]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/AliITSv11GeometrySupport.cxx
bugfix
[u/mrichter/AliRoot.git] / ITS / AliITSv11GeometrySupport.cxx
CommitLineData
172b0d90 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
cee918ed 16// This class Defines the Geometry for the ITS services and support cones
17// outside of the ceneteral volume (except for the Ceneteral support
18// cylinders. Other classes define the rest of the ITS. Specificaly the ITS
19// The SSD support cone,SSD Support centeral cylinder, SDD support cone,
20// The SDD cupport centeral cylinder, the SPD Thermal Sheald, The supports
21// and cable trays on both the RB26 (muon dump) and RB24 sides, and all of
22// the cabling from the ladders/stave ends out past the TPC.
23
172b0d90 24/* $Id$ */
172b0d90 25// General Root includes
172b0d90 26#include <TMath.h>
172b0d90 27// Root Geometry includes
543b7370 28//#include <AliLog.h>
172b0d90 29#include <TGeoManager.h>
30#include <TGeoVolume.h>
31#include <TGeoPcon.h>
32#include <TGeoCone.h>
33#include <TGeoTube.h> // contaings TGeoTubeSeg
34#include <TGeoArb8.h>
db486a6e 35#include <TGeoXtru.h>
172b0d90 36#include <TGeoCompositeShape.h>
37#include <TGeoMatrix.h>
172b0d90 38#include "AliITSv11GeometrySupport.h"
39
40ClassImp(AliITSv11GeometrySupport)
41
42#define SQ(A) (A)*(A)
43
44//______________________________________________________________________
a275e8ba 45void AliITSv11GeometrySupport::SPDCone(TGeoVolume *moth,TGeoManager *mgr)
46{
47//
48// Creates the SPD thermal shield as a volume assembly
49// and adds it to the mother volume
50// (this is actually a merge of the previous SPDThermalSheald method
51// of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06 and the
52// CreateSPDThermalShield method of AliITSv11Hybrid)
53//
54// Input:
55// moth : the TGeoVolume owing the volume structure
56// mgr : the GeoManager (default gGeoManager)
57// Output:
58//
59// Created: ??? ???
60// Updated: 11 Dec 2007 Mario Sitta
61//
62// Technical data are taken from: ALICE-Thermal Screen "Cone transition"
63// (thermal-screen1_a3.ps), "Cylinder" (thermal-screen2_a3.ps), "Half
64// assembly" (thermal-screen3_a3.ps), "Flange" (thermal-screen4_a3.ps)
65
66
67 // Dimensions of the Central shield
ddf00e3c 68 const Double_t kHalfLengthCentral = 400.*fgkmm;
a275e8ba 69 const Double_t kThicknessCentral = 0.4*fgkmm;
70 const Double_t kInnerRadiusCentral = 8.1475*fgkcm;
71 const Double_t kOuterRadiusCentral = 9.9255*fgkcm;
72 const Double_t kInnerACentral = 3.1674*fgkcm;
73 const Double_t kInnerBCentral = 2.023 *fgkcm;
74 const Double_t kOuterACentral = 2.4374*fgkcm;
75 const Double_t kOuterBCentral = 3.8162*fgkcm;
76 // Dimensions of the EndCap shield
77 const Double_t kHalfLengthEndCap = 25.*fgkmm;
78 const Double_t kThicknessEndCap = 2.0*fgkmm;
79 const Double_t kInnerRadiusEndCap = 8.0775*fgkcm;
80 const Double_t kOuterRadiusEndCap = 9.9955*fgkcm;
81 const Double_t kInnerAEndCap = 3.1453*fgkcm;
82 const Double_t kInnerBEndCap = 2.0009*fgkcm;
83 const Double_t kOuterAEndCap = 2.4596*fgkcm;
84 const Double_t kOuterBEndCap = 3.8384*fgkcm;
85 // Dimensions of the Cone shield
86 const Double_t kHalfLengthCone = 145.*fgkmm;
87 const Double_t kThicknessCone = 0.3*fgkmm;
88 const Double_t kInnerRadialCone = 37.3*fgkcm;
89 const Double_t kOuterRadialCone = 39.0*fgkcm;
90 const Double_t kInnerACone = 14.2344*fgkcm;
91 // const Double_t kInnerBCone = 9.0915*fgkcm;
92 const Double_t kOuterACone = 9.5058*fgkcm;
93 // const Double_t kOuterBCone = 14.8831*fgkcm;
94 // Dimensions of the Flange's Ring and Wing
95 const Double_t kHalfLengthRing = 7.5*fgkmm;
96 const Double_t kThicknessRing = 0.3*fgkmm;
97 const Double_t kInnerRadiusRing = 37.3*fgkcm;
98 const Double_t kOuterRadiusRing = 42.0*fgkcm;
99 const Double_t kOuterRadiusWing = 49.25*fgkcm;
ca86fdb4 100 const Double_t kWideWing = 6.0*fgkcm;
0b9c8a10 101 const Double_t kThetaWing = 45.0;
a275e8ba 102 // Common data
103 const Double_t kTheta = 36.0*TMath::DegToRad();
104 const Double_t kThicknessOmega = 0.3*fgkmm;
105
106 // Local variables
107 Double_t x, y;
108 Double_t xshld[24], yshld[24];
109 Double_t xair[24] , yair[24];
110 Double_t xomega[48], yomega[48];
111 // Double_t *xyarb8;
112
113 // The entire shield is made up of two half central shields
114 // symmetric with respect to the XZ plane, four half end cap
115 // shields, again symmetric with respect to the XZ plane, and four
116 // half cones, symmetric with respect to the XZ plane too.
117
118 TGeoVolumeAssembly *vM = new TGeoVolumeAssembly("ITSspdThermalShield");
119
120 // The central half shield: a half tube of carbon fiber,
121 // a similar but proportionally smaller half tube of air inside it,
122 // and a Omega-shaped carbon fiber insert inside the air.
123 // They are all XTru shapes
124
125 TGeoXtru *centralshape = new TGeoXtru(2);
126
127 CreateSPDThermalShape(kInnerACentral,kInnerBCentral,kInnerRadiusCentral,
128 kOuterACentral,kOuterBCentral,kOuterRadiusCentral,
129 kTheta,xshld,yshld);
130
131 centralshape->DefinePolygon(24,xshld,yshld);
132 centralshape->DefineSection(0,-kHalfLengthCentral);
133 centralshape->DefineSection(1, kHalfLengthCentral);
134
135 // Now rescale to get the air volume dimensions
136 InsidePoint(xshld[23], yshld[23],
137 xshld[ 0], yshld[ 0],
138 xshld[ 1], yshld[ 1], kThicknessCentral,
139 xair[0], yair[0]);
140 for (Int_t i=1; i<23; i++) {
141 InsidePoint(xshld[i-1], yshld[i-1],
142 xshld[ i ], yshld[ i ],
143 xshld[i+1], yshld[i+1], kThicknessCentral,
144 xair[i], yair[i]);
145 }
146 InsidePoint(xshld[22], yshld[22],
147 xshld[23], yshld[23],
148 xshld[ 0], yshld[ 0], kThicknessCentral,
149 xair[23], yair[23]);
150
151 // Create the air shape
152 TGeoXtru *centralairshape = new TGeoXtru(2);
153
154 centralairshape->DefinePolygon(24,xair,yair);
155 centralairshape->DefineSection(0,-kHalfLengthCentral);
156 centralairshape->DefineSection(1, kHalfLengthCentral);
157
158 // Create the Omega insert
159 TGeoXtru *centralomegashape = new TGeoXtru(2);
160
3d2705b6 161 CreateSPDOmegaShape(xair,yair,kThicknessOmega,xomega,yomega);
a275e8ba 162
163 centralomegashape->DefinePolygon(48,xomega,yomega);
164 centralomegashape->DefineSection(0,-kHalfLengthCentral);
165 centralomegashape->DefineSection(1, kHalfLengthCentral);
166
167 // The end cap half shield: a half tube of carbon fiber,
168 // a similar but proportionally smaller half tube of air inside it,
169 // and a Omega-shaped carbon fiber insert inside the air.
170 // They are all XTru shapes
171
172 TGeoXtru *endcapshape = new TGeoXtru(2);
173
174 CreateSPDThermalShape(kInnerAEndCap,kInnerBEndCap,kInnerRadiusEndCap,
175 kOuterAEndCap,kOuterBEndCap,kOuterRadiusEndCap,
176 kTheta,xshld,yshld);
177
178 endcapshape->DefinePolygon(24,xshld,yshld);
179 endcapshape->DefineSection(0,-kHalfLengthEndCap);
180 endcapshape->DefineSection(1, kHalfLengthEndCap);
181
182 // Now rescale to get the air volume dimensions
183 InsidePoint(xshld[23], yshld[23],
184 xshld[ 0], yshld[ 0],
185 xshld[ 1], yshld[ 1], kThicknessEndCap,
186 xair[0], yair[0]);
187 for (Int_t i=1; i<23; i++) {
188 InsidePoint(xshld[i-1], yshld[i-1],
189 xshld[ i ], yshld[ i ],
190 xshld[i+1], yshld[i+1], kThicknessEndCap,
191 xair[i], yair[i]);
192 }
193 InsidePoint(xshld[22], yshld[22],
194 xshld[23], yshld[23],
195 xshld[ 0], yshld[ 0], kThicknessEndCap,
196 xair[23], yair[23]);
197
198 // Create the air shape
199 TGeoXtru *endcapairshape = new TGeoXtru(2);
200
201 endcapairshape->DefinePolygon(24,xair,yair);
202 endcapairshape->DefineSection(0,-kHalfLengthEndCap);
203 endcapairshape->DefineSection(1, kHalfLengthEndCap);
204
205 // Create the Omega insert
206 TGeoXtru *endcapomegashape = new TGeoXtru(2);
207
3d2705b6 208 CreateSPDOmegaShape(xair,yair,kThicknessOmega,xomega,yomega);
a275e8ba 209
210 endcapomegashape->DefinePolygon(48,xomega,yomega);
211 endcapomegashape->DefineSection(0,-kHalfLengthEndCap);
212 endcapomegashape->DefineSection(1, kHalfLengthEndCap);
213
214 // The cone half shield is more complex since there is no basic
215 // TGeo shape to describe it correctly. So it is made of a series
216 // of TGeoArb8 shapes filled with air, which all together make up the
217 // the cone AND its internal insert. Part of the following code is
218 // adapted from SPDThermalSheald method.
219
220 // Filled portions
221 TGeoArb8 *sC1 = new TGeoArb8(kHalfLengthCone);
222 TGeoArb8 *sC2 = new TGeoArb8(kHalfLengthCone);
223
224 CreateSPDThermalShape(kInnerACentral,kInnerBCentral,kInnerRadiusCentral,
225 kOuterACentral,kOuterBCentral,kOuterRadiusCentral,
226 kTheta,xshld,yshld);
227
228 sC1->SetVertex(0,xshld[12],yshld[12]);
229 sC1->SetVertex(1,xshld[11],yshld[11]);
230 sC1->SetVertex(2,xshld[ 0],yshld[ 0]);
231 sC1->SetVertex(3,xshld[23],yshld[23]);
232
233 sC2->SetVertex(0,xshld[11],yshld[11]);
234 sC2->SetVertex(1,xshld[10],yshld[10]);
235 sC2->SetVertex(2,xshld[ 1],yshld[ 1]);
236 sC2->SetVertex(3,xshld[ 0],yshld[ 0]);
237
238 // Drawings give only the radius, convert it to the apothegm
239 Double_t kInnerRadiusCone = TMath::Sqrt(kInnerRadialCone*kInnerRadialCone
240 - 0.25*kInnerACone*kInnerACone);
241 Double_t kOuterRadiusCone = TMath::Sqrt(kOuterRadialCone*kOuterRadialCone
242 - 0.25*kOuterACone*kOuterACone);
243
244 Double_t xco[4], yco[4], xci[4], yci[4];
245
246 for (Int_t i=0; i<2; i++) {
247 Double_t th = i*kTheta*TMath::RadToDeg();
248 xco[2*i ] = kOuterRadiusCone*SinD(th) - 0.5*kOuterACone*CosD(th);
249 yco[2*i ] = kOuterRadiusCone*CosD(th) + 0.5*kOuterACone*SinD(th);
250 xci[2*i ] = kInnerRadiusCone*SinD(th) - 0.5*kInnerACone*CosD(th);
251 yci[2*i ] = kInnerRadiusCone*CosD(th) + 0.5*kInnerACone*SinD(th);
252 xco[2*i+1] = kOuterRadiusCone*SinD(th) + 0.5*kOuterACone*CosD(th);
253 yco[2*i+1] = kOuterRadiusCone*CosD(th) - 0.5*kOuterACone*SinD(th);
254 xci[2*i+1] = kInnerRadiusCone*SinD(th) + 0.5*kInnerACone*CosD(th);
255 yci[2*i+1] = kInnerRadiusCone*CosD(th) - 0.5*kInnerACone*SinD(th);
256 }
257
258 sC1->SetVertex(4,xco[0],yco[0]);
259 sC1->SetVertex(5,xco[1],yco[1]);
260 sC1->SetVertex(6,xci[1],yci[1]);
261 sC1->SetVertex(7,xci[0],yci[0]);
262
263 sC2->SetVertex(4,xco[1],yco[1]);
264 sC2->SetVertex(5,xco[2],yco[2]);
265 sC2->SetVertex(6,xci[2],yci[2]);
266 sC2->SetVertex(7,xci[1],yci[1]);
267
268 // Air holes
269 TGeoArb8 *sCh1 = new TGeoArb8(kHalfLengthCone);
270 TGeoArb8 *sCh2 = new TGeoArb8(kHalfLengthCone);
271
272 for(Int_t i=0; i<4; i++){
273 InsidePoint(sC1->GetVertices()[((i+3)%4)*2+0],
274 sC1->GetVertices()[((i+3)%4)*2+1],
275 sC1->GetVertices()[i*2+0],
276 sC1->GetVertices()[i*2+1],
277 sC1->GetVertices()[((i+1)%4)*2+0],
278 sC1->GetVertices()[((i+1)%4)*2+1],-kThicknessCone,x,y);
279 sCh1->SetVertex(i,x,y);
280
281 InsidePoint(sC1->GetVertices()[((i+3)%4 +4)*2+0],
282 sC1->GetVertices()[((i+3)%4 +4)*2+1],
283 sC1->GetVertices()[(i+4)*2+0],
284 sC1->GetVertices()[(i+4)*2+1],
285 sC1->GetVertices()[((i+1)%4 +4)*2+0],
286 sC1->GetVertices()[((i+1)%4 +4)*2+1],-kThicknessCone,x,y);
287 sCh1->SetVertex(i+4,x,y);
288
289 InsidePoint(sC2->GetVertices()[((i+3)%4)*2+0],
290 sC2->GetVertices()[((i+3)%4)*2+1],
291 sC2->GetVertices()[i*2+0],
292 sC2->GetVertices()[i*2+1],
293 sC2->GetVertices()[((i+1)%4)*2+0],
294 sC2->GetVertices()[((i+1)%4)*2+1],-kThicknessCone,x,y);
295 sCh2->SetVertex(i,x,y);
296
297 InsidePoint(sC2->GetVertices()[((i+3)%4 +4)*2+0],
298 sC2->GetVertices()[((i+3)%4 +4)*2+1],
299 sC2->GetVertices()[(i+4)*2+0],
300 sC2->GetVertices()[(i+4)*2+1],
301 sC2->GetVertices()[((i+1)%4 +4)*2+0],
302 sC2->GetVertices()[((i+1)%4 +4)*2+1],-kThicknessCone,x,y);
303 sCh2->SetVertex(i+4,x,y);
304 }
305
306 // Finally the carbon fiber Ring with its Wings and their
307 // stesalite inserts. They are Tube and TubeSeg shapes
308
309 TGeoTube *ringshape = new TGeoTube(kInnerRadiusRing,kOuterRadiusRing,
310 kHalfLengthRing);
311
312 TGeoTube *ringinsertshape = new TGeoTube(kInnerRadiusRing+kThicknessRing,
313 kOuterRadiusRing-kThicknessRing,
314 kHalfLengthRing-kThicknessRing);
315
316 Double_t angleWideWing, angleWideWingThickness;
317 angleWideWing = (kWideWing/kOuterRadiusWing)*TMath::RadToDeg();
318 angleWideWingThickness = (kThicknessRing/kOuterRadiusWing)*TMath::RadToDeg();
319
320 TGeoTubeSeg *wingshape = new TGeoTubeSeg(kOuterRadiusRing,kOuterRadiusWing,
321 kHalfLengthRing, 0, angleWideWing);
322
323 TGeoTubeSeg *winginsertshape = new TGeoTubeSeg(kOuterRadiusRing,
324 kOuterRadiusWing-kThicknessRing, kHalfLengthRing-kThicknessRing,
325 angleWideWingThickness, angleWideWing-angleWideWingThickness);
326
327
328 // We have the shapes: now create the real volumes
329
330 TGeoMedium *medSPDcf = mgr->GetMedium("ITS_SPD shield$");
331 TGeoMedium *medSPDair = mgr->GetMedium("ITS_SPD AIR$");
332 TGeoMedium *medSPDste = mgr->GetMedium("ITS_G10FR4$"); // stesalite
333
334 TGeoVolume *centralshield = new TGeoVolume("SPDcentralshield",
335 centralshape,medSPDcf);
336 centralshield->SetVisibility(kTRUE);
337 centralshield->SetLineColor(7);
338 centralshield->SetLineWidth(1);
339
340 TGeoVolume *centralairshield = new TGeoVolume("SPDcentralairshield",
341 centralairshape,medSPDair);
342 centralairshield->SetVisibility(kTRUE);
343 centralairshield->SetLineColor(5); // Yellow
344 centralairshield->SetLineWidth(1);
345 centralairshield->SetFillColor(centralairshield->GetLineColor());
346 centralairshield->SetFillStyle(4090); // 90% transparent
347
348 TGeoVolume *centralomega = new TGeoVolume("SPDcentralomega",
349 centralomegashape,medSPDcf);
350 centralomega->SetVisibility(kTRUE);
351 centralomega->SetLineColor(7);
352 centralomega->SetLineWidth(1);
353
354 centralairshield->AddNode(centralomega,1,0);
355 centralshield->AddNode(centralairshield,1,0);
356
357 TGeoVolume *endcapshield = new TGeoVolume("SPDendcapshield",
358 endcapshape,medSPDcf);
359 endcapshield->SetVisibility(kTRUE);
360 endcapshield->SetLineColor(7);
361 endcapshield->SetLineWidth(1);
362
363 TGeoVolume *endcapairshield = new TGeoVolume("SPDendcapairshield",
364 endcapairshape,medSPDair);
365 endcapairshield->SetVisibility(kTRUE);
366 endcapairshield->SetLineColor(5); // Yellow
367 endcapairshield->SetLineWidth(1);
368 endcapairshield->SetFillColor(endcapairshield->GetLineColor());
369 endcapairshield->SetFillStyle(4090); // 90% transparent
370
371 TGeoVolume *endcapomega = new TGeoVolume("SPDendcapomega",
372 endcapomegashape,medSPDcf);
373 endcapomega->SetVisibility(kTRUE);
374 endcapomega->SetLineColor(7);
375 endcapomega->SetLineWidth(1);
376
377 endcapairshield->AddNode(endcapomega,1,0);
378 endcapshield->AddNode(endcapairshield,1,0);
379
380 TGeoVolume *vC1 = new TGeoVolume("SPDconeshieldV1",sC1,medSPDcf);
381 vC1->SetVisibility(kTRUE);
382 vC1->SetLineColor(7);
383 vC1->SetLineWidth(1);
384
385 TGeoVolume *vCh1 = new TGeoVolume("SPDconeshieldH1",sCh1,medSPDair);
386
387 vCh1->SetVisibility(kTRUE);
388 vCh1->SetLineColor(5); // Yellow
389 vCh1->SetLineWidth(1);
390 vCh1->SetFillColor(vCh1->GetLineColor());
391 vCh1->SetFillStyle(4090); // 90% transparent
392
393 vC1->AddNode(vCh1,1,0);
394
395 TGeoVolume *vC2 = new TGeoVolume("SPDconeshieldV2",sC2,medSPDcf);
396
397 vC2->SetVisibility(kTRUE);
398 vC2->SetLineColor(7);
399 vC2->SetLineWidth(1);
400
401 TGeoVolume *vCh2 = new TGeoVolume("SPDconeshieldH2",sCh2,medSPDair);
402
403 vCh2->SetVisibility(kTRUE);
404 vCh2->SetLineColor(5); // Yellow
405 vCh2->SetLineWidth(1);
406 vCh2->SetFillColor(vCh2->GetLineColor());
407 vCh2->SetFillStyle(4090); // 90% transparent
408
409 vC2->AddNode(vCh2,1,0);
410
411 TGeoVolume *ring = new TGeoVolume("SPDshieldring",ringshape,medSPDcf);
412 ring->SetVisibility(kTRUE);
413 ring->SetLineColor(7);
414 ring->SetLineWidth(1);
415
416 TGeoVolume *ringinsert = new TGeoVolume("SPDshieldringinsert",
417 ringinsertshape,medSPDste);
418 ringinsert->SetVisibility(kTRUE);
419 ringinsert->SetLineColor(3); // Green
420// ringinsert->SetLineWidth(1);
421 ringinsert->SetFillColor(ringinsert->GetLineColor());
422 ringinsert->SetFillStyle(4010); // 10% transparent
423
424 ring->AddNode(ringinsert,1,0);
425
426 TGeoVolume *wing = new TGeoVolume("SPDshieldringwing",wingshape,medSPDcf);
427 wing->SetVisibility(kTRUE);
428 wing->SetLineColor(7);
429 wing->SetLineWidth(1);
430
431 TGeoVolume *winginsert = new TGeoVolume("SPDshieldringinsert",
432 winginsertshape,medSPDste);
433 winginsert->SetVisibility(kTRUE);
434 winginsert->SetLineColor(3); // Green
435// winginsert->SetLineWidth(1);
436 winginsert->SetFillColor(winginsert->GetLineColor());
437 winginsert->SetFillStyle(4010); // 10% transparent
438
439 wing->AddNode(winginsert,1,0);
440
441
442 // Add all volumes in the assembly
443 vM->AddNode(centralshield,1,0);
444 vM->AddNode(centralshield,2,new TGeoRotation("",180,0,0));
445
446 vM->AddNode(endcapshield,1,
447 new TGeoTranslation(0,0, kHalfLengthCentral+kHalfLengthEndCap));
448 vM->AddNode(endcapshield,2,
449 new TGeoTranslation(0,0,-kHalfLengthCentral-kHalfLengthEndCap));
450 vM->AddNode(endcapshield,3,new TGeoCombiTrans(
451 0, 0, kHalfLengthCentral+kHalfLengthEndCap,
452 new TGeoRotation("",180,0,0) ) );
453 vM->AddNode(endcapshield,4,new TGeoCombiTrans(
454 0, 0,-kHalfLengthCentral-kHalfLengthEndCap,
455 new TGeoRotation("",180,0,0) ) );
456
457 for (Int_t i=0; i<10; i++) {
458 Double_t thetaC12 = kTheta*TMath::RadToDeg();
459 vM->AddNode(vC1,2*i+1, new TGeoCombiTrans(
460 0, 0, kHalfLengthCentral+2*kHalfLengthEndCap+kHalfLengthCone,
461 new TGeoRotation("",0, 0,i*thetaC12) ) );
462 vM->AddNode(vC1,2*i+2, new TGeoCombiTrans(
463 0, 0, -kHalfLengthCentral-2*kHalfLengthEndCap-kHalfLengthCone,
464 new TGeoRotation("",0,180,i*thetaC12) ) );
465 vM->AddNode(vC2,2*i+1, new TGeoCombiTrans(
466 0, 0, kHalfLengthCentral+2*kHalfLengthEndCap+kHalfLengthCone,
467 new TGeoRotation("",0, 0,i*thetaC12) ) );
468 vM->AddNode(vC2,2*i+2, new TGeoCombiTrans(
469 0, 0, -kHalfLengthCentral-2*kHalfLengthEndCap-kHalfLengthCone,
470 new TGeoRotation("",0,180,i*thetaC12) ) );
471 }
472
473 vM->AddNode(ring,1,new TGeoTranslation(0, 0,
474 kHalfLengthCentral+2*kHalfLengthEndCap+2*kHalfLengthCone
475 +kHalfLengthRing));
476 vM->AddNode(ring,2,new TGeoTranslation(0, 0,
477 -kHalfLengthCentral-2*kHalfLengthEndCap-2*kHalfLengthCone
478 -kHalfLengthRing));
479
0b9c8a10 480 for (Int_t i=0; i<4; i++) {
481 Double_t thetaW = kThetaWing*(2*i+1) - angleWideWing/2.;
482 vM->AddNode(wing,2*i+1,new TGeoCombiTrans(0, 0,
a275e8ba 483 kHalfLengthCentral+2*kHalfLengthEndCap+2*kHalfLengthCone
484 +kHalfLengthRing, new TGeoRotation("",thetaW,0,0) ));
0b9c8a10 485 vM->AddNode(wing,2*i+2,new TGeoCombiTrans(0, 0,
a275e8ba 486 -kHalfLengthCentral-2*kHalfLengthEndCap-2*kHalfLengthCone
487 -kHalfLengthRing, new TGeoRotation("",thetaW,0,0) ));
488 }
489
490 // Some debugging if requested
491 if(GetDebug(1)){
492 vM->PrintNodes();
493 vM->InspectShape();
494 }
495
496 // Finally put the entire shield in the mother volume
497 moth->AddNode(vM,1,0);
498
499 return;
500}
501
502//______________________________________________________________________
503void AliITSv11GeometrySupport::CreateSPDThermalShape(
504 Double_t ina, Double_t inb, Double_t inr,
505 Double_t oua, Double_t oub, Double_t our,
506 Double_t t, Double_t *x , Double_t *y )
507{
508//
509// Creates the proper sequence of X and Y coordinates to determine
510// the base XTru polygon for the SPD thermal shapes
511//
512// Input:
513// ina, inb : inner shape sides
514// inr : inner radius
515// oua, oub : outer shape sides
516// our : outer radius
517// t : theta angle
518//
519// Output:
520// x, y : coordinate vectors [24]
521//
522// Created: 14 Nov 2007 Mario Sitta
523// Updated: 11 Dec 2007 Mario Sitta
524//
525 Double_t xlocal[6],ylocal[6];
526
527 //Create the first inner quadrant (X > 0)
528 FillSPDXtruShape(ina,inb,inr,t,xlocal,ylocal);
529 for (Int_t i=0; i<6; i++) {
530 x[i] = xlocal[i];
531 y[i] = ylocal[i];
532 }
533
534 // Then reflex on the second quadrant (X < 0)
535 for (Int_t i=0; i<6; i++) {
536 x[23-i] = -x[i];
537 y[23-i] = y[i];
538 }
539
540 // Now create the first outer quadrant (X > 0)
541 FillSPDXtruShape(oua,oub,our,t,xlocal,ylocal);
542 for (Int_t i=0; i<6; i++) {
543 x[11-i] = xlocal[i];
544 y[11-i] = ylocal[i];
545 }
546
547 // Finally reflex on the second quadrant (X < 0)
548 for (Int_t i=0; i<6; i++) {
549 x[12+i] = -x[11-i];
550 y[12+i] = y[11-i];
551 }
552
553 return;
554}
555
556//______________________________________________________________________
557void AliITSv11GeometrySupport::CreateSPDOmegaShape(
3d2705b6 558 Double_t *xin, Double_t *yin, Double_t d,
559 Double_t *x, Double_t *y)
a275e8ba 560{
561//
562// Creates the proper sequence of X and Y coordinates to determine
563// the SPD Omega XTru polygon
564//
565// Input:
566// xin, yin : coordinates of the air volume
567// d : Omega shape thickness
568// t : theta angle
569//
570// Output:
571// x, y : coordinate vectors [48]
572//
573// Created: 17 Nov 2007 Mario Sitta
574// Updated: 11 Dec 2007 Mario Sitta
3d2705b6 575// Updated: 20 Feb 2009 Mario Sitta New algorithm (the old one
576// gives erroneous vertexes)
a275e8ba 577//
a275e8ba 578
3d2705b6 579 // This vector contains the index of those points which coincide
580 // with the corresponding points in the air shape
581 Int_t indexAir2Omega[12] = {1, 2, 5, 6, 9, 10, 11, 15, 16, 19, 20, 23};
a275e8ba 582
3d2705b6 583 // First fill those vertexes corresponding to
584 // the edges aligned to the air shape edges
585 for (Int_t j=0; j<12; j++) {
586 x[*(indexAir2Omega+j)] = xin[j];
587 y[*(indexAir2Omega+j)] = yin[j];
588 }
a275e8ba 589
3d2705b6 590 // Now get the coordinates of the first inner point
591 PointFromParallelLines(x[23],y[23],x[1],y[1],d,x[0],y[0]);
a275e8ba 592
3d2705b6 593 // Knowing this, the second internal point can be determined
594 InsidePoint(x[0],y[0],x[1],y[1],x[2],y[2],d,x[22],y[22]);
a275e8ba 595
3d2705b6 596 // The third point is now computable
597 ReflectPoint(x[1],y[1],x[2],y[2],x[22],y[22],x[21],y[21]);
a275e8ba 598
3d2705b6 599 // Repeat this logic
600 InsidePoint(x[21],y[21],x[20],y[20],x[19],y[19],-d,x[3],y[3]);
a275e8ba 601
3d2705b6 602 ReflectPoint(x[20],y[20],x[19],y[19],x[3],y[3],x[4],y[4]);
a275e8ba 603
3d2705b6 604 InsidePoint(x[4],y[4],x[5],y[5],x[6],y[6],d,x[18],y[18]);
a275e8ba 605
3d2705b6 606 ReflectPoint(x[5],y[5],x[6],y[6],x[18],y[18],x[17],y[17]);
a275e8ba 607
3d2705b6 608 InsidePoint(x[17],y[17],x[16],y[16],x[15],y[15],-d,x[7],y[7]);
a275e8ba 609
3d2705b6 610 ReflectPoint(x[16],y[16],x[15],y[15],x[7],y[7],x[8],y[8]);
a275e8ba 611
3d2705b6 612 InsidePoint(x[8],y[8],x[9],y[9],x[10],y[10],d,x[14],y[14]);
a275e8ba 613
614 // These need to be fixed explicitly
a275e8ba 615 x[12] = x[11];
616 y[12] = y[11] + d;
617 x[13] = x[10] + d;
618 y[13] = y[12];
619
3d2705b6 620 // Finally reflect on the negative side
a275e8ba 621 for (Int_t i=0; i<24; i++) {
622 x[24+i] = -x[23-i];
623 y[24+i] = y[23-i];
624 }
625
626 // Wow ! We've finished
627 return;
172b0d90 628}
a275e8ba 629
172b0d90 630//______________________________________________________________________
a275e8ba 631void AliITSv11GeometrySupport::FillSPDXtruShape(Double_t a, Double_t b,
632 Double_t r, Double_t t,
633 Double_t *x, Double_t *y)
634{
635//
636// Creates the partial sequence of X and Y coordinates to determine
637// the lateral part of the SPD thermal shield
638//
639// Input:
640// a, b : shape sides
641// r : radius
642// t : theta angle
643//
644// Output:
645// x, y : coordinate vectors [6]
646//
647// Created: 14 Nov 2007 Mario Sitta
648//
649 x[0] = a/2;
650 y[0] = r;
651
652 x[1] = x[0] + b * TMath::Cos(t/2);
653 y[1] = y[0] - b * TMath::Sin(t/2);
654
655 x[2] = x[1] + a * TMath::Cos(t);
656 y[2] = y[1] - a * TMath::Sin(t);
657
658 x[3] = x[2] + b * TMath::Cos(3*t/2);
659 y[3] = y[2] - b * TMath::Sin(3*t/2);
660
661 x[4] = x[3] + a * TMath::Cos(2*t);
662 y[4] = y[3] - a * TMath::Sin(2*t);
663
664 x[5] = x[4];
665 y[5] = 0.;
666
667 return;
172b0d90 668}
a275e8ba 669
3d2705b6 670//______________________________________________________________________
671void AliITSv11GeometrySupport::PointFromParallelLines(Double_t x1, Double_t y1,
672 Double_t x2, Double_t y2, Double_t d,
673 Double_t &x, Double_t &y)
674{
675//
676// Determines the X and Y of the first internal point of the Omega shape
677// (i.e. the coordinates of a point given two parallel lines passing by
678// two points and placed at a known distance)
679//
680// Input:
681// x1, y1 : first point
682// x2, y2 : second point
683// d : distance between the two lines
684//
685// Output:
686// x, y : coordinate of the point
687//
688// Created: 22 Feb 2009 Mario Sitta
689//
690//Begin_Html
691/*
692<img src="ITS/doc/PointFromParallelLines.gif">
693*/
694//End_Html
695
696 // The slope of the paralles lines at a distance d
697 Double_t m;
698
699 // The parameters of the solving equation
700 // a x^2 - 2 b x + c = 0
701 Double_t a = (x1 - x2)*(x1 - x2) - d*d;
702 Double_t b = (x1 - x2)*(y1 - y2);
703 Double_t c = (y1 - y2)*(y1 - y2) - d*d;
704
705 // (Delta4 is Delta/4 because we use the reduced formula)
706 Double_t Delta4 = b*b - a*c;
707
708 // Compute the slope of the two parallel lines
709 // (one of the two possible slopes, the one with the smaller
710 // absolute value is needed)
711 if (Delta4 < 0) { // Should never happen with our data, but just to be sure
712 x = -1; // x is expected positive, so this flags an error
713 return;
714 } else
715 m = (b + TMath::Sqrt(Delta4))/a; // b is negative with our data
716
717 // Finally compute the coordinates of the point
718 x = x2 + (y1 - y2 - d)/m;
719 y = y1 - d;
720
721 // Done
722 return;
723}
724
725//______________________________________________________________________
726void AliITSv11GeometrySupport::ReflectPoint(Double_t x1, Double_t y1,
727 Double_t x2, Double_t y2,
728 Double_t x3, Double_t y3,
729 Double_t &x, Double_t &y)
730{
731//
732// Given two points (x1,y1) and (x2,y2), determines the point (x,y)
733// lying on the line parallel to the line passing by these points,
734// at a distance d and passing by the point (x3,y3), which is symmetric to
735// the third point with respect to the axis of the segment delimited by
736// the two first points.
737//
738// Input:
739// x1, y1 : first point
740// x2, y2 : second point
741// x3, y3 : third point
742// d : distance between the two lines
743//
744// Output:
745// x, y : coordinate of the reflected point
746//
747// Created: 22 Feb 2009 Mario Sitta
748//
749//Begin_Html
750/*
751<img src="ITS/doc/ReflectPoint.gif">
752*/
753//End_Html
754
755 // The slope of the line passing by the first two points
756 Double_t k = (y2 - y1)/(x2 - x1);
757
758 // The middle point of the segment 1-2
759 Double_t xK = (x1 + x2)/2.;
760 Double_t yK = (y1 + y2)/2.;
761
762 // The intercept between the axis of the segment 1-2 and the line
763 // passing by 3 and parallel to the line passing by 1-2
764 Double_t xH = (k*k*x3 + k*(yK - y3) + xK)/(k*k + 1);
765 Double_t yH = k*(xH - x3) + y3;
766
767 // The point symmetric to 3 with respect to H
768 x = 2*xH - x3;
769 y = 2*yH - y3;
770
771 // Done
772 return;
773}
774
172b0d90 775//______________________________________________________________________
7d6c23de 776void AliITSv11GeometrySupport::SDDCone(TGeoVolume *moth,TGeoManager *mgr)
777{
778//
779// Creates the SDD support cone and cylinder geometry as a
780// volume assembly and adds it to the mother volume
781// (part of this code is taken or anyway inspired to SDDCone method
782// of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06)
783//
784// Input:
785// moth : the TGeoVolume owing the volume structure
786// mgr : the GeoManager (default gGeoManager)
787// Output:
788//
789// Created: ??? Bjorn S. Nilsen
790// Updated: 18 Feb 2008 Mario Sitta
6b99a08f 791// Updated: 25 Jul 2008 Mario Sitta SDDCarbonFiberCone simpler
7d6c23de 792//
793// Technical data are taken from: "Supporto Generale Settore SDD"
794// (technical drawings ALR-0816/1-B), "Supporto Globale Settore SDD"
795// (technical drawings ALR-0816/2A, ALR-0816/2B, ALR-0816/2C, ALR-0816/2D),
796// private communication with B. Giraudo
797
798 // Dimensions of the Central cylinder and flanges
799 const Double_t kCylinderHalfLength = (790.0/2)*fgkmm;
800 const Double_t kCylinderInnerR = (210.0/2)*fgkmm;
801 const Double_t kCylinderOuterR = (231.0/2)*fgkmm;
802 const Double_t kFlangeHalfLength = ( 15.0/2)*fgkmm;
803 const Double_t kFlangeInnerR = (210.5/2)*fgkmm;
804 const Double_t kFlangeOuterR = (230.5/2)*fgkmm;
805 const Double_t kInsertoHalfLength =
806 kCylinderHalfLength - 2*kFlangeHalfLength;
807// const Double_t kCFThickness = kFlangeInnerR - kCylinderInnerR;
808 const Double_t kBoltDiameter = 6.0*fgkmm; // M6 screw
809 const Double_t kBoltDepth = 6.0*fgkmm; // In the flange
810 const Double_t kBoltRadius = (220.0/2)*fgkmm; // Radius in flange
811 const Double_t kThetaBolt = 30.0*fgkDegree;
812 const Int_t kNBolts = (Int_t)(360.0/kThetaBolt);
813 // Dimensions of the Cone
814 const Double_t kConeROutMin = (540.0/2)*fgkmm;
815 const Double_t kConeROutMax = (560.0/2)*fgkmm;
3a299c65 816 const Double_t kConeRCurv = 10.0*fgkmm; // Radius of curvature
7d6c23de 817 const Double_t kConeRinMin = (210.0/2)*fgkmm;
6b99a08f 818// const Double_t kConeRinMax = (216.0/2)*fgkmm;
7d6c23de 819 const Double_t kConeRinCylinder = (231.0/2)*fgkmm;
3a299c65 820 const Double_t kConeZCylinder = 192.0*fgkmm;
7d6c23de 821 const Double_t kConeZOuterMilled = 23.0*fgkmm;
822 const Double_t kConeDZin = 15.0*fgkmm; // ???
3a299c65 823 const Double_t kConeThickness = 10.0*fgkmm; // Rohacell + Carb.Fib.
7d6c23de 824 const Double_t kConeTheta = 45.0*fgkDegree; // SDD cone angle
825 const Double_t kSinConeTheta =
826 TMath::Sin(kConeTheta*TMath::DegToRad());
827 const Double_t kCosConeTheta =
828 TMath::Cos(kConeTheta*TMath::DegToRad());
829 const Double_t kTanConeTheta =
830 TMath::Tan(kConeTheta*TMath::DegToRad());
831 // Dimensions of the Cone Inserts
832 const Double_t kConeCFThickness = 1.5*fgkmm; // Carbon fiber thickness
833 // Dimensions of the Cone Holes
834 const Double_t kHole1RMin = (450.0/2)*fgkmm;
3a299c65 835 const Double_t kHole1RMax = (530.0/2)*fgkmm;
7d6c23de 836 const Double_t kHole2RMin = (280.0/2)*fgkmm;
837 const Double_t kHole2RMax = (375.0/2)*fgkmm;
838 const Double_t kHole1Phi = 25.0*fgkDegree;
839 const Double_t kHole2Phi = 50.0*fgkDegree;
840 const Double_t kHole3RMin = 205.0*fgkmm;
841 const Double_t kHole3DeltaR = 15*fgkmm;
842 const Double_t kHole3Width = 30*fgkmm;
843 const Int_t kNHole3 = 6 ;
844 const Double_t kHole4RMin = 116.0*fgkmm;
845 const Double_t kHole4DeltaR = 15*fgkmm;
3a299c65 846 const Double_t kHole4Width = 30*fgkmm;
847 // const Int_t kNHole4 = 3 ;
7d6c23de 848
849 // Local variables
850 Double_t x, y, z, t, dza, rmin, rmax;
851
852
7d6c23de 853 // Recover the needed materials
854 TGeoMedium *medSDDcf = mgr->GetMedium("ITS_SDD C (M55J)$");
855 TGeoMedium *medSDDair = mgr->GetMedium("ITS_SDD AIR$");
856 TGeoMedium *medSDDste = mgr->GetMedium("ITS_G10FR4$"); // stesalite
857 TGeoMedium *medSDDroh = mgr->GetMedium("ITS_ROHACELL$");
858 TGeoMedium *medSDDss = mgr->GetMedium("ITS_INOX$");
859
860 // First define the geometrical shapes
861
862 // Central cylinder with its internal foam and the lateral flanges:
863 // a carbon fiber Tube which contains a rohacell Tube and two
864 // stesalite Tube's
865 TGeoTube *cylindershape = new TGeoTube(kCylinderInnerR,kCylinderOuterR,
866 kCylinderHalfLength);
867
868 TGeoTube *insertoshape = new TGeoTube(kFlangeInnerR,kFlangeOuterR,
869 kInsertoHalfLength);
870
871 TGeoTube *flangeshape = new TGeoTube(kFlangeInnerR,kFlangeOuterR,
872 kFlangeHalfLength);
873
874 // The flange bolt: it is a Tube
875 TGeoTube *boltshape = new TGeoTube(0.0, 0.5*kBoltDiameter, 0.5*kBoltDepth);
876
877 // Debug if requested
878 if (GetDebug(1)) {
879 cylindershape->InspectShape();
880 insertoshape->InspectShape();
881 flangeshape->InspectShape();
882 boltshape->InspectShape();
883 }
884
885
886 // We have the shapes: now create the real volumes
887
888 TGeoVolume *cfcylinder = new TGeoVolume("SDDCarbonFiberCylinder",
889 cylindershape,medSDDcf);
890 cfcylinder->SetVisibility(kTRUE);
891 cfcylinder->SetLineColor(4); // Blue
892 cfcylinder->SetLineWidth(1);
893 cfcylinder->SetFillColor(cfcylinder->GetLineColor());
894 cfcylinder->SetFillStyle(4000); // 0% transparent
895
896 TGeoVolume *foamcylinder = new TGeoVolume("SDDFoamCylinder",
897 insertoshape,medSDDroh);
898 foamcylinder->SetVisibility(kTRUE);
899 foamcylinder->SetLineColor(3); // Green
900 foamcylinder->SetLineWidth(1);
901 foamcylinder->SetFillColor(foamcylinder->GetLineColor());
902 foamcylinder->SetFillStyle(4050); // 50% transparent
903
904 TGeoVolume *flangecylinder = new TGeoVolume("SDDFlangeCylinder",
905 flangeshape,medSDDste);
906 flangecylinder->SetVisibility(kTRUE);
907 flangecylinder->SetLineColor(2); // Red
908 flangecylinder->SetLineWidth(1);
909 flangecylinder->SetFillColor(flangecylinder->GetLineColor());
910 flangecylinder->SetFillStyle(4050); // 50% transparent
911
912 TGeoVolume *bolt = new TGeoVolume("SDDFlangeBolt",boltshape,medSDDss);
913 bolt->SetVisibility(kTRUE);
914 bolt->SetLineColor(1); // Black
915 bolt->SetLineWidth(1);
916 bolt->SetFillColor(bolt->GetLineColor());
917 bolt->SetFillStyle(4050); // 50% transparent
918
919 // Mount up the cylinder
920 for(Int_t i=0; i<kNBolts; i++){
921 t = kThetaBolt*i;
922 x = kBoltRadius*TMath::Cos(t);
923 y = kBoltRadius*TMath::Sin(t);
924 z = kFlangeHalfLength-kBoltDepth;
925 flangecylinder->AddNode(bolt, i+1, new TGeoTranslation("",x,y,z));
926 }
927
928 cfcylinder->AddNode(foamcylinder,1,0);
929 cfcylinder->AddNode(flangecylinder,1,
930 new TGeoTranslation(0, 0, kInsertoHalfLength+kFlangeHalfLength));
931 cfcylinder->AddNode(flangecylinder,2,new TGeoCombiTrans(
932 0, 0, -kInsertoHalfLength-kFlangeHalfLength,
933 new TGeoRotation("",0,180,0) ) );
934
935
936 // SDD Support Cone with its internal inserts: a carbon fiber Pcon
937 // with holes which contains a stesalite Pcon which on turn contains a
938 // rohacell Pcon
939
940 dza = kConeThickness/kSinConeTheta-(kConeROutMax-kConeROutMin)/kTanConeTheta;
941
6b99a08f 942 TGeoPcon *coneshape = new TGeoPcon(0.0, 360.0, 10);
7d6c23de 943
944 coneshape->Z(0) = 0.0;
945 coneshape->Rmin(0) = kConeROutMin;
946 coneshape->Rmax(0) = kConeROutMax;
947
948 coneshape->Z(1) = kConeZOuterMilled - dza;
949 coneshape->Rmin(1) = coneshape->GetRmin(0);
950 coneshape->Rmax(1) = coneshape->GetRmax(0);
951
952 coneshape->Z(2) = kConeZOuterMilled;
953 coneshape->Rmax(2) = coneshape->GetRmax(0);
954
955 RadiusOfCurvature(kConeRCurv,0.,coneshape->GetZ(1),
956 coneshape->GetRmin(1),kConeTheta,z,rmin);
957 coneshape->Z(3) = z;
958 coneshape->Rmin(3) = rmin;
959
960 coneshape->Rmin(2) = RminFrom2Points(coneshape,3,1,coneshape->GetZ(2));
961
962 RadiusOfCurvature(kConeRCurv,0.,coneshape->GetZ(2),
963 coneshape->GetRmax(2),kConeTheta,z,rmax);
964 coneshape->Z(4) = z;
965 coneshape->Rmax(4) = rmax;
966 coneshape->Rmin(4) = RminFromZpCone(coneshape,3,kConeTheta,
967 coneshape->GetZ(4),0.0);
968
969 coneshape->Rmax(3) = RmaxFrom2Points(coneshape,4,2,coneshape->GetZ(3));
970
6b99a08f 971 coneshape->Z(6) = kConeZCylinder - kConeDZin;
972
973 RadiusOfCurvature(kConeRCurv,90.0,coneshape->GetZ(6),0.0,
974 90.0-kConeTheta,z,rmin);
975 coneshape->Z(5) = z;
976 coneshape->Rmin(5) = RminFromZpCone(coneshape,3,kConeTheta,z);
977 coneshape->Rmax(5) = RmaxFromZpCone(coneshape,4,kConeTheta,z);
978
979 RadiusOfCurvature(kConeRCurv,90.-kConeTheta,
980 0.0,coneshape->Rmin(5),90.0,z,rmin);
981 coneshape->Rmin(6) = rmin;
982 coneshape->Rmax(6) = RmaxFromZpCone(coneshape,4,kConeTheta,
983 coneshape->GetZ(6));
984
985 coneshape->Z(7) = coneshape->GetZ(6);
7d6c23de 986 coneshape->Rmin(7) = kConeRinMin;
6b99a08f 987 coneshape->Rmax(7) = coneshape->GetRmax(6);
7d6c23de 988
989 coneshape->Rmin(8) = kConeRinMin;
990
6b99a08f 991 RadiusOfCurvature(kConeRCurv,90.0,kConeZCylinder,kConeRinCylinder,
992 90.0-kConeTheta,z,rmax);
993 coneshape->Z(8) = z;
7d6c23de 994 coneshape->Rmax(8) = rmax;
7d6c23de 995
996 coneshape->Z(9) = kConeZCylinder;
997 coneshape->Rmin(9) = kConeRinMin;
6b99a08f 998 coneshape->Rmax(9) = kConeRinCylinder;
7d6c23de 999
7d6c23de 1000
1001 // SDD Cone Insert: another Pcon
1002 Double_t x0, y0, x1, y1, x2, y2;
1003 TGeoPcon *coneinsertshape = new TGeoPcon(0.0, 360.0, 9);
1004
1005 coneinsertshape->Z(0) = coneshape->GetZ(0) + kConeCFThickness;
1006 coneinsertshape->Rmin(0) = coneshape->GetRmin(0) + kConeCFThickness;
1007 coneinsertshape->Rmax(0) = coneshape->GetRmax(0) - kConeCFThickness;
1008
1009 x0 = coneshape->GetZ(0); y0 = coneshape->GetRmin(0);
1010 x1 = coneshape->GetZ(1); y1 = coneshape->GetRmin(1);
1011 x2 = coneshape->GetZ(2); y2 = coneshape->GetRmin(2);
1012 InsidePoint(x0, y0, x1, y1, x2, y2, kConeCFThickness, z, rmin);
1013 coneinsertshape->Z(1) = z;
1014 coneinsertshape->Rmin(1) = rmin;
1015 coneinsertshape->Rmax(1) = coneinsertshape->GetRmax(0);
1016
1017 x0 = coneshape->GetZ(1); y0 = coneshape->GetRmax(1);
1018 x1 = coneshape->GetZ(2); y1 = coneshape->GetRmax(2);
1019 x2 = coneshape->GetZ(3); y2 = coneshape->GetRmax(3);
1020 InsidePoint(x0, y0, x1, y1, x2, y2, -kConeCFThickness, z, rmax);
1021 coneinsertshape->Z(2) = z;
1022 coneinsertshape->Rmax(2) = rmax;
1023
1024 x0 = coneshape->GetZ(2); y0 = coneshape->GetRmin(2);
1025 x1 = coneshape->GetZ(3); y1 = coneshape->GetRmin(3);
1026 x2 = coneshape->GetZ(4); y2 = coneshape->GetRmin(4);
1027 InsidePoint(x0, y0, x1, y1, x2, y2, kConeCFThickness, z, rmin);
1028 coneinsertshape->Z(3) = z;
1029 coneinsertshape->Rmin(3) = rmin;
1030
1031 x0 = coneinsertshape->GetZ(1); y0 = coneinsertshape->GetRmin(1);
1032 x1 = coneinsertshape->GetZ(3); y1 = coneinsertshape->GetRmin(3);
1033 coneinsertshape->Rmin(2) = Yfrom2Points(x0, y0, x1, y1,
1034 coneinsertshape->Z(2));
1035
1036 x0 = coneshape->GetZ(3); y0 = coneshape->GetRmax(3);
1037 x1 = coneshape->GetZ(4); y1 = coneshape->GetRmax(4);
1038 x2 = coneshape->GetZ(5); y2 = coneshape->GetRmax(5);
1039 InsidePoint(x0, y0, x1, y1, x2, y2, -kConeCFThickness, z, rmax);
1040 coneinsertshape->Z(4) = z;
1041 coneinsertshape->Rmax(4) = rmax;
1042
1043 x0 = coneinsertshape->GetZ(2); y0 = coneinsertshape->GetRmax(2);
1044 x1 = coneinsertshape->GetZ(4); y1 = coneinsertshape->GetRmax(4);
1045 coneinsertshape->Rmax(3) = Yfrom2Points(x0, y0, x1, y1,
1046 coneinsertshape->Z(3));
1047
1048 x0 = coneshape->GetZ(4); y0 = coneshape->GetRmin(4);
1049 x1 = coneshape->GetZ(5); y1 = coneshape->GetRmin(5);
1050 x2 = coneshape->GetZ(6); y2 = coneshape->GetRmin(6);
1051 InsidePoint(x0, y0, x1, y1, x2, y2, kConeCFThickness, z, rmin);
1052 coneinsertshape->Z(5) = z;
1053 coneinsertshape->Rmin(5) = rmin;
1054 coneinsertshape->Rmax(5) = coneinsertshape->GetRmax(4) -
1055 kTanConeTheta*(coneinsertshape->GetZ(5) - coneinsertshape->GetZ(4));
1056
1057 x0 = coneinsertshape->GetZ(3); y0 = coneinsertshape->GetRmin(3);
1058 x1 = coneinsertshape->GetZ(5); y1 = coneinsertshape->GetRmin(5);
1059 coneinsertshape->Rmin(4) = Yfrom2Points(x0, y0, x1, y1,
1060 coneinsertshape->Z(4));
1061
1062 x0 = coneshape->GetZ(5); y0 = coneshape->GetRmin(5);
1063 x1 = coneshape->GetZ(6); y1 = coneshape->GetRmin(6);
1064 x2 = coneshape->GetZ(7); y2 = coneshape->GetRmin(7);
1065 InsidePoint(x0, y0, x1, y1, x2, y2, kConeCFThickness, z, rmin);
1066 coneinsertshape->Z(6) = z;
1067 coneinsertshape->Rmin(6) = rmin;
1068 coneinsertshape->Rmax(6) = coneinsertshape->GetRmax(4) -
1069 kTanConeTheta*(coneinsertshape->GetZ(6) - coneinsertshape->GetZ(4));
1070
1071 coneinsertshape->Z(7) = coneinsertshape->GetZ(6);
1072 coneinsertshape->Rmin(7) = coneshape->GetRmin(7) + kConeCFThickness;
1073 coneinsertshape->Rmax(7) = coneinsertshape->GetRmax(6);
1074
1075 coneinsertshape->Z(8) = coneshape->GetZ(9) - kConeCFThickness;
1076 coneinsertshape->Rmin(8) = coneinsertshape->GetRmin(7);
1077 coneinsertshape->Rmax(8) = coneinsertshape->GetRmax(4) -
1078 kTanConeTheta*(coneinsertshape->GetZ(8) - coneinsertshape->GetZ(4));
1079
1080 // SDD Cone Foam: another Pcon
1081 TGeoPcon *conefoamshape = new TGeoPcon(0.0, 360.0, 4);
1082
1083 RadiusOfCurvature(kConeRCurv+kConeCFThickness,0.0,coneinsertshape->GetZ(1),
1084 coneinsertshape->GetRmin(1),kConeTheta,z,rmin);
1085
1086 conefoamshape->Z(0) = z;
1087 conefoamshape->Rmin(0) = rmin;
1088 conefoamshape->Rmax(0) = conefoamshape->GetRmin(0);
1089
1090 conefoamshape->Z(1) = conefoamshape->GetZ(0)+
1091 (kConeThickness-2.0*kConeCFThickness)/kSinConeTheta;
1092 conefoamshape->Rmin(1) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1093 conefoamshape->GetZ(1));
1094 conefoamshape->Rmax(1) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1095 conefoamshape->GetZ(1));
1096
1097 conefoamshape->Z(2) = coneshape->GetZ(5)-kConeCFThickness;
1098 conefoamshape->Rmin(2) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1099 conefoamshape->GetZ(2));
1100 conefoamshape->Rmax(2) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1101 conefoamshape->GetZ(2));
1102
1103 conefoamshape->Z(3) = coneinsertshape->GetZ(5)+
1104 (kConeThickness-2.0*kConeCFThickness)*kCosConeTheta;
1105 conefoamshape->Rmax(3) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1106 conefoamshape->GetZ(3));
1107 conefoamshape->Rmin(3) = conefoamshape->GetRmax(3);
1108
1109 // SDD Cone Holes: Pcon's
a30e33f0 1110 // A single hole volume gives an overlap with coneinsert, so
1111 // three contiguous volumes are created: one to be put in the cone foam
1112 // and two in the cone carbon fiber envelope
7d6c23de 1113 TGeoPcon *hole1shape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1114
1115 hole1shape->Rmin(0) = kHole1RMax;
1116 hole1shape->Rmax(0) = hole1shape->GetRmin(0);
a30e33f0 1117 hole1shape->Z(0) = ZFromRminpCone(conefoamshape,0,kConeTheta,
7d6c23de 1118 hole1shape->GetRmin(0));
1119
1120 hole1shape->Rmax(1) = hole1shape->GetRmax(0);
a30e33f0 1121 hole1shape->Z(1) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1122 hole1shape->GetRmax(1));
a30e33f0 1123 hole1shape->Rmin(1) = RminFromZpCone(conefoamshape,1,kConeTheta,
7d6c23de 1124 hole1shape->GetZ(1));
1125
1126 hole1shape->Rmin(2) = kHole1RMin;
a30e33f0 1127 hole1shape->Z(2) = ZFromRminpCone(conefoamshape,1,kConeTheta,
7d6c23de 1128 hole1shape->GetRmin(2));
a30e33f0 1129 hole1shape->Rmax(2) = RmaxFromZpCone(conefoamshape,3,kConeTheta,
7d6c23de 1130 hole1shape->GetZ(2));
1131
1132 hole1shape->Rmin(3) = hole1shape->GetRmin(2);
1133 hole1shape->Rmax(3) = hole1shape->GetRmin(3);
a30e33f0 1134 hole1shape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1135 hole1shape->GetRmax(3));
1136
a30e33f0 1137 TGeoPcon *hole11shape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1138
1139 hole11shape->Rmin(0) = kHole1RMax;
1140 hole11shape->Rmax(0) = hole11shape->GetRmin(0);
1141 hole11shape->Z(0) = ZFromRminpCone(coneshape,3,kConeTheta,
1142 hole11shape->GetRmin(0));
1143
1144 hole11shape->Rmax(1) = hole11shape->GetRmax(0);
1145 hole11shape->Z(1) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1146 hole11shape->GetRmax(1));
1147 hole11shape->Rmin(1) = RminFromZpCone(coneshape,3,kConeTheta,
1148 hole11shape->GetZ(1));
1149
1150 hole11shape->Rmin(2) = kHole1RMin;
1151 hole11shape->Z(2) = ZFromRminpCone(coneshape,3,kConeTheta,
1152 hole11shape->GetRmin(2));
1153 hole11shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1154 hole11shape->GetZ(2));
1155
1156 hole11shape->Rmin(3) = hole11shape->GetRmin(2);
1157 hole11shape->Rmax(3) = hole11shape->GetRmin(3);
1158 hole11shape->Z(3) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1159 hole11shape->GetRmax(3));
1160
1161 TGeoPcon *hole12shape = new TGeoPcon(-kHole1Phi/2., kHole1Phi, 4);
1162
1163 hole12shape->Rmin(0) = kHole1RMax;
1164 hole12shape->Rmax(0) = hole12shape->GetRmin(0);
1165 hole12shape->Z(0) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1166 hole12shape->GetRmin(0));
1167
1168 hole12shape->Rmax(1) = hole12shape->GetRmax(0);
1169 hole12shape->Z(1) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1170 hole12shape->GetRmax(1));
1171 hole12shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1172 hole12shape->GetZ(1));
1173
1174 hole12shape->Rmin(2) = kHole1RMin;
1175 hole12shape->Z(2) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1176 hole12shape->GetRmin(2));
1177 hole12shape->Rmax(2) = RmaxFromZpCone(coneshape,4,kConeTheta,
1178 hole12shape->GetZ(2));
1179
1180 hole12shape->Rmin(3) = hole12shape->GetRmin(2);
1181 hole12shape->Rmax(3) = hole12shape->GetRmin(3);
1182 hole12shape->Z(3) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1183 hole12shape->GetRmax(3));
1184
1185 //
7d6c23de 1186 TGeoPcon *hole2shape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1187
1188 hole2shape->Rmin(0) = kHole2RMax;
1189 hole2shape->Rmax(0) = hole2shape->GetRmin(0);
a30e33f0 1190 hole2shape->Z(0) = ZFromRminpCone(conefoamshape,0,kConeTheta,
7d6c23de 1191 hole2shape->GetRmin(0));
1192
1193 hole2shape->Rmax(1) = hole2shape->GetRmax(0);
a30e33f0 1194 hole2shape->Z(1) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1195 hole2shape->GetRmax(1));
a30e33f0 1196 hole2shape->Rmin(1) = RminFromZpCone(conefoamshape,1,kConeTheta,
7d6c23de 1197 hole2shape->GetZ(1));
1198
1199 hole2shape->Rmin(2) = kHole2RMin;
a30e33f0 1200 hole2shape->Z(2) = ZFromRminpCone(conefoamshape,1,kConeTheta,
7d6c23de 1201 hole2shape->GetRmin(2));
a30e33f0 1202 hole2shape->Rmax(2) = RmaxFromZpCone(conefoamshape,3,kConeTheta,
7d6c23de 1203 hole2shape->GetZ(2));
1204
1205 hole2shape->Rmin(3) = hole2shape->GetRmin(2);
1206 hole2shape->Rmax(3) = hole2shape->GetRmin(3);
a30e33f0 1207 hole2shape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1208 hole2shape->GetRmax(3));
1209
a30e33f0 1210 TGeoPcon *hole21shape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1211
1212 hole21shape->Rmin(0) = kHole2RMax;
1213 hole21shape->Rmax(0) = hole21shape->GetRmin(0);
1214 hole21shape->Z(0) = ZFromRminpCone(coneshape,3,kConeTheta,
1215 hole21shape->GetRmin(0));
1216
1217 hole21shape->Rmax(1) = hole21shape->GetRmax(0);
1218 hole21shape->Z(1) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1219 hole21shape->GetRmax(1));
1220 hole21shape->Rmin(1) = RminFromZpCone(coneshape,3,kConeTheta,
1221 hole21shape->GetZ(1));
1222
1223 hole21shape->Rmin(2) = kHole2RMin;
1224 hole21shape->Z(2) = ZFromRminpCone(coneshape,3,kConeTheta,
1225 hole21shape->GetRmin(2));
1226 hole21shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1227 hole21shape->GetZ(2));
1228
1229 hole21shape->Rmin(3) = hole21shape->GetRmin(2);
1230 hole21shape->Rmax(3) = hole21shape->GetRmin(3);
1231 hole21shape->Z(3) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1232 hole21shape->GetRmax(3));
1233
1234 TGeoPcon *hole22shape = new TGeoPcon(-kHole2Phi/2., kHole2Phi, 4);
1235
1236 hole22shape->Rmin(0) = kHole2RMax;
1237 hole22shape->Rmax(0) = hole22shape->GetRmin(0);
1238 hole22shape->Z(0) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1239 hole22shape->GetRmin(0));
1240
1241 hole22shape->Rmax(1) = hole22shape->GetRmax(0);
1242 hole22shape->Z(1) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1243 hole22shape->GetRmax(1));
1244 hole22shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1245 hole22shape->GetZ(1));
1246
1247 hole22shape->Rmin(2) = kHole2RMin;
1248 hole22shape->Z(2) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1249 hole22shape->GetRmin(2));
1250 hole22shape->Rmax(2) = RmaxFromZpCone(coneshape,4,kConeTheta,
1251 hole22shape->GetZ(2));
1252
1253 hole22shape->Rmin(3) = hole22shape->GetRmin(2);
1254 hole22shape->Rmax(3) = hole22shape->GetRmin(3);
1255 hole22shape->Z(3) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1256 hole22shape->GetRmax(3));
1257
1258 //
7d6c23de 1259 Double_t holePhi;
1260 holePhi = (kHole3Width/kHole3RMin)*TMath::RadToDeg();
1261
1262 TGeoPcon *hole3shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1263
1264 hole3shape->Rmin(0) = kHole3RMin + kHole3DeltaR;
1265 hole3shape->Rmax(0) = hole3shape->GetRmin(0);
a30e33f0 1266 hole3shape->Z(0) = ZFromRminpCone(conefoamshape,0,kConeTheta,
7d6c23de 1267 hole3shape->GetRmin(0));
1268
1269 hole3shape->Rmax(1) = hole3shape->GetRmax(0);
a30e33f0 1270 hole3shape->Z(1) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1271 hole3shape->GetRmax(1));
a30e33f0 1272 hole3shape->Rmin(1) = RminFromZpCone(conefoamshape,1,kConeTheta,
7d6c23de 1273 hole3shape->GetZ(1));
1274
1275 hole3shape->Rmin(2) = kHole3RMin;
a30e33f0 1276 hole3shape->Z(2) = ZFromRminpCone(conefoamshape,1,kConeTheta,
7d6c23de 1277 hole3shape->GetRmin(2));
a30e33f0 1278 hole3shape->Rmax(2) = RmaxFromZpCone(conefoamshape,3,kConeTheta,
7d6c23de 1279 hole3shape->GetZ(2));
1280
1281 hole3shape->Rmin(3) = hole3shape->GetRmin(2);
1282 hole3shape->Rmax(3) = hole3shape->GetRmin(3);
a30e33f0 1283 hole3shape->Z(3) = ZFromRmaxpCone(conefoamshape,3,kConeTheta,
7d6c23de 1284 hole3shape->GetRmax(3));
1285
a30e33f0 1286 TGeoPcon *hole31shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1287
1288 hole31shape->Rmin(0) = kHole3RMin + kHole3DeltaR;
1289 hole31shape->Rmax(0) = hole31shape->GetRmin(0);
1290 hole31shape->Z(0) = ZFromRminpCone(coneshape,3,kConeTheta,
1291 hole31shape->GetRmin(0));
1292
1293 hole31shape->Rmax(1) = hole31shape->GetRmax(0);
1294 hole31shape->Z(1) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1295 hole31shape->GetRmax(1));
1296 hole31shape->Rmin(1) = RminFromZpCone(coneshape,3,kConeTheta,
1297 hole31shape->GetZ(1));
1298
1299 hole31shape->Rmin(2) = kHole3RMin;
1300 hole31shape->Z(2) = ZFromRminpCone(coneshape,3,kConeTheta,
1301 hole31shape->GetRmin(2));
1302 hole31shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,kConeTheta,
1303 hole31shape->GetZ(2));
1304
1305 hole31shape->Rmin(3) = hole31shape->GetRmin(2);
1306 hole31shape->Rmax(3) = hole31shape->GetRmin(3);
1307 hole31shape->Z(3) = ZFromRminpCone(coneinsertshape,3,kConeTheta,
1308 hole31shape->GetRmax(3));
1309
1310 TGeoPcon *hole32shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1311
1312 hole32shape->Rmin(0) = kHole3RMin + kHole3DeltaR;
1313 hole32shape->Rmax(0) = hole32shape->GetRmin(0);
1314 hole32shape->Z(0) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1315 hole32shape->GetRmin(0));
1316
1317 hole32shape->Rmax(1) = hole32shape->GetRmax(0);
1318 hole32shape->Z(1) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1319 hole32shape->GetRmax(1));
1320 hole32shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,4,kConeTheta,
1321 hole32shape->GetZ(1));
1322
1323 hole32shape->Rmin(2) = kHole3RMin;
1324 hole32shape->Z(2) = ZFromRmaxpCone(coneinsertshape,4,kConeTheta,
1325 hole32shape->GetRmin(2));
1326 hole32shape->Rmax(2) = RmaxFromZpCone(coneshape,4,kConeTheta,
1327 hole32shape->GetZ(2));
1328
1329 hole32shape->Rmin(3) = hole32shape->GetRmin(2);
1330 hole32shape->Rmax(3) = hole32shape->GetRmin(3);
1331 hole32shape->Z(3) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1332 hole32shape->GetRmax(3));
1333
1334 //
3a299c65 1335 holePhi = (kHole4Width/kHole4RMin)*TMath::RadToDeg();
1336
7d6c23de 1337 TGeoPcon *hole4shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1338
1339 hole4shape->Rmin(0) = kHole4RMin + kHole4DeltaR;
1340 hole4shape->Rmax(0) = hole4shape->GetRmin(0);
1341 hole4shape->Z(0) = ZFromRminpCone(coneshape,3,kConeTheta,
1342 hole4shape->GetRmin(0));
1343
1344 hole4shape->Rmax(1) = hole4shape->GetRmax(0);
1345 hole4shape->Z(1) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1346 hole4shape->GetRmax(1));
1347 hole4shape->Rmin(1) = RminFromZpCone(coneshape,3,kConeTheta,
1348 hole4shape->GetZ(1));
1349
1350 hole4shape->Rmin(2) = kHole4RMin;
1351 hole4shape->Z(2) = ZFromRminpCone(coneshape,3,kConeTheta,
1352 hole4shape->GetRmin(2));
1353 hole4shape->Rmax(2) = RmaxFromZpCone(coneshape,4,kConeTheta,
1354 hole4shape->GetZ(2));
1355
1356 hole4shape->Rmin(3) = hole4shape->GetRmin(2);
1357 hole4shape->Rmax(3) = hole4shape->GetRmin(3);
1358 hole4shape->Z(3) = ZFromRmaxpCone(coneshape,4,kConeTheta,
1359 hole4shape->GetRmax(3));
1360
1361 // Debug if requested
1362 if (GetDebug(1)) {
1363 coneshape->InspectShape();
1364 coneinsertshape->InspectShape();
1365 conefoamshape->InspectShape();
1366 hole1shape->InspectShape();
1367 hole2shape->InspectShape();
a30e33f0 1368 hole3shape->InspectShape();
1369 hole4shape->InspectShape();
7d6c23de 1370 }
1371
1372
1373 // We have the shapes: now create the real volumes
1374
1375 TGeoVolume *cfcone = new TGeoVolume("SDDCarbonFiberCone",
1376 coneshape,medSDDcf);
1377 cfcone->SetVisibility(kTRUE);
1378 cfcone->SetLineColor(4); // Blue
1379 cfcone->SetLineWidth(1);
1380 cfcone->SetFillColor(cfcone->GetLineColor());
1381 cfcone->SetFillStyle(4000); // 0% transparent
1382
1383 TGeoVolume *cfconeinsert = new TGeoVolume("SDDCarbonFiberConeInsert",
1384 coneinsertshape,medSDDste);
1385 cfconeinsert->SetVisibility(kTRUE);
1386 cfconeinsert->SetLineColor(2); // Red
1387 cfconeinsert->SetLineWidth(1);
1388 cfconeinsert->SetFillColor(cfconeinsert->GetLineColor());
1389 cfconeinsert->SetFillStyle(4050); // 50% transparent
1390
1391 TGeoVolume *cfconefoam = new TGeoVolume("SDDCarbonFiberConeFoam",
1392 conefoamshape,medSDDroh);
1393 cfconefoam->SetVisibility(kTRUE);
1394 cfconefoam->SetLineColor(7); // Light blue
1395 cfconefoam->SetLineWidth(1);
1396 cfconefoam->SetFillColor(cfconefoam->GetLineColor());
1397 cfconefoam->SetFillStyle(4050); // 50% transparent
1398
1399 TGeoVolume *hole1 = new TGeoVolume("SDDCableHole1",
1400 hole1shape,medSDDair);
1401 hole1->SetVisibility(kTRUE);
1402 hole1->SetLineColor(5); // Yellow
1403 hole1->SetLineWidth(1);
1404 hole1->SetFillColor(hole1->GetLineColor());
1405 hole1->SetFillStyle(4090); // 90% transparent
1406
a30e33f0 1407 TGeoVolume *hole11 = new TGeoVolume("SDDCableHole11",
1408 hole11shape,medSDDair);
1409 hole11->SetVisibility(kTRUE);
1410 hole11->SetLineColor(5); // Yellow
1411 hole11->SetLineWidth(1);
1412 hole11->SetFillColor(hole11->GetLineColor());
1413 hole11->SetFillStyle(4090); // 90% transparent
1414
1415 TGeoVolume *hole12 = new TGeoVolume("SDDCableHole12",
1416 hole12shape,medSDDair);
1417 hole12->SetVisibility(kTRUE);
1418 hole12->SetLineColor(5); // Yellow
1419 hole12->SetLineWidth(1);
1420 hole12->SetFillColor(hole12->GetLineColor());
1421 hole12->SetFillStyle(4090); // 90% transparent
1422
7d6c23de 1423 TGeoVolume *hole2 = new TGeoVolume("SDDCableHole2",
1424 hole2shape,medSDDair);
1425 hole2->SetVisibility(kTRUE);
1426 hole2->SetLineColor(5); // Yellow
1427 hole2->SetLineWidth(1);
1428 hole2->SetFillColor(hole2->GetLineColor());
1429 hole2->SetFillStyle(4090); // 90% transparent
1430
a30e33f0 1431 TGeoVolume *hole21 = new TGeoVolume("SDDCableHole21",
1432 hole21shape,medSDDair);
1433 hole21->SetVisibility(kTRUE);
1434 hole21->SetLineColor(5); // Yellow
1435 hole21->SetLineWidth(1);
1436 hole21->SetFillColor(hole21->GetLineColor());
1437 hole21->SetFillStyle(4090); // 90% transparent
1438
1439 TGeoVolume *hole22 = new TGeoVolume("SDDCableHole22",
1440 hole22shape,medSDDair);
1441 hole22->SetVisibility(kTRUE);
1442 hole22->SetLineColor(5); // Yellow
1443 hole22->SetLineWidth(1);
1444 hole22->SetFillColor(hole22->GetLineColor());
1445 hole22->SetFillStyle(4090); // 90% transparent
1446
7d6c23de 1447 TGeoVolume *hole3 = new TGeoVolume("SDDCableHole3",
1448 hole3shape,medSDDair);
1449 hole3->SetVisibility(kTRUE);
1450 hole3->SetLineColor(5); // Yellow
1451 hole3->SetLineWidth(1);
1452 hole3->SetFillColor(hole3->GetLineColor());
1453 hole3->SetFillStyle(4090); // 90% transparent
1454
a30e33f0 1455 TGeoVolume *hole31 = new TGeoVolume("SDDCableHole31",
1456 hole31shape,medSDDair);
1457 hole31->SetVisibility(kTRUE);
1458 hole31->SetLineColor(5); // Yellow
1459 hole31->SetLineWidth(1);
1460 hole31->SetFillColor(hole31->GetLineColor());
1461 hole31->SetFillStyle(4090); // 90% transparent
1462
1463 TGeoVolume *hole32 = new TGeoVolume("SDDCableHole32",
1464 hole32shape,medSDDair);
1465 hole32->SetVisibility(kTRUE);
1466 hole32->SetLineColor(5); // Yellow
1467 hole32->SetLineWidth(1);
1468 hole32->SetFillColor(hole32->GetLineColor());
1469 hole32->SetFillStyle(4090); // 90% transparent
1470
7d6c23de 1471 TGeoVolume *hole4 = new TGeoVolume("SDDCableHole4",
1472 hole4shape,medSDDair);
1473 hole4->SetVisibility(kTRUE);
1474 hole4->SetLineColor(5); // Yellow
1475 hole4->SetLineWidth(1);
1476 hole4->SetFillColor(hole4->GetLineColor());
1477 hole4->SetFillStyle(4090); // 90% transparent
1478
1479 // Mount up a cone
1480 cfconeinsert->AddNode(cfconefoam,1,0);
1481
7d6c23de 1482 for (Int_t i=0; i<12; i++) {
1483 Double_t phiH = i*30.0;
a30e33f0 1484 cfconefoam->AddNode(hole1 , i+1, new TGeoRotation("", 0, 0, phiH));
1485 cfcone->AddNode(hole11, i+1, new TGeoRotation("", 0, 0, phiH));
1486 cfcone->AddNode(hole12, i+1, new TGeoRotation("", 0, 0, phiH));
7d6c23de 1487 }
1488
1489 for (Int_t i=0; i<6; i++) {
1490 Double_t phiH = i*60.0;
a30e33f0 1491 cfconefoam->AddNode(hole2 , i+1, new TGeoRotation("", 0, 0, phiH));
1492 cfcone->AddNode(hole21, i+1, new TGeoRotation("", 0, 0, phiH));
1493 cfcone->AddNode(hole22, i+1, new TGeoRotation("", 0, 0, phiH));
7d6c23de 1494 }
1495
1496 for (Int_t i=0; i<kNHole3; i++) {
1497 Double_t phiH0 = 360./(Double_t)kNHole3;
1498 Double_t phiH = i*phiH0 + 0.5*phiH0;
a30e33f0 1499 cfconefoam->AddNode(hole3 , i+1, new TGeoRotation("", phiH, 0, 0));
1500 cfcone->AddNode(hole31, i+1, new TGeoRotation("", phiH, 0, 0));
1501 cfcone->AddNode(hole32, i+1, new TGeoRotation("", phiH, 0, 0));
7d6c23de 1502 }
a30e33f0 1503
1504 cfcone->AddNode(cfconeinsert,1,0);
1505
7d6c23de 1506/*
1507 for (Int_t i=0; i<kNHole4; i++) {
1508 Double_t phiH0 = 360./(Double_t)kNHole4;
1509 Double_t phiH = i*phiH0 + 0.25*phiH0;
1510 cfcone->AddNode(hole4, i+1, new TGeoRotation("", phiH, 0, 0));
1511 }
1512*/
3a299c65 1513 // Finally put everything in the mother volume
1514 moth->AddNode(cfcylinder,1,0);
7d6c23de 1515
1516 z = coneshape->Z(9);
3a299c65 1517 moth->AddNode(cfcone,1,new TGeoTranslation(0, 0, -z - kCylinderHalfLength));
1518 moth->AddNode(cfcone,2,new TGeoCombiTrans (0, 0, z + kCylinderHalfLength,
1519 new TGeoRotation("", 0, 180, 0) ));
7d6c23de 1520
7d6c23de 1521
1522 return;
172b0d90 1523}
7d6c23de 1524
172b0d90 1525//______________________________________________________________________
3a299c65 1526void AliITSv11GeometrySupport::SSDCone(TGeoVolume *moth,TGeoManager *mgr)
1527{
1528//
1529// Creates the SSD support cone and cylinder geometry. as a
1530// volume assembly and adds it to the mother volume
1531// (part of this code is taken or anyway inspired to SSDCone method
1532// of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06)
1533//
1534// Input:
1535// moth : the TGeoVolume owing the volume structure
1536// mgr : the GeoManager (default gGeoManager)
1537// Output:
1538//
1539// Created: ??? Bjorn S. Nilsen
1540// Updated: 08 Mar 2008 Mario Sitta
1541//
1542// Technical data are taken from: "ITS Supporto Generale" (technical
1543// drawings ALR3-0743/1, ALR3-0743/1A and ALR3-0743/1B), "Supporto Generale
1544// Settore SSD" (technical drawings ALR3-0743/2A and ALR3-0743/2E), private
1545// communication with B. Giraudo
5e15508a 1546//
1547// Updated: 11 Apr 2008 Mario Sitta
1548// Measures from drawings give overlaps with SPD thermal shield wings,
1549// so the terminal part of the SSD cone was reduced
3a299c65 1550
1551 // Dimensions of the Central cylinder and flanges
1552 const Double_t kCylinderHalfLength = (1144.0/2) *fgkmm;
1553 const Double_t kCylinderOuterRadius = ( 595.0/2) *fgkmm;
1554 const Double_t kCylinderThickness = 0.6 *fgkmm;
1555 const Double_t kFoamHalfLength = (1020.0/2) *fgkmm;
1556 const Double_t kFoamThickness = 5.0 *fgkmm;
1557 const Double_t kFlangeHalfLength =
1558 (kCylinderHalfLength-kFoamHalfLength)/2.;
1559 const Double_t kFlangeInnerRadius = ( 563.0/2) *fgkmm;
1560 // Dimensions of the Cone
fd5b6398 1561 const Double_t kConeROuterMin = ( 957.0/2) *fgkmm;
1562 const Double_t kConeROuterMax = ( 997.0/2) *fgkmm;
3a299c65 1563 const Double_t kConeRInnerMin = ( 564.0/2) *fgkmm;
1564 const Double_t kConeRCurv1 = 10.0 *fgkmm;
1565 const Double_t kConeRCurv2 = 25.0 *fgkmm;
1566 const Double_t kConeCent1RCurv2 = ( 578.0/2) *fgkmm;
6b42825b 1567 const Double_t kConeCent2RCurv2 = ( 592.0/2) *fgkmm;
5e15508a 1568// const Double_t kConeZOuterRing = 47.0 *fgkmm;
1569// const Double_t kConeZOuterRingInside = 30.25*fgkmm;
1570// const Double_t kConeZInnerRing = 161.5 *fgkmm;
1571// const Double_t kConeZLength = 176.5 *fgkmm;
1572 const Double_t kConeZOuterRing = 38.5 *fgkmm;
1573 const Double_t kConeZOuterRingInside = 22.2 *fgkmm;
1574 const Double_t kConeZInnerRing = 153.0 *fgkmm;
1575 const Double_t kConeZLength = 168.0 *fgkmm;
3a299c65 1576 const Double_t kConeZPosition = kConeZLength + kCylinderHalfLength;
1577 const Double_t kConeThickness = 13.0 *fgkmm; // Cone thickness
81adc4e0 1578 const Double_t kConeTheta = 39.1 *fgkDegree; // Cone angle
3a299c65 1579 const Double_t kSinConeTheta =
1580 TMath::Sin(kConeTheta*TMath::DegToRad());
1581 const Double_t kCosConeTheta =
1582 TMath::Cos(kConeTheta*TMath::DegToRad());
1583 // Dimensions of the Foam cores
1584 const Double_t kConeFoam1Length = 112.3 *fgkmm;
1585 const Double_t kConeFoam2Length = 58.4 *fgkmm;
1586 // Dimensions of the Cone Holes
1587 const Double_t kCoolingHoleWidth = 40.0 *fgkmm;
1588 const Double_t kCoolingHoleHight = 30.0 *fgkmm;
1589 const Double_t kCoolingHoleRmin = 350.0 *fgkmm;
1590 const Double_t kCoolingHolePhi = 45.0 *fgkDegree;
1591 const Double_t kMountingHoleWidth = 20.0 *fgkmm;
1592 const Double_t kMountingHoleHight = 20.0 *fgkmm;
1593 const Double_t kMountingHoleRmin = 317.5 *fgkmm;
1594 const Double_t kMountingHolePhi = 60.0 *fgkDegree;
1595 const Double_t kCableHoleRin = ( 800.0/2) *fgkmm;
1596 const Double_t kCableHoleRout = ( 920.0/2) *fgkmm;
1597 const Double_t kCableHoleWidth = 200.0 *fgkmm;
1598// const Double_t kCableHoleAngle = 42.0 *fgkDegree;
1599 // Dimensions of the Cone Wings
1600 const Double_t kWingRmax = 527.5 *fgkmm;
1601 const Double_t kWingWidth = 70.0 *fgkmm;
1602 const Double_t kWingHalfThick = ( 10.0/2) *fgkmm;
1603 const Double_t kThetaWing = 45.0 *fgkDegree;
1604 // Dimensions of the SSD-SDD Mounting Brackets
989ee428 1605 const Double_t kBracketRmin = ( 541.0/2) *fgkmm;// See SDD ROutMin
3a299c65 1606 const Double_t kBracketRmax = ( 585.0/2) *fgkmm;
1607 const Double_t kBracketHalfLength = ( 4.0/2) *fgkmm;
1608 const Double_t kBracketPhi = (70.*fgkmm/kBracketRmax)*fgkRadian;
1609 // Common data
1610 const Double_t kCFThickness = 0.75*fgkmm; //Carb. fib. thick.
1611
1612
1613 // Local variables
1614 Double_t rmin1, rmin2, rmax, z;
1615
1616 //
1617 //Begin_Html
1618 /*
1619 <img src="picts/ITS/file_name.gif">
1620 <P>
1621 <FONT FACE'"TIMES">
1622 ITS SSD central support and thermal shield cylinder.
1623 </FONT>
1624 </P>
1625 */
1626 //End_Html
1627 //
1628
1629 // Central cylinder with its internal foam and the lateral flanges:
1630 // a carbon fiber Pcon which contains a rohacell Tube and two
1631 // stesalite Cone's
1632 TGeoPcon *externalcylshape = new TGeoPcon(0,360,4);
1633
1634 rmax = kCylinderOuterRadius;
1635 rmin1 = kFlangeInnerRadius - kCylinderThickness;
1636 rmin2 = rmax - 2*kCylinderThickness - kFoamThickness;
1637 externalcylshape->DefineSection(0,-kCylinderHalfLength,rmin1,rmax);
1638 externalcylshape->DefineSection(1,-kFoamHalfLength ,rmin2,rmax);
1639 externalcylshape->DefineSection(2, kFoamHalfLength ,rmin2,rmax);
1640 externalcylshape->DefineSection(3, kCylinderHalfLength,rmin1,rmax);
1641
1642 rmax = kCylinderOuterRadius - kCylinderThickness;
1643 rmin1 = rmax - kFoamThickness;
1644 TGeoTube *foamshape = new TGeoTube(rmin1,rmax,kFoamHalfLength);
1645
1646 rmax = kCylinderOuterRadius - kCylinderThickness;
1647 rmin1 = rmax - kFoamThickness;
1648 rmin2 = kFlangeInnerRadius;
1649 TGeoCone *flangeshape = new TGeoCone(kFlangeHalfLength,
1650 rmin1,rmax,rmin2,rmax);
1651
1652
1653 // We have the shapes: now create the real volumes
1654
1655 TGeoMedium *medSSDcf = mgr->GetMedium("ITS_SSD C (M55J)$");
1656 TGeoMedium *medSSDair = mgr->GetMedium("ITS_SSD AIR$");
1657 TGeoMedium *medSSDste = mgr->GetMedium("ITS_G10FR4$"); // stesalite
1658 TGeoMedium *medSSDroh = mgr->GetMedium("ITS_ROHACELL$");
1659 TGeoMedium *medSSDal = mgr->GetMedium("ITS_ALUMINUM$");
1660
1661 TGeoVolume *cfcylinder = new TGeoVolume("SSDexternalcylinder",
1662 externalcylshape,medSSDcf);
1663 cfcylinder->SetVisibility(kTRUE);
1664 cfcylinder->SetLineColor(4); // blue
1665 cfcylinder->SetLineWidth(1);
1666 cfcylinder->SetFillColor(cfcylinder->GetLineColor());
1667 cfcylinder->SetFillStyle(4000); // 0% transparent
1668
1669 TGeoVolume *foamcylinder = new TGeoVolume("SSDfoamcylinder",
1670 foamshape,medSSDroh);
1671 foamcylinder->SetVisibility(kTRUE);
1672 foamcylinder->SetLineColor(3); // green
1673 foamcylinder->SetLineWidth(1);
1674 foamcylinder->SetFillColor(foamcylinder->GetLineColor());
1675 foamcylinder->SetFillStyle(4050); // 50% transparent
1676
1677 TGeoVolume *flangecylinder = new TGeoVolume("SSDflangecylinder",
1678 flangeshape,medSSDste);
1679 flangecylinder->SetVisibility(kTRUE);
1680 flangecylinder->SetLineColor(2); // red
1681 flangecylinder->SetLineWidth(1);
1682 flangecylinder->SetFillColor(flangecylinder->GetLineColor());
1683 flangecylinder->SetFillStyle(4050); // 50% transparent
1684
1685 // Mount up the cylinder
1686 cfcylinder->AddNode(foamcylinder,1,0);
1687 cfcylinder->AddNode(flangecylinder,1,
1688 new TGeoTranslation(0, 0, kFoamHalfLength+kFlangeHalfLength));
1689 cfcylinder->AddNode(flangecylinder,2,new TGeoCombiTrans(
1690 0, 0, -kFoamHalfLength-kFlangeHalfLength,
1691 new TGeoRotation("",0,180,0) ) );
1692
1693
1694 // The whole Cone as an assembly
1695 TGeoVolumeAssembly *vC = new TGeoVolumeAssembly("ITSssdCone");
1696
1697
1698 // SSD Support Cone with its internal inserts: a carbon fiber Pcon
1699 // with holes which contains a stesalite Pcon which on turn contains a
1700 // rohacell Pcon
1701 TGeoPcon *coneshape = new TGeoPcon(0.0, 360.0, 12);
1702
1703 coneshape->Z(0) = 0.0;
1704 coneshape->Rmin(0) = kConeROuterMin;
1705 coneshape->Rmax(0) = kConeROuterMax;
1706
1707 coneshape->Z(1) = kConeZOuterRingInside - kConeRCurv1;
1708 coneshape->Rmin(1) = coneshape->GetRmin(0);
1709 coneshape->Rmax(1) = coneshape->GetRmax(0);
1710
1711 coneshape->Z(2) = kConeZOuterRingInside;
1712 coneshape->Rmin(2) = coneshape->GetRmin(1) - kConeRCurv1;
1713 coneshape->Rmax(2) = coneshape->GetRmax(0);
1714
1715 coneshape->Z(3) = coneshape->GetZ(2);
1716 coneshape->Rmax(3) = coneshape->GetRmax(0);
1717
1718 coneshape->Z(4) = kConeZOuterRing - kConeRCurv1;
1719 coneshape->Rmax(4) = coneshape->GetRmax(0);
1720
1721 coneshape->Z(5) = kConeZOuterRing;
1722 coneshape->Rmax(5) = coneshape->GetRmax(4) - kConeRCurv1;
1723
1724 coneshape->Z(6) = coneshape->GetZ(5);
1725
1726 RadiusOfCurvature(kConeRCurv2,90.0,kConeZInnerRing,kConeCent1RCurv2,
1727 90.0-kConeTheta,z,rmin1);
1728 coneshape->Z(7) = z;
1729 coneshape->Rmin(7) = rmin1;
1730
1731 coneshape->Rmin(3) = RminFromZpCone(coneshape,7,90.-kConeTheta,
1732 coneshape->GetZ(3));
1733
1734 coneshape->Rmin(4) = RminFrom2Points(coneshape,3,7,coneshape->GetZ(4));
1735
1736 coneshape->Rmin(5) = RminFrom2Points(coneshape,3,7,coneshape->GetZ(5));
1737
1738 coneshape->Rmin(6) = coneshape->GetRmin(5);
1739
1740 coneshape->Z(8) = kConeZInnerRing;
1741 coneshape->Rmin(8) = kConeCent1RCurv2;
1742
1743 coneshape->Z(9) = coneshape->GetZ(8);
1744 coneshape->Rmin(9) = kConeRInnerMin;
1745
1746 RadiusOfCurvature(kConeRCurv2,90.0,kConeZLength,kConeCent2RCurv2,
1747 90.0-kConeTheta,z,rmax);
1748
1749 coneshape->Z(10) = z;
1750 coneshape->Rmin(10) = coneshape->GetRmin(9);
1751 coneshape->Rmax(10) = rmax;
1752
1753 coneshape->Rmax(6) = RmaxFromZpCone(coneshape,10,90.-kConeTheta,
1754 coneshape->GetZ(6));
1755
1756 coneshape->Rmax(7) = RmaxFrom2Points(coneshape,6,10,coneshape->GetZ(7));
1757
1758 coneshape->Rmax(8) = RmaxFrom2Points(coneshape,6,10,coneshape->GetZ(8));
1759
1760 coneshape->Rmax(9) = coneshape->GetRmax(8);
1761
1762 coneshape->Z(11) = kConeZLength;
1763 coneshape->Rmin(11) = coneshape->GetRmin(10);
1764 coneshape->Rmax(11) = kConeCent2RCurv2;
1765
1766 // SSD Cone Insert: another Pcon
1767 Double_t x0, y0, x1, y1, x2, y2;
1768 TGeoPcon *coneinsertshape = new TGeoPcon(0.0,360.0,12);
1769
1770 coneinsertshape->Z(0) = coneshape->GetZ(0) + kCFThickness;
1771 coneinsertshape->Rmin(0) = coneshape->GetRmin(0) + kCFThickness;
1772 coneinsertshape->Rmax(0) = coneshape->GetRmax(0) - kCFThickness;
1773
1774 x0 = coneshape->GetZ(0); y0 = coneshape->GetRmin(0);
1775 x1 = coneshape->GetZ(1); y1 = coneshape->GetRmin(1);
1776 x2 = coneshape->GetZ(2); y2 = coneshape->GetRmin(2);
1777 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
1778 coneinsertshape->Z(1) = z;
1779 coneinsertshape->Rmin(1) = rmin1;
1780 coneinsertshape->Rmax(1) = coneinsertshape->GetRmax(0);
1781
1782 x0 = coneshape->GetZ(1); y0 = coneshape->GetRmin(1);
1783 x1 = coneshape->GetZ(2); y1 = coneshape->GetRmin(2);
1784 x2 = coneshape->GetZ(3); y2 = coneshape->GetRmin(3);
1785 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
1786 coneinsertshape->Z(2) = z;
1787 coneinsertshape->Rmin(2) = rmin1;
1788 coneinsertshape->Rmax(2) = coneinsertshape->GetRmax(1);
1789
1790 x0 = coneshape->GetZ(2); y0 = coneshape->GetRmin(2);
1791 x1 = coneshape->GetZ(3); y1 = coneshape->GetRmin(3);
1792 x2 = coneshape->GetZ(4); y2 = coneshape->GetRmin(4);
1793 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
1794 coneinsertshape->Z(3) = z;
1795 coneinsertshape->Rmin(3) = rmin1;
1796 coneinsertshape->Rmax(3) = coneinsertshape->GetRmax(2);
1797
1798 x0 = coneshape->GetZ(3); y0 = coneshape->GetRmax(3);
1799 x1 = coneshape->GetZ(4); y1 = coneshape->GetRmax(4);
1800 x2 = coneshape->GetZ(5); y2 = coneshape->GetRmax(5);
1801 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
1802 coneinsertshape->Z(4) = z;
1803 coneinsertshape->Rmax(4) = rmax;
1804
1805 x0 = coneshape->GetZ(4); y0 = coneshape->GetRmax(4);
1806 x1 = coneshape->GetZ(5); y1 = coneshape->GetRmax(5);
1807 x2 = coneshape->GetZ(6); y2 = coneshape->GetRmax(6);
1808 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
1809 coneinsertshape->Z(5) = z;
1810 coneinsertshape->Rmax(5) = rmax;
1811
1812 x0 = coneshape->GetZ(5); y0 = coneshape->GetRmax(5);
1813 x1 = coneshape->GetZ(6); y1 = coneshape->GetRmax(6);
1814 x2 = coneshape->GetZ(7); y2 = coneshape->GetRmax(7);
1815 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
1816 coneinsertshape->Z(6) = z;
1817 coneinsertshape->Rmax(6) = rmax;
1818
1819 x0 = coneshape->GetZ(6); y0 = coneshape->GetRmin(6);
1820 x1 = coneshape->GetZ(7); y1 = coneshape->GetRmin(7);
1821 x2 = coneshape->GetZ(8); y2 = coneshape->GetRmin(8);
1822 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
1823 coneinsertshape->Z(7) = z;
1824 coneinsertshape->Rmin(7) = rmin1;
1825
1826 coneinsertshape->Rmin(4) = RminFrom2Points(coneinsertshape,3,7,
1827 coneinsertshape->GetZ(4));
1828
1829 coneinsertshape->Rmin(5) = RminFrom2Points(coneinsertshape,3,7,
1830 coneinsertshape->GetZ(5));
1831
1832 coneinsertshape->Rmin(6) = coneinsertshape->GetRmin(5);
1833
1834 x0 = coneshape->GetZ(7); y0 = coneshape->GetRmin(7);
1835 x1 = coneshape->GetZ(8); y1 = coneshape->GetRmin(8);
1836 x2 = coneshape->GetZ(9); y2 = coneshape->GetRmin(9);
1837 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
1838 coneinsertshape->Z(8) = z;
1839 coneinsertshape->Rmin(8) = rmin1;
1840
1841 x0 = coneshape->GetZ( 8); y0 = coneshape->GetRmin( 8);
1842 x1 = coneshape->GetZ( 9); y1 = coneshape->GetRmin( 9);
1843 x2 = coneshape->GetZ(10); y2 = coneshape->GetRmin(10);
1844 InsidePoint(x0, y0, x1, y1, x2, y2, kCFThickness, z, rmin1);
1845 coneinsertshape->Z(9) = z;
1846 coneinsertshape->Rmin(9) = rmin1;
1847
1848 x0 = coneshape->GetZ( 9); y0 = coneshape->GetRmax( 9);
1849 x1 = coneshape->GetZ(10); y1 = coneshape->GetRmax(10);
1850 x2 = coneshape->GetZ(11); y2 = coneshape->GetRmax(11);
1851 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
1852 coneinsertshape->Z(10) = z;
1853 coneinsertshape->Rmax(10) = rmax;
1854 coneinsertshape->Rmin(10) = coneinsertshape->GetRmin(9);
1855
1856 coneinsertshape->Rmax(7) = RmaxFrom2Points(coneinsertshape,6,10,
1857 coneinsertshape->GetZ(7));
1858
1859 coneinsertshape->Rmax(8) = RmaxFrom2Points(coneinsertshape,6,10,
1860 coneinsertshape->GetZ(8));
1861
1862 coneinsertshape->Rmax(9) = coneinsertshape->GetRmax(8);
1863
1864 x0 = coneshape->GetZ(10); y0 = coneshape->GetRmax(10);
1865 x1 = coneshape->GetZ(11); y1 = coneshape->GetRmax(11);
1866 x2 = coneshape->GetZ(11); y2 = coneshape->GetRmin(11);
1867 InsidePoint(x0, y0, x1, y1, x2, y2, -kCFThickness, z, rmax);
1868 coneinsertshape->Z(11) = z;
1869 coneinsertshape->Rmax(11) = rmax;
1870 coneinsertshape->Rmin(11) = coneinsertshape->GetRmin(10);
1871
1872 // SSD Cone Foams: two other Pcon's
1873 TGeoPcon *conefoam1shape = new TGeoPcon(0.0, 360.0, 4);
1874
1875 conefoam1shape->Z(0) = coneinsertshape->GetZ(3);
1876 conefoam1shape->Rmin(0) = coneinsertshape->GetRmin(3);
1877 conefoam1shape->Rmax(0) = conefoam1shape->GetRmin(0);
1878
1879 conefoam1shape->Rmax(1) = conefoam1shape->GetRmax(0);
1880 conefoam1shape->Z(1) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
1881 conefoam1shape->GetRmax(1));
1882 conefoam1shape->Rmin(1) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
1883 conefoam1shape->GetZ(1));
1884
1885 Double_t t = kConeThickness - 2*kCFThickness;
1886 conefoam1shape->Rmin(2) = conefoam1shape->GetRmax(0) -
1887 (kConeFoam1Length*kCosConeTheta - t*kSinConeTheta);
1888 conefoam1shape->Z(2) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
1889 conefoam1shape->GetRmin(2));
1890 conefoam1shape->Rmax(2) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
1891 conefoam1shape->GetZ(2));
1892
1893 conefoam1shape->Rmin(3) = conefoam1shape->GetRmin(2);
1894 conefoam1shape->Rmax(3) = conefoam1shape->GetRmin(3);
1895 conefoam1shape->Z(3) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
1896 conefoam1shape->GetRmax(3));
1897
1898 TGeoPcon *conefoam2shape = new TGeoPcon(0.0, 360.0, 4);
1899
1900 conefoam2shape->Z(3) = coneinsertshape->GetZ(10);
1901 conefoam2shape->Rmin(3) = coneinsertshape->GetRmax(10);
1902 conefoam2shape->Rmax(3) = conefoam2shape->GetRmin(3);
1903
1904 conefoam2shape->Rmin(2) = conefoam2shape->GetRmin(3);
1905 conefoam2shape->Z(2) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
1906 conefoam2shape->GetRmin(2));
1907 conefoam2shape->Rmax(2) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
1908 conefoam2shape->GetZ(2));
1909
1910 conefoam2shape->Rmin(0) = conefoam2shape->GetRmax(2) +
1911 (kConeFoam2Length*kCosConeTheta - t*kSinConeTheta);
1912 conefoam2shape->Rmax(0) = conefoam2shape->GetRmin(0);
1913 conefoam2shape->Z(0) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
1914 conefoam2shape->GetRmin(0));
1915
1916 conefoam2shape->Rmax(1) = conefoam2shape->GetRmax(0);
1917 conefoam2shape->Z(1) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
1918 conefoam2shape->GetRmax(1));
1919 conefoam2shape->Rmin(1) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
1920 conefoam2shape->GetZ(1));
1921
1922 // SSD Cone Holes: Pcon's
a30e33f0 1923 // A single hole volume gives an overlap with coneinsert, so
1924 // three contiguous volumes are created: one to be put in coneinsert
1925 // and two in the cone carbon fiber envelope
3a299c65 1926 Double_t holePhi;
1927 holePhi = (kCoolingHoleWidth/kCoolingHoleRmin)*TMath::RadToDeg();
1928
1929 TGeoPcon *coolingholeshape = new TGeoPcon(-holePhi/2., holePhi, 4);
1930
1931 coolingholeshape->Rmin(0) = kCoolingHoleRmin + kCoolingHoleHight;
1932 coolingholeshape->Rmax(0) = coolingholeshape->GetRmin(0);
a30e33f0 1933 coolingholeshape->Z(0) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
3a299c65 1934 coolingholeshape->GetRmin(0));
1935
1936 coolingholeshape->Rmax(1) = coolingholeshape->GetRmax(0);
a30e33f0 1937 coolingholeshape->Z(1) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
3a299c65 1938 coolingholeshape->GetRmax(1));
a30e33f0 1939 coolingholeshape->Rmin(1) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
3a299c65 1940 coolingholeshape->GetZ(1));
1941
1942 coolingholeshape->Rmin(2) = kCoolingHoleRmin;
a30e33f0 1943 coolingholeshape->Z(2) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
3a299c65 1944 coolingholeshape->GetRmin(2));
a30e33f0 1945 coolingholeshape->Rmax(2) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
3a299c65 1946 coolingholeshape->GetZ(2));
1947
1948 coolingholeshape->Rmin(3) = coolingholeshape->GetRmin(2);
1949 coolingholeshape->Rmax(3) = coolingholeshape->GetRmin(3);
a30e33f0 1950 coolingholeshape->Z(3) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
3a299c65 1951 coolingholeshape->GetRmax(3));
1952
a30e33f0 1953 TGeoPcon *coolinghole2shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1954
1955 coolinghole2shape->Rmin(0) = kCoolingHoleRmin + kCoolingHoleHight;
1956 coolinghole2shape->Rmax(0) = coolinghole2shape->GetRmin(0);
1957 coolinghole2shape->Z(0) = ZFromRminpCone(coneshape,3,90.-kConeTheta,
1958 coolinghole2shape->GetRmin(0));
1959
1960 coolinghole2shape->Rmax(1) = coolinghole2shape->GetRmax(0);
1961 coolinghole2shape->Z(1) = coolingholeshape->GetZ(0);
1962 coolinghole2shape->Rmin(1) = RminFromZpCone(coneshape,3,90.-kConeTheta,
1963 coolinghole2shape->GetZ(1));
1964
1965 coolinghole2shape->Rmin(2) = kCoolingHoleRmin;
1966 coolinghole2shape->Z(2) = ZFromRminpCone(coneshape,3,90.-kConeTheta,
1967 coolinghole2shape->GetRmin(2));
1968 coolinghole2shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
1969 coolinghole2shape->GetZ(2));
1970
1971 coolinghole2shape->Rmin(3) = coolinghole2shape->GetRmin(2);
1972 coolinghole2shape->Rmax(3) = coolinghole2shape->GetRmin(3);
1973 coolinghole2shape->Z(3) = coolingholeshape->GetZ(2);
1974
1975 TGeoPcon *coolinghole3shape = new TGeoPcon(-holePhi/2., holePhi, 4);
1976
1977 coolinghole3shape->Rmin(0) = kCoolingHoleRmin + kCoolingHoleHight;
1978 coolinghole3shape->Rmax(0) = coolinghole3shape->GetRmin(0);
1979 coolinghole3shape->Z(0) = coolingholeshape->GetZ(1);
1980
1981 coolinghole3shape->Rmax(1) = coolinghole3shape->GetRmax(0);
1982 coolinghole3shape->Z(1) = ZFromRmaxpCone(coneshape,7,90.-kConeTheta,
1983 coolinghole3shape->GetRmax(1));
1984 coolinghole3shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
1985 coolinghole3shape->GetZ(1));
1986
1987 coolinghole3shape->Rmin(2) = kCoolingHoleRmin;
1988 coolinghole3shape->Z(2) = coolingholeshape->GetZ(3);
1989 coolinghole3shape->Rmax(2) = RmaxFromZpCone(coneshape,7,90.-kConeTheta,
1990 coolinghole3shape->GetZ(2));
1991
1992 coolinghole3shape->Rmin(3) = coolinghole3shape->GetRmin(2);
1993 coolinghole3shape->Rmax(3) = coolinghole3shape->GetRmin(3);
1994 coolinghole3shape->Z(3) = ZFromRmaxpCone(coneshape,7,90.-kConeTheta,
1995 coolinghole3shape->GetRmax(3));
1996
1997 //
3a299c65 1998 holePhi = (kMountingHoleWidth/kMountingHoleRmin)*TMath::RadToDeg();
1999
2000 TGeoPcon *mountingholeshape = new TGeoPcon(-holePhi/2., holePhi, 4);
2001
2002 mountingholeshape->Rmin(0) = kMountingHoleRmin + kMountingHoleHight;
2003 mountingholeshape->Rmax(0) = mountingholeshape->GetRmin(0);
2004 mountingholeshape->Z(0) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
2005 mountingholeshape->GetRmin(0));
2006
2007 mountingholeshape->Rmin(1) = kMountingHoleRmin;
2008 mountingholeshape->Rmax(1) = mountingholeshape->GetRmax(0);
2009 mountingholeshape->Z(1) = ZFromRminpCone(coneinsertshape,3,90.-kConeTheta,
2010 mountingholeshape->GetRmin(1));
2011
2012 mountingholeshape->Rmin(2) = mountingholeshape->GetRmin(1);
2013 mountingholeshape->Rmax(2) = mountingholeshape->GetRmax(1);
2014 mountingholeshape->Z(2) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
2015 mountingholeshape->GetRmax(2));
2016
2017 mountingholeshape->Rmin(3) = mountingholeshape->GetRmin(2);
2018 mountingholeshape->Rmax(3) = mountingholeshape->GetRmin(3);
2019 mountingholeshape->Z(3) = ZFromRmaxpCone(coneinsertshape,7,90.-kConeTheta,
2020 mountingholeshape->GetRmax(3));
2021
2022 TGeoPcon *mountinghole2shape = new TGeoPcon(-holePhi/2., holePhi, 4);
2023
2024 mountinghole2shape->Rmin(0) = kMountingHoleRmin + kMountingHoleHight;
2025 mountinghole2shape->Rmax(0) = mountingholeshape->GetRmin(0);
2026 mountinghole2shape->Z(0) = ZFromRminpCone(coneshape,3,90.-kConeTheta,
2027 mountinghole2shape->GetRmin(0));
2028
2029 mountinghole2shape->Rmax(1) = mountinghole2shape->GetRmax(0);
2030 mountinghole2shape->Z(1) = mountingholeshape->Z(0);
2031 mountinghole2shape->Rmin(1) = RminFromZpCone(coneshape,3,90.-kConeTheta,
2032 mountinghole2shape->GetZ(1));
2033
2034 mountinghole2shape->Rmin(2) = kMountingHoleRmin;
2035 mountinghole2shape->Z(2) = ZFromRminpCone(coneshape,3,90.-kConeTheta,
2036 mountinghole2shape->GetRmin(2));
2037 mountinghole2shape->Rmax(2) = RminFromZpCone(coneinsertshape,3,90.-kConeTheta,
2038 mountinghole2shape->GetZ(2));
2039
2040 mountinghole2shape->Rmin(3) = mountinghole2shape->Rmin(2);
2041 mountinghole2shape->Rmax(3) = mountinghole2shape->Rmin(3);
2042 mountinghole2shape->Z(3) = mountingholeshape->Z(1);
2043
2044 TGeoPcon *mountinghole3shape = new TGeoPcon(-holePhi/2., holePhi, 4);
2045
2046 mountinghole3shape->Rmin(0) = kMountingHoleRmin + kMountingHoleHight;
2047 mountinghole3shape->Rmax(0) = mountingholeshape->GetRmin(0);
2048 mountinghole3shape->Z(0) = mountingholeshape->GetZ(2);
2049
2050 mountinghole3shape->Rmax(1) = mountinghole3shape->GetRmax(0);
2051 mountinghole3shape->Z(1) = ZFromRmaxpCone(coneshape,7,90.-kConeTheta,
2052 mountinghole3shape->GetRmax(1));
2053 mountinghole3shape->Rmin(1) = RmaxFromZpCone(coneinsertshape,7,90.-kConeTheta,
2054 mountinghole3shape->GetZ(1));
2055
2056 mountinghole3shape->Rmin(2) = kMountingHoleRmin;
2057 mountinghole3shape->Z(2) = mountingholeshape->Z(3);
2058 mountinghole3shape->Rmax(2) = RmaxFromZpCone(coneshape,7,90.-kConeTheta,
2059 mountinghole3shape->GetZ(2));
2060
2061 mountinghole3shape->Rmin(3) = mountinghole3shape->Rmin(2);
2062 mountinghole3shape->Rmax(3) = mountinghole3shape->Rmin(3);
2063 mountinghole3shape->Z(3) = ZFromRmaxpCone(coneshape,7,90.-kConeTheta,
2064 mountinghole3shape->GetRmax(3));
2065
2066 // The Cable Hole is even more complicated, a Composite Shape
2067 // is unavoidable here (gosh!)
2068 TGeoPcon *coneshapecopy = new TGeoPcon("conecopy",0.0, 360.0, 12);
2069
2070 for (Int_t i=0; i<12; i++) {
2071 coneshapecopy->Rmin(i) = coneshape->GetRmin(i);
2072 coneshapecopy->Rmax(i) = coneshape->GetRmax(i);
2073 coneshapecopy->Z(i) = coneshape->GetZ(i);
2074 }
2075
2076 holePhi = (kCableHoleWidth/kCableHoleRout)*TMath::RadToDeg();
2077 TGeoConeSeg *chCS = new TGeoConeSeg("chCS", 0.5*kConeZLength,
2078 kCableHoleRin, kCableHoleRout,
2079 kCableHoleRin, kCableHoleRout,
2080 -0.5*holePhi, 0.5*holePhi);
2081
2082 TGeoCompositeShape *cableholeshape = new TGeoCompositeShape(
2083 "SSDCableHoleShape",
2084 "conecopy*chCS");
2085
2086 if(GetDebug(1)){
2087 chCS->InspectShape();
2088 cableholeshape->InspectShape();
2089 }
2090
2091 // SSD Cone Wings: Tube and TubeSeg shapes
2092 Double_t angleWideWing, angleWideWingThickness;
2093 angleWideWing = (kWingWidth/kWingRmax)*TMath::RadToDeg();
2094 angleWideWingThickness = (kCFThickness/kWingRmax)*TMath::RadToDeg();
2095
2096 TGeoTubeSeg *wingshape = new TGeoTubeSeg(kConeROuterMax, kWingRmax,
2097 kWingHalfThick,
2098 0, angleWideWing);
2099
2100 TGeoTubeSeg *winginsertshape = new TGeoTubeSeg(kConeROuterMax,
2101 kWingRmax-kCFThickness,
2102 kWingHalfThick-kCFThickness,
2103 angleWideWingThickness,
2104 angleWideWing-angleWideWingThickness);
2105
2106 // SDD support plate, SSD side (Mounting Bracket): a TubeSeg
2107 TGeoTubeSeg *bracketshape = new TGeoTubeSeg(kBracketRmin, kBracketRmax,
2108 kBracketHalfLength, -kBracketPhi/2, kBracketPhi/2);
2109
2110
2111 // We have the shapes: now create the real volumes
2112
2113 TGeoVolume *cfcone = new TGeoVolume("SSDCarbonFiberCone",
2114 coneshape,medSSDcf);
2115 cfcone->SetVisibility(kTRUE);
2116 cfcone->SetLineColor(4); // Blue
2117 cfcone->SetLineWidth(1);
2118 cfcone->SetFillColor(cfcone->GetLineColor());
2119 cfcone->SetFillStyle(4000); // 0% transparent
2120
2121 TGeoVolume *cfconeinsert = new TGeoVolume("SSDCarbonFiberConeInsert",
2122 coneinsertshape,medSSDste);
2123 cfconeinsert->SetVisibility(kTRUE);
2124 cfconeinsert->SetLineColor(2); // Red
2125 cfconeinsert->SetLineWidth(1);
2126 cfconeinsert->SetFillColor(cfconeinsert->GetLineColor());
2127 cfconeinsert->SetFillStyle(4050); // 50% transparent
2128
2129 TGeoVolume *cfconefoam1 = new TGeoVolume("SSDCarbonFiberConeFoam1",
2130 conefoam1shape,medSSDroh);
2131 cfconefoam1->SetVisibility(kTRUE);
2132 cfconefoam1->SetLineColor(3); // Green
2133 cfconefoam1->SetLineWidth(1);
2134 cfconefoam1->SetFillColor(cfconefoam1->GetLineColor());
2135 cfconefoam1->SetFillStyle(4050); // 50% transparent
2136
2137 TGeoVolume *cfconefoam2 = new TGeoVolume("SSDCarbonFiberConeFoam2",
2138 conefoam2shape,medSSDroh);
2139 cfconefoam2->SetVisibility(kTRUE);
2140 cfconefoam2->SetLineColor(3); // Green
2141 cfconefoam2->SetLineWidth(1);
2142 cfconefoam2->SetFillColor(cfconefoam2->GetLineColor());
2143 cfconefoam2->SetFillStyle(4050); // 50% transparent
2144
2145 TGeoVolume *coolinghole = new TGeoVolume("SSDCoolingHole",
2146 coolingholeshape,medSSDair);
2147 coolinghole->SetVisibility(kTRUE);
2148 coolinghole->SetLineColor(5); // Yellow
2149 coolinghole->SetLineWidth(1);
2150 coolinghole->SetFillColor(coolinghole->GetLineColor());
2151 coolinghole->SetFillStyle(4090); // 90% transparent
2152
a30e33f0 2153 TGeoVolume *coolinghole2 = new TGeoVolume("SSDCoolingHole2",
2154 coolinghole2shape,medSSDair);
2155 coolinghole2->SetVisibility(kTRUE);
2156 coolinghole2->SetLineColor(5); // Yellow
2157 coolinghole2->SetLineWidth(1);
2158 coolinghole2->SetFillColor(coolinghole2->GetLineColor());
2159 coolinghole2->SetFillStyle(4090); // 90% transparent
2160
2161 TGeoVolume *coolinghole3 = new TGeoVolume("SSDCoolingHole3",
2162 coolinghole3shape,medSSDair);
2163 coolinghole3->SetVisibility(kTRUE);
2164 coolinghole3->SetLineColor(5); // Yellow
2165 coolinghole3->SetLineWidth(1);
2166 coolinghole3->SetFillColor(coolinghole3->GetLineColor());
2167 coolinghole3->SetFillStyle(4090); // 90% transparent
2168
3a299c65 2169 TGeoVolume *mountinghole = new TGeoVolume("SSDMountingHole",
2170 mountingholeshape,medSSDair);
2171 mountinghole->SetVisibility(kTRUE);
2172 mountinghole->SetLineColor(5); // Yellow
2173 mountinghole->SetLineWidth(1);
2174 mountinghole->SetFillColor(mountinghole->GetLineColor());
2175 mountinghole->SetFillStyle(4090); // 90% transparent
2176
2177 TGeoVolume *mountinghole2 = new TGeoVolume("SSDMountingHole2",
2178 mountinghole2shape,medSSDair);
2179 mountinghole2->SetVisibility(kTRUE);
2180 mountinghole2->SetLineColor(5); // Yellow
2181 mountinghole2->SetLineWidth(1);
2182 mountinghole2->SetFillColor(mountinghole2->GetLineColor());
2183 mountinghole2->SetFillStyle(4090); // 90% transparent
2184
2185 TGeoVolume *mountinghole3 = new TGeoVolume("SSDMountingHole3",
2186 mountinghole3shape,medSSDair);
2187 mountinghole3->SetVisibility(kTRUE);
2188 mountinghole3->SetLineColor(5); // Yellow
2189 mountinghole3->SetLineWidth(1);
2190 mountinghole3->SetFillColor(mountinghole3->GetLineColor());
2191 mountinghole3->SetFillStyle(4090); // 90% transparent
2192
2193 TGeoVolume *wing = new TGeoVolume("SSDWing",wingshape,medSSDcf);
2194 wing->SetVisibility(kTRUE);
2195 wing->SetLineColor(4); // Blue
2196 wing->SetLineWidth(1);
2197 wing->SetFillColor(wing->GetLineColor());
2198 wing->SetFillStyle(4000); // 0% transparent
2199
2200 TGeoVolume *cablehole = new TGeoVolume("SSDCableHole",
2201 cableholeshape,medSSDair);
2202 cablehole->SetVisibility(kTRUE);
2203 cablehole->SetLineColor(5); // Yellow
2204 cablehole->SetLineWidth(1);
2205 cablehole->SetFillColor(cablehole->GetLineColor());
2206 cablehole->SetFillStyle(4090); // 90% transparent
2207
2208 TGeoVolume *winginsert = new TGeoVolume("SSDWingInsert",
2209 winginsertshape,medSSDste);
2210 winginsert->SetVisibility(kTRUE);
2211 winginsert->SetLineColor(2); // Red
2212 winginsert->SetLineWidth(1);
2213 winginsert->SetFillColor(winginsert->GetLineColor());
2214 winginsert->SetFillStyle(4050); // 50% transparent
2215
2216 TGeoVolume *bracket = new TGeoVolume("SSDMountingBracket",
2217 bracketshape,medSSDal);
2218 bracket->SetVisibility(kTRUE);
2219 bracket->SetLineColor(6); // Purple
2220 bracket->SetLineWidth(1);
2221 bracket->SetFillColor(bracket->GetLineColor());
2222 bracket->SetFillStyle(4000); // 0% transparent
2223
2224 // Mount up a cone
2225 for (Int_t i=0; i<(Int_t)(360./kMountingHolePhi); i++) {
2226 Double_t phiH = i*kMountingHolePhi + 0.5*kMountingHolePhi;
2227 cfconefoam2->AddNode(mountinghole,i+1, new TGeoRotation("", phiH, 0, 0));
2228 }
2229
a30e33f0 2230 for (Int_t i=0; i<(Int_t)(360./kCoolingHolePhi); i++) {
2231 Double_t phiH = i*kCoolingHolePhi + 0.5*kCoolingHolePhi;
2232 cfconeinsert->AddNodeOverlap(coolinghole,i+1, new TGeoRotation("", phiH, 0, 0));
2233 }
2234
3a299c65 2235 cfconeinsert->AddNode(cfconefoam1,1,0);
2236 cfconeinsert->AddNode(cfconefoam2,1,0);
2237
2238 cfcone->AddNode(cfconeinsert,1,0);
2239
2240 for (Int_t i=0; i<(Int_t)(360./kCoolingHolePhi); i++) {
2241 Double_t phiH = i*kCoolingHolePhi + 0.5*kCoolingHolePhi;
a30e33f0 2242 cfcone->AddNode(coolinghole2,i+1, new TGeoRotation("", phiH, 0, 0));
2243 cfcone->AddNode(coolinghole3,i+1, new TGeoRotation("", phiH, 0, 0));
3a299c65 2244 cfcone->AddNodeOverlap(cablehole,i+1, new TGeoRotation("", phiH, 0, 0));
2245 }
2246
2247 for (Int_t i=0; i<(Int_t)(360./kMountingHolePhi); i++) {
2248 Double_t phiH = i*kMountingHolePhi + 0.5*kMountingHolePhi;
2249 cfcone->AddNode(mountinghole2,i+1, new TGeoRotation("", phiH, 0, 0));
2250 cfcone->AddNode(mountinghole3,i+1, new TGeoRotation("", phiH, 0, 0));
2251 }
2252
2253 wing->AddNode(winginsert,1,0);
2254
2255 // Add all volumes in the Cone assembly
2256 vC->AddNode(cfcone,1,new TGeoTranslation(0,0,-kConeZPosition));
2257
2258 for (Int_t i=0; i<4; i++) {
85234543 2259 Double_t thetaW = kThetaWing + 90.*i + angleWideWing/2.;
2260 vC->AddNode(wing, i+1, new TGeoCombiTrans(0, 0, -kConeZPosition+kWingHalfThick,
3a299c65 2261 new TGeoRotation("",thetaW,180,0)));
2262 }
2263
2264 Double_t zBracket = kConeZPosition - coneshape->GetZ(9) +
a30e33f0 2265 2*bracketshape->GetDz();
3a299c65 2266 for (Int_t i=0; i<3; i++) {
2267 Double_t thetaB = 60 + 120.*i;
2268 vC->AddNode(bracket, i+1, new TGeoCombiTrans(0, 0, -zBracket,
2269 new TGeoRotation("",thetaB,0,0)));
2270 }
2271
2272 // Finally put everything in the mother volume
2273 moth->AddNode(cfcylinder,1,0);
2274
2275 moth->AddNode(vC, 1, 0 );
2276 moth->AddNode(vC, 2, new TGeoRotation("",180, 180, 0) );
2277
2278 // Some debugging if requested
2279 if(GetDebug(1)){
2280 vC->PrintNodes();
2281 vC->InspectShape();
2282 }
2283
2284 return;
172b0d90 2285}
2286
2287//______________________________________________________________________
543b7370 2288void AliITSv11GeometrySupport::ServicesCableSupport(TGeoVolume *moth,
2289 TGeoManager *mgr){
798b4e0c 2290//
2291// Creates the cable trays which are outside the ITS support cones
2292// but still inside the TPC
2293// This is now a stearing routine, the actual work is done by three
2294// specialized methods to avoid a really huge unique method
2295//
2296// Input:
2297// moth : the TGeoVolume owing the volume structure
2298// mgr : the GeoManager (default gGeoManager)
2299// Output:
2300//
2301// Created: 15 Nov 2009 Mario Sitta
2302//
2303
2304 TraySupportsSideA(moth, mgr);
2305
2306 ServicesCableSupportSPD(moth, mgr);
2307 ServicesCableSupportSDD(moth, mgr);
2308 ServicesCableSupportSSD(moth, mgr);
2309
2310 return;
2311}
2312
2313//______________________________________________________________________
2314void AliITSv11GeometrySupport::TraySupportsSideA(TGeoVolume *moth,
2315 TGeoManager *mgr){
2316//
2317// Creates the structure supