t dz half-length along the z axis.
886 // Double_t thet polar angle of the line joing the center of the
887 // face at -dz to the center of the one at +dz
888 // [degrees].
889 // Double_t phi Azymuthal angle of teh line joing the centre of
890 // the face at -dz to the center of the one at +dz
891 // [degrees].
892 // Double_t twist Twist angle of the faces parallel to the x-y
893 // plane at z=+-dz around an axis parallel to z
894 // passing through their centre [degrees].
895 // Double_t h1 Half-length along y of the face at -dz.
896 // Double_t bl1 half-length along x of the side -h1 in y of the
897 // face at -dz in z.
898 // Double_t tl1 half-length along x of the side at +h1 in y of
899 // the face at -dz in z.
900 // Double_t apl1 Angle with respect to the y ais from the center
901 // of the side at -h1 in y to the centere of the
902 // side at +h1 in y of the face at -dz in z
903 // [degrees].
904 // Double_t h2 half-length along the face at +dz.
905 // Double_t bl2 half-length along x of the side at -h2 in y of
906 // the face at -dz in z.
907 // Double_t tl2 half-length along x of the side at +h2 in y of
908 // the face at +dz in z.
909 // Double_t apl2 angle with respect to the y axis from the center
910 // of the side at -h2 in y to the center of the side
911 // at +h2 in y of the face at +dz in z [degrees].
912 // Int_t med media index number.
913 // Output:
914 // none.
915 // Return.
916 // none.
917 char name[4];
918 Float_t param[12];
919
920 if(fidmed==0) SetMedArray();
921 param[0] = fScale*dz;
922 param[1] = thet;
923 param[2] = phi;
924 param[3] = twist;
925 param[4] = fScale*h1;
926 param[5] = fScale*bl1;
927 param[6] = fScale*tl1;
928 param[7] = apl1;
929 param[8] = fScale*h2;
930 param[9] = fScale*bl2;
931 param[10] = fScale*tl2;
932 param[11] = apl2;
933 name[3] = 'I';
934 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
935 gMC->Gsvolu(name,"GTRA",fidmed[med],param,12);
936}
937//______________________________________________________________________
938void AliITSBaseGeometry::CutTube(const char gnam[3],const TString &dis,
939 Double_t rmin,Double_t rmax,Double_t dz,
940 Double_t phi1,Double_t phi2,Double_t lx,
941 Double_t ly,Double_t lz,Double_t hx,
942 Double_t hy,Double_t hz,Int_t med){
943 // Interface to TMC->Gsvolu() for ITS CTUB geometries. Cut tube. A tube cut
944 // at the extremities with planes not necessarily perpendicular tot he z
945 // axis. It has 11 parameters. See SetScale() for units. Default units are
946 // geant 3 [cm]. phi1 should be smaller than phi2. If this is not the case,
947 // the system adds 360 degrees to phi2.
948 // Inputs:
949 // const char gnam[3] 3 character geant volume name. The letter "I"
950 // is appended to the front to indecate that this
951 // is an ITS volume.
952 // TString &dis String containging part discription.
953 // Double_t rmin Inner radius at z=0 where tube is narrowest.
954 // Double_t rmax Outer radius at z=0 where tube is narrowest.
955 // Double_t dz half-length along the z-axis
956 // Double_t dz half-length along the z-axis
957 // Double_t phi1 Starting angle of the segment [degree].
958 // Double_t phi2 Ending angle of the segment [degree].
959 // Double_t lx x component of a unit vector perpendicular to
960 // the face at -dz.
961 // Double_t ly y component of a unit vector perpendicular to
962 // the face at -dz.
963 // Double_t lz z component of a unit vector perpendicular to
964 // the face at -dz.
965 // Double_t hx x component of a unit vector perpendicular to
966 // the face at +dz.
967 // Double_t hy y component of a unit vector perpendicular to
968 // the face at +dz.
969 // Double_t hz z component of a unit vector perpendicular to
970 // the face at +dz.
971 // Int_t med media index number.
972 // Output:
973 // none.
974 // Return.
975 // none.
976 char name[4];
977 Float_t param[11];
978
979 if(fidmed==0) SetMedArray();
980 param[0] = fScale*rmin;
981 param[1] = fScale*rmax;
982 param[2] = fScale*dz;
983 param[3] = phi1;
984 param[4] = phi2;
985 param[5] = lx;
986 param[6] = ly;
987 param[7] = lz;
988 param[8] = hx;
989 param[9] = hy;
990 param[10] = hz;
991 name[3] = 'I';
992 for(Int_t i=0;i<3;i++) name[i+1] = gnam[i];
993 gMC->Gsvolu(name,"CTUB",fidmed[med],param,11);
994}
995//______________________________________________________________________
996void AliITSBaseGeometry::Pos(const char vol[3],Int_t cn,const char moth[3],
997 Double_t x,Double_t y,Double_t z,Int_t irot){
998 // Place a copy of a volume previously defined by a call to GSVOLU inside
999 // its mother volulme moth.
1000 // Inputs:
1001 // const char vol[3] 3 character geant volume name. The letter "I"
1002 // is appended to the front to indecate that this
1003 // is an ITS volume.
1004 // const char moth[3] 3 character geant volume name of the mother volume
1005 // in which vol will be placed. The letter "I" is
1006 // appended to the front to indecate that this is an
1007 // ITS volume.
1008 // Double_t x The x positon of the volume in the mother's
1009 // reference system
1010 // Double_t y The y positon of the volume in the mother's
1011 // reference system
1012 // Double_t z The z positon of the volume in the mother's
1013 // reference system
1014 // Int_t irot the index for the rotation matrix to be used.
1015 // irot=-1 => unit rotation.
1016 // Outputs:
1017 // none.
1018 // Return:
1019 // none.
1020 char name[4],mother[4];
1021 Float_t param[3];
1022 Int_t r=0,i;
1023
1024 param[0] = x;
1025 param[1] = y;
1026 param[2] = z;
1027 name[3] = 'I';
1028 for(i=0;i<3;i++) name[i+1] = vol[i];
1029 mother[3] = 'I';
1030 for(i=0;i<3;i++) mother[i+1] = moth[i];
1031 if(irot>=0) r=fidrot[irot];
1032 gMC->Gspos(name,1,mother,param[0],param[1],param[2],r,"ONLY");
1033}
1034//______________________________________________________________________
1035void AliITSBaseGeometry::Matrix(Int_t irot,Double_t thet1,Double_t phi1,
1036 Double_t thet2,Double_t phi2,
1037 Double_t thet3,Double_t phi3){
1038 // Defines a Geant rotation matrix. checks to see if it is the unit
1039 // matrix. If so, then no additonal matrix is defined. Stores rotation
1040 // matrix irot in the data structure JROTM. If the matrix is not
1041 // orthonormal, it will be corrected by setting y' perpendicular to x'
1042 // and z' = x' X y'. A warning message is printed in this case.
1043 // Inputs:
1044 // Int_t irot Intex specifing which rotation matrix.
1045 // Double_t thet1 Polar angle for axisw x [degrees].
1046 // Double_t phi1 azimuthal angle for axis x [degrees].
1047 // Double_t thet12Polar angle for axisw y [degrees].
1048 // Double_t phi2 azimuthal angle for axis y [degrees].
1049 // Double_t thet3 Polar angle for axisw z [degrees].
1050 // Double_t phi3 azimuthal angle for axis z [degrees].
1051 // Outputs:
1052 // none.
1053 // Return:
1054 // none.
1055 Float_t t1,p1,t2,p2,t3,p3;
1056
1057 if(thet1==90.0&&phi1==0.0&&thet2==90.0&&phi2==90.0&&thet3==0.0&&phi3==0.0){
1058 fidrot[irot] = 0; // Unit matrix
1059 }else{
1060 t1 = thet1;
1061 p1 = phi1;
1062 t2 = thet2;
1063 p2 = phi2;
1064 t3 = thet3;
1065 p3 = phi3;
1066 fits->AliMatrix(fidrot[irot],t1,p1,t2,p2,t3,p3);
1067 } // end if
1068}
1069//______________________________________________________________________
1070void AliITSBaseGeometry::Matrix(Int_t irot,Int_t axis,Double_t thet){
1071 // Defines a Geant rotation matrix. checks to see if it is the unit
1072 // matrix. If so, then no additonal matrix is defined. Stores rotation
1073 // matrix irot in the data structure JROTM. If the matrix is not
1074 // orthonormal, it will be corrected by setting y' perpendicular to x'
1075 // and z' = x' X y'. A warning message is printed in this case.
1076 // Inputs:
1077 // Int_t irot Intex specifing which rotation matrix.
1078 // Int_t axis Axis about which rotation is to be done.
1079 // Double_t thet Angle to rotate by [degrees].
1080 // Outputs:
1081 // none.
1082 // Return:
1083 // none.
1084
1085 if(thet==0.0){
1086 fidrot[irot] = 0; // Unit matrix
1087 }else{
1088 switch (irot) {
1089 case 0: //Rotate about x-axis, x-axis does not change.
1090 fits->AliMatrix(fidrot[irot],90.0,0.0,90.0+thet,90.0,thet,90.0);
1091 break;
1092 case 1: //Rotate about y-axis, y-axis does not change.
1093 fits->AliMatrix(fidrot[irot],-90.0-thet,0.0,90.0,90.0,thet,90.0);
1094 break;
1095 case 2: //Rotate about z-axis, z-axis does not change.
1096 fits->AliMatrix(fidrot[irot],90.0,thet,90.0,-thet-90.0,0.0,0.0);
1097 break;
1098 default:
1099 Error("Matrix","axis must be either 0, 1, or 2. for matrix=%d",
1100 irot);
1101 break;
1102 } // end switch
1103 } // end if
1104}
1105//______________________________________________________________________
1106void AliITSBaseGeometry::Matrix(Int_t irot,Double_t rot[3][3]){
1107 // Defines a Geant rotation matrix. checks to see if it is the unit
1108 // matrix. If so, then no additonal matrix is defined. Stores rotation
1109 // matrix irot in the data structure JROTM. If the matrix is not
1110 // orthonormal, it will be corrected by setting y' perpendicular to x'
1111 // and z' = x' X y'. A warning message is printed in this case.
1112 // Inputs:
1113 // Int_t irot Intex specifing which rotation matrix.
1114 // Double_t rot[3][3] The 3 by 3 rotation matrix.
1115 // Outputs:
1116 // none.
1117 // Return:
1118 // none.
1119
1120 if(rot[0][0]==1.0&&rot[1][1]==1.0&&rot[2][2]==1.0&&
1121 rot[0][1]==0.0&&rot[0][2]==0.0&&rot[1][0]==0.0&&
1122 rot[1][2]==0.0&&rot[2][0]==0.0&&rot[2][1]==0.0){
1123 fidrot[irot] = 0; // Unit matrix
1124 }else{
1125 Double_t si,c=180./TMath::Pi();
1126 Double_t ang[6];
1127
1128 ang[1] = TMath::ATan2(rot[0][1],rot[0][0]);
1129 if(TMath::Cos(ang[1])!=0.0) si = rot[0][0]/TMath::Cos(ang[1]);
1130 else si = rot[0][1]/TMath::Sin(ang[1]);
1131 ang[0] = TMath::ATan2(si,rot[0][2]);
1132
1133 ang[3] = TMath::ATan2(rot[1][1],rot[1][0]);
1134 if(TMath::Cos(ang[3])!=0.0) si = rot[1][0]/TMath::Cos(ang[3]);
1135 else si = rot[1][1]/TMath::Sin(ang[3]);
1136 ang[2] = TMath::ATan2(si,rot[1][2]);
1137
1138 ang[5] = TMath::ATan2(rot[2][1],rot[2][0]);
1139 if(TMath::Cos(ang[5])!=0.0) si = rot[2][0]/TMath::Cos(ang[5]);
1140 else si = rot[2][1]/TMath::Sin(ang[5]);
1141 ang[4] = TMath::ATan2(si,rot[2][2]);
1142
1143 for(Int_t i=0;i<6;i++) {ang[i] *= c; if(ang[i]<0.0) ang[i] += 360.;}
1144 fits->AliMatrix(fidrot[irot],ang[0],ang[1],ang[2],ang[3],
1145 ang[4],ang[5]);
1146 } // end if
1147}
1148//______________________________________________________________________
1149Float_t AliITSBaseGeometry::GetA(Int_t z){
1150 // Returns the isotopicaly averaged atomic number.
1151 // Inputs:
1152 // Int_t z Elemental number
1153 // Outputs:
1154 // none.
1155 // Return:
1156 // The atomic mass number.
1157 const Float_t A[]={ 1.00794 , 4.0026902, 6.941 , 9.012182 , 10.811 ,
1158 12.01007 , 14.00674 , 15.9994 , 18.9984032, 20.1797 ,
1159 22.98970 , 24.3050 , 26.981538, 28.0855 , 30.973761,
1160 32.066 , 35.4527 , 39.948 , 39.0983 , 40.078 ,
1161 44.95591 , 47.867 , 50.9415 , 51.9961 , 54.938049,
1162 55.845 , 58.933200 , 58.6934 , 63.546 , 65.39 ,
1163 69.723 , 72.61 , 74.92160 , 78.96 , 79.904 ,
1164 83.80 , 85.4678 , 87.62 , 88.9085 , 91.224 ,
1165 92.90638 , 95.94 , 97.907215, 101.07 ,102.90550 ,
1166 106.42 ,107.8682 ,112.411 ,114.818 ,118.710 ,
1167 121.760 ,127.60 ,126.90447 ,131.29 ,132.90545 ,
1168 137.327 ,138.9055 ,140.116 ,140.90765 ,144.24 ,
1169 144.912746,150.36 ,151.964 ,157.25 ,158.92534 ,
1170 162.50 ,164.93032 ,167.26 ,168.93421 ,173.04 ,
1171 174.967 ,178.49 ,180.9479 ,183.84 ,186.207 ,
1172 190.23 ,192.217 ,195.078 ,196.96655 ,200.59 ,
1173 204.3833 ,207.2 ,208.98038,208.982415 ,209.987131,
1174 222.017570,223.019731 ,226.025402,227.027747 ,232.0381 ,
1175 231.03588 ,238.0289};
1176
1177 if(z<1||z>92){
1178 Error("GetA","z must be 0<z<93. z=%d",z);
1179 return 0.0;
1180 } // end if
1181 return A[z-1];
1182}
1183//______________________________________________________________________
1184Float_t AliITSBaseGeometry::GetStandardMaxStepSize(Int_t istd){
1185 // Returns one of a set of standard Maximum Step Size values.
1186 // Inputs:
1187 // Int_t istd Index to indecate which standard.
1188 // Outputs:
1189 // none.
1190 // Return:
1191 // The appropreate standard Maximum Step Size value [cm].
1192 Float_t t[]={1.0, // default
1193 0.0075, // Silicon detectors...
1194 1.0, // Air in central detectors region
1195 1.0 // Material in non-centeral region
1196 };
1197 return t[istd];
1198}
1199//______________________________________________________________________
1200Float_t AliITSBaseGeometry::GetStandardThetaMax(Int_t istd){
1201 // Returns one of a set of standard Theata Max values.
1202 // Inputs:
1203 // Int_t istd Index to indecate which standard.
1204 // Outputs:
1205 // none.
1206 // Return:
1207 // The appropreate standard Theta max value [degrees].
1208 Float_t t[]={0.1, // default
1209 0.1, // Silicon detectors...
1210 0.1, // Air in central detectors region
1211 1.0 // Material in non-centeral region
1212 };
1213 return t[istd];
1214}
1215//______________________________________________________________________
1216Float_t AliITSBaseGeometry::GetStandardEfraction(Int_t istd){
1217 // Returns one of a set of standard E fraction values.
1218 // Inputs:
1219 // Int_t istd Index to indecate which standard.
1220 // Outputs:
1221 // none.
1222 // Return:
1223 // The appropreate standard E fraction value [#].
1224 Float_t t[]={0.1, // default
1225 0.1, // Silicon detectors...
1226 0.1, // Air in central detectors region
1227 0.5 // Material in non-centeral region
1228 };
1229 return t[istd];
1230}
1231Float_t AliITSBaseGeometry::GetStandardEpsilon(Int_t istd){
1232 // Returns one of the standard Epsilon valuse
1233 // Inputs:
1234 // Int_t istd index of standard cuts to get
1235 // Output:
1236 // none.
1237 // Return:
1238 // Float_t the standard Epsilon cut value.
1239 Float_t t[]={1.0E-4, // default
1240 1.0E-4, // Silicon detectors...
1241 1.0E-4, // Air in central detector region
1242 1.0E-3, // Material in non-cneteral regions
1243 };
1244
1245 return t[istd];
1246}
1247//______________________________________________________________________
1248void AliITSBaseGeometry::Element(Int_t imat,const char* name,Int_t z,
1249 Double_t dens,Int_t istd){
1250 // Defines a Geant single element material and sets its Geant medium
1251 // proporties. The average atomic A is assumed to be given by their
1252 // natural abundances. Things like the radiation length are calculated
1253 // for you.
1254 // Inputs:
1255 // Int_t imat Material number.
1256 // const char* name Material name. No need to add a $ at the end.
1257 // Int_t z The elemental number.
1258 // Double_t dens The density of the material [g/cm^3].
1259 // Int_t istd Defines which standard set of transport parameters
1260 // which should be used.
1261 // Output:
1262 // none.
1263 // Return:
1264 // none.
1265 Float_t rad,Z,A=GetA(z),tmax,stemax,deemax,epsilon;
1266 char *name2;
1267 Int_t len;
1268
1269 len = strlen(name)+1;
1270 name2 = new char[len];
1271 strncpy(name2,name,len-1);
1272 name2[len-1] = '\0';
1273 name2[len-2] = '$';
1274 Z = (Float_t)z;
1275 rad = GetRadLength(z)/dens;
1276 fits->AliMaterial(imat,name2,A,Z,dens,rad,0.0,0,0);
1277 tmax = GetStandardThetaMax(istd); // degree
1278 stemax = GetStandardMaxStepSize(istd); // cm
1279 deemax = GetStandardEfraction(istd); // ratio
1280 epsilon = GetStandardEpsilon(istd); //
1281 fits->AliMedium(imat,name2,imat,0,gAlice->Field()->Integ(),
1282 gAlice->Field()->Max(),tmax,stemax,deemax,epsilon,0.0);
1283 delete[] name2;
1284}
1285//______________________________________________________________________
1286void AliITSBaseGeometry::MixtureByWeight(Int_t imat,const char* name,Int_t *z,
1287 Double_t *w,Double_t dens,Int_t n,Int_t istd){
1288 // Defines a Geant material by a set of elements and weights, and sets
1289 // its Geant medium proporties. The average atomic A is assumed to be
1290 // given by their natural abundances. Things like the radiation length
1291 // are calculated for you.
1292 // Inputs:
1293 // Int_t imat Material number.
1294 // const char* name Material name. No need to add a $ at the end.
1295 // Int_t *z Array of The elemental numbers.
1296 // Double_t *w Array of relative weights.
1297 // Double_t dens The density of the material [g/cm^3].
1298 // Int_t n the number of elements making up the mixture.
1299 // Int_t istd Defines which standard set of transport parameters
1300 // which should be used.
1301 // Output:
1302 // none.
1303 // Return:
1304 // none.
1305 Float_t *Z,*A,*W,tmax,stemax,deemax,epsilon;
1306 char *name2;
1307 Int_t len,i;
1308 Z = new Float_t[n];
1309 A = new Float_t[n];
1310 W = new Float_t[n];
1311
1312 len = strlen(name)+1;
1313 name2 = new char[len];
1314 strncpy(name2,name,len-1);
1315 name2[len-1] = '\0';
1316 name2[len-2] = '$';
1317 for(i=0;i<n;i++){Z[i] = (Float_t)z[i];A[i] = (Float_t)GetA(z[i]);
1318 W[i] = (Float_t)w[i];}
1319 fits->AliMixture(imat,name2,A,Z,dens,n,W);
1320 tmax = GetStandardThetaMax(istd); // degree
1321 stemax = GetStandardMaxStepSize(istd); // cm
1322 deemax = GetStandardEfraction(istd); // #
1323 epsilon = GetStandardEpsilon(istd);
1324 fits->AliMedium(imat,name2,imat,0,gAlice->Field()->Integ(),
1325 gAlice->Field()->Max(),tmax,stemax,deemax,epsilon,0.0);
1326 delete[] name2;
1327 delete[] Z;
1328 delete[] A;
1329 delete[] W;
1330}
1331//______________________________________________________________________
1332void AliITSBaseGeometry::MixtureByNumber(Int_t imat,const char* name,Int_t *z,
1333 Int_t *w,Double_t dens,Int_t n,Int_t istd){
1334 // Defines a Geant material by a set of elements and number, and sets
1335 // its Geant medium proporties. The average atomic A is assumed to be
1336 // given by their natural abundances. Things like the radiation length
1337 // are calculated for you.
1338 // Inputs:
1339 // Int_t imat Material number.
1340 // const char* name Material name. No need to add a $ at the end.
1341 // Int_t *z Array of The elemental numbers.
1342 // Int_t_t *w Array of relative number.
1343 // Double_t dens The density of the material [g/cm^3].
1344 // Int_t n the number of elements making up the mixture.
1345 // Int_t istd Defines which standard set of transport parameters
1346 // which should be used.
1347 // Output:
1348 // none.
1349 // Return:
1350 // none.
1351 Float_t *Z,*A,*W,tmax,stemax,deemax,epsilon;
1352 char *name2;
1353 Int_t len,i;
1354 Z = new Float_t[n];
1355 A = new Float_t[n];
1356 W = new Float_t[n];
1357
1358 len = strlen(name)+1;
1359 name2 = new char[len];
1360 strncpy(name2,name,len-1);
1361 name2[len-1] = '\0';
1362 name2[len-2] = '$';
1363 for(i=0;i<n;i++){Z[i] = (Float_t)z[i];A[i] = (Float_t)GetA(z[i]);
1364 W[i] = (Float_t)w[i];}
1365 fits->AliMixture(imat,name2,A,Z,dens,-n,W);
1366 tmax = GetStandardThetaMax(istd); // degree
1367 stemax = GetStandardMaxStepSize(istd); // cm
1368 deemax = GetStandardEfraction(istd); // #
1369 epsilon = GetStandardEpsilon(istd);
1370 fits->AliMedium(imat,name2,imat,0,gAlice->Field()->Integ(),
1371 gAlice->Field()->Max(),tmax,stemax,deemax,epsilon,0.0);
1372 delete[] name2;
1373 delete[] Z;
1374 delete[] A;
1375 delete[] W;
1376}
1377//______________________________________________________________________
1378Double_t AliITSBaseGeometry::RadLength(Int_t iz,Double_t a){
1379 // Computes the radiation length in accordance to the PDG 2000 Section
1380 // 23.4.1 p. 166. Transladed from the c code of Flavio Tosello.
1381 // Inputs:
1382 // Int_t iz The elemental number
1383 // Dougle_t The elemental average atomic mass number
1384 // Outputs:
1385 // Return:
1386 // Double_t returns the radiation length of the element iz in
1387 // [gm/cm^2].
1388 Double_t z = (Double_t)iz;
1389 Double_t alphaz = fAlpha*z;
1390 Double_t alphaz2 = alphaz*alphaz;
1391 Double_t c0 = +0.20206,c1 = -0.0369,c2 = +0.0083,c3 = -0.0020;
1392 Double_t z12,z23,l,lp,c;
1393
1394 c = alphaz2*(1./(1.+alphaz2) + c0 + c1*alphaz2 + c2*alphaz2*alphaz2
1395 +c3*alphaz2*alphaz2*alphaz2);
1396 z12 = TMath::Exp(TMath::Log(z)/3.0);
1397 z23 = z12*z12;
1398 switch (iz){
1399 case 1: //Hydrogen
1400 l = 5.31;
1401 lp = 6.144;
1402 break;
1403 case 2: //Helium
1404 l = 4.79;
1405 lp = 5,621;
1406 break;
1407 case 3: //Lithium
1408 l = 4.74;
1409 lp = 5.805;
1410 break;
1411 case 4: //Berilium
1412 l = 4.71;
1413 lp = 5.924;
1414 break;
1415 default: //Others
1416 l = TMath::Log(184.15/z12);
1417 lp = TMath::Log(1194.0/z23);
1418 break;
1419 } // end switch
1420 Double_t re2,b,r,xz;
1421
1422 re2 = fRe*fRe;
1423 b = 4.0*fAlpha*re2*fNa/a;
1424 r = b*z*(z*(l-c)+lp);
1425 xz = 1.0/r;
1426 return xz; // [gm/cm^2]
1427}