]>
Commit | Line | Data |
---|---|---|
af8e1c2d | 1 | // Neural performance evaluation |
2 | // | |
3 | // before using this macro, you should have make run the macro | |
4 | // 'ITSstoreFindableTracks.C' in order to have a file named following | |
5 | // the rule to append '_fnd' to the name | |
6 | // (e.g. galice.root --> galice_fnd.root) | |
7 | // and have in it a tree with some tracks statistics useful for evaluation | |
8 | // of performance with the same event without loosing too much time... | |
9 | ||
10 | void AliITSNeuralCompleteEval | |
11 | (Int_t nsecs, const char *filename, Bool_t low = kFALSE, | |
12 | Bool_t draw = kTRUE, const char *save = 0) | |
13 | { | |
14 | Int_t N, M; | |
15 | Float_t *edge = 0; | |
16 | if (!low) { | |
17 | N = 7; | |
18 | edge = new Float_t[8]; | |
19 | edge[0] = 0.0; | |
20 | edge[1] = 0.5; | |
21 | edge[2] = 1.0; | |
22 | edge[3] = 1.5; | |
23 | edge[4] = 2.0; | |
24 | edge[5] = 3.0; | |
25 | edge[6] = 4.0; | |
26 | edge[7] = 5.0; | |
27 | } | |
28 | else { | |
29 | N = 5; | |
30 | edge = new Float_t[6]; | |
31 | edge[0] = 0.0; | |
32 | edge[1] = 0.2; | |
33 | edge[2] = 0.4; | |
34 | edge[3] = 0.6; | |
35 | edge[4] = 0.8; | |
36 | edge[5] = 1.0; | |
37 | } | |
38 | ||
39 | Float_t find[2] = {0.0, 0.0}, find1[2] = {0.0, 0.0}; | |
40 | Float_t good[2] = {0.0, 0.0}, good1[2] = {0.0, 0.0}; | |
41 | Float_t fake[2] = {0.0, 0.0}, fake1[2] = {0.0, 0.0}; | |
42 | ||
43 | // histos filled with neural results | |
44 | TH1D *hgood[2], *hfake[2], *hfind[2]; | |
45 | TH1D *hgood1[2], *hfake1[2], *hfind1[2]; | |
46 | TH1D *hg[2], *hf[2]; | |
47 | if (draw) { | |
48 | hgood[0] = new TH1D("hgood0", "Good found tracks", N, edge); | |
49 | hfake[0] = new TH1D("hfake0", "Fake found tracks", N, edge); | |
50 | hfind[0] = new TH1D("hfound0", "Findable tracks", N, edge); | |
51 | hgood[1] = new TH1D("hgood1", "Good found tracks", N, edge); | |
52 | hfake[1] = new TH1D("hfake1", "Fake found tracks", N, edge); | |
53 | hfind[1] = new TH1D("hfound1", "Findable tracks", N, edge); | |
54 | ||
55 | hgood[0]->Sumw2(); | |
56 | hfake[0]->Sumw2(); | |
57 | hfind[0]->Sumw2(); | |
58 | hgood[1]->Sumw2(); | |
59 | hfake[1]->Sumw2(); | |
60 | hfind[1]->Sumw2(); | |
61 | ||
62 | // histos for evaluating percentual efficiency | |
63 | hg[0] = new TH1D("hg0", "Efficiency (%) for #geq 5 right pts.", N, edge); | |
64 | hf[0] = new TH1D("hf0", "Fake probability (%) for #geq 5 right pts.", N, edge); | |
65 | hg[1] = new TH1D("hg1", "Efficiency (%) for 6 right pts.", N, edge); | |
66 | hf[1] = new TH1D("hf1", "Fake probability (%) for 6 right pts.", N, edge); | |
67 | } | |
68 | ||
69 | TFile *ffind; | |
70 | TTree *tree; | |
71 | ||
72 | if (low) { | |
73 | ffind = new TFile(Form("%s.root", filename), "READ"); | |
74 | tree = (TTree*)ffind->Get("TreeF"); | |
75 | } | |
76 | else { | |
77 | ffind = new TFile(Form("%s_fnd.root", filename), "READ"); | |
78 | tree = (TTree*)ffind->Get("tree"); | |
79 | } | |
80 | ||
81 | TFile *ftracks = new TFile(Form("%s_%d.root", filename, nsecs), "READ"); | |
82 | ||
83 | ||
84 | Double_t pt; | |
85 | Int_t i, j, count, prim, *none = 0, div; | |
86 | Int_t entries = tree->GetEntries(), label, min[] = {5,6}; | |
87 | tree->SetBranchAddress("pt", &pt); | |
88 | tree->SetBranchAddress("count", &count); | |
89 | tree->SetBranchAddress("prim", &prim); | |
90 | ||
91 | AliITSneuralTrack *trk = 0; | |
92 | div = low ? 50 : 500; | |
93 | for(i = 1;;i++) { | |
94 | trk = (AliITSneuralTrack*)ftracks->Get(Form("AliITSneuralTrack;%d", i)); | |
95 | if (i%div == 0) cout << "\rEvaluating found track " << i << flush; | |
96 | if (!trk) break; | |
97 | for (j = 0; j < 2; j++) { | |
98 | label = trk->EvaluateTrack(0, min[j], none); | |
99 | tree->GetEntry(abs(label)); | |
100 | if (count >= min[j]) { | |
101 | if (label > 0) { | |
102 | if (draw) hgood[j]->Fill(pt); | |
103 | good[j]++; | |
104 | if (pt >= 1.0) good1[j]++; | |
105 | } | |
106 | else { | |
107 | if (draw) hfake[j]->Fill(pt); | |
108 | fake[j]++; | |
109 | if (pt >= 1.0) fake1[j]++; | |
110 | } | |
111 | } | |
112 | } | |
113 | } | |
114 | cout << endl; | |
115 | ||
116 | div = low ? 200 : 20000; | |
117 | ||
118 | for (i = 0; i < entries; i++) { | |
119 | if (i%div == 0) cout << "\rEvaluating findable track no. " << i << flush; | |
120 | tree->GetEntry(i); | |
121 | for (j = 0; j < 2; j++) { | |
122 | if (count >= min[j]) { | |
123 | find[j]++; | |
124 | if (draw) hfind[j]->Fill(pt); | |
125 | if (pt >= 1.0) find1[j]++; | |
126 | } | |
127 | } | |
128 | } | |
129 | cout << endl; | |
130 | cout << hgood[0]->GetEntries() << " " << hgood[1]->GetEntries() << endl; | |
131 | cout << hfake[0]->GetEntries() << " " << hfake[1]->GetEntries() << endl; | |
132 | cout << hfind[0]->GetEntries() << " " << hfind[1]->GetEntries() << endl << endl; | |
133 | ||
134 | if (draw) { | |
135 | TCanvas *canv[2]; | |
136 | canv[0] = new TCanvas("c_0", "Tracking efficiency (soft)", 0, 0, 600, 500); | |
137 | canv[1] = new TCanvas("c_1", "Tracking efficiency (hard)", 630, 0, 600, 500); | |
138 | ||
139 | TLine *line1 = new TLine(1,100.0,edge[N],100.0); line1->SetLineStyle(4); | |
140 | TLine *line2 = new TLine(1,90,edge[N],90); line2->SetLineStyle(4); | |
141 | ||
142 | Bool_t good_drawn; | |
143 | for (i = 0; i < 2; i++) { | |
144 | canv[i]->cd(); | |
145 | good_drawn = kFALSE; | |
146 | if (hgood[i]->GetEntries() > 0.0) { | |
147 | good_drawn = kTRUE; | |
148 | hg[i]->Divide(hgood[i], hfind[i], 100.0, 1.0); | |
149 | hg[i]->SetMaximum(120); | |
150 | hg[i]->SetMinimum(0); | |
151 | hg[i]->SetMarkerStyle(21); | |
152 | hg[i]->SetMarkerSize(1); | |
153 | hg[i]->SetStats(kFALSE); | |
154 | hg[i]->GetXaxis()->SetTitle("pt (GeV/c)"); | |
155 | hg[i]->Draw("PE1"); | |
156 | } | |
157 | if (hfake[i]->GetEntries() > 0.0) { | |
158 | hf[i]->Divide(hfake[i], hfind[i], 100.0, 1.0); | |
159 | hf[i]->SetMaximum(120); | |
160 | hf[i]->SetMinimum(0); | |
161 | hf[i]->SetMarkerStyle(25); | |
162 | hf[i]->SetMarkerSize(1); | |
163 | hf[i]->SetStats(kFALSE); | |
164 | if (good_drawn) | |
165 | hf[i]->Draw("PE1SAME"); | |
166 | else | |
167 | hf[i]->Draw("PE1"); | |
168 | } | |
169 | line1->Draw("histosame"); | |
170 | line2->Draw("histosame"); | |
171 | canv[i]->Update(); | |
172 | } | |
173 | canv[0]->SaveAs(Form("%s_soft.eps", filename)); | |
174 | canv[1]->SaveAs(Form("%s_hard.eps", filename)); | |
175 | cout << endl; | |
176 | } | |
177 | ||
178 | Float_t sgood[2] = {0.0, 0.0}, sgood1[2] = {0.0, 0.0}; | |
179 | Float_t sfake[2] = {0.0, 0.0}, sfake1[2] = {0.0, 0.0}; | |
180 | for (i = 0; i < 2; i++) { | |
181 | sgood[i] = error(good[i], find[i]); | |
182 | sgood1[i] = error(good1[i], find1[i]); | |
183 | sfake[i] = error(fake[i], find[i]); | |
184 | sfake1[i] = error(fake1[i], find1[i]); | |
185 | ||
186 | good[i] = good[i] * 100.0 / find[i]; | |
187 | fake[i] = fake[i] * 100.0 / find[i]; | |
188 | good1[i] = good1[i] * 100.0 / find1[i]; | |
189 | fake1[i] = fake1[i] * 100.0 / find1[i]; | |
190 | } | |
191 | ||
192 | if (save) { | |
193 | fstream data(save, ios::app); | |
194 | data.setf(ios::fixed); | |
195 | data.precision(1); | |
196 | data << good1[0] << " " << fake1[0] << " "; | |
197 | data << good1[1] << " " << fake1[1] << endl; | |
198 | data.close(); | |
199 | } | |
200 | else { | |
201 | cout.setf(ios::fixed); | |
202 | cout.precision(1); | |
203 | cout << "*****************************************" << endl; | |
204 | cout << "* Tracks with at least 5 correct points *" << endl; | |
205 | cout << "*****************************************" << endl; | |
206 | cout << "(all particles)" << endl; | |
207 | cout << "Efficiency: " << good[0] << " +/- " << sgood[0] << "%" << endl; | |
208 | cout << "Fake prob.: " << fake[0] << " +/- " << sfake[0] << "%" << endl; | |
209 | if (!low) { | |
210 | cout << "(pt >= 1 GeV/c)" << endl; | |
211 | cout << "Efficiency: " << good1[0] << " +/- " << sgood1[0] << "%" << endl; | |
212 | cout << "Fake prob.: " << fake1[0] << " +/- " << sfake1[0] << "%" << endl; | |
213 | } | |
214 | cout << endl; | |
215 | cout << "************************************" << endl; | |
216 | cout << "* Tracks with all 6 correct points *" << endl; | |
217 | cout << "************************************" << endl; | |
218 | cout << "(all particles)" << endl; | |
219 | cout << "Efficiency: " << good[1] << " +/- " << sgood[1] << "%" << endl; | |
220 | cout << "Fake prob.: " << fake[1] << " +/- " << sfake[1] << "%" << endl; | |
221 | if (!low) { | |
222 | cout << "(pt >= 1 GeV/c)" << endl; | |
223 | cout << "Efficiency: " << good1[1] << " +/- " << sgood1[1] << "%" << endl; | |
224 | cout << "Fake prob.: " << fake1[1] << " +/- " << sfake1[1] << "%" << endl; | |
225 | } | |
226 | cout << endl; | |
227 | } | |
228 | } | |
229 | ||
230 | Double_t error(Double_t x, Double_t y) { | |
231 | Double_t radq = x + x * x / y; | |
232 | return 100.0 * sqrt(radq) / y; | |
233 | } |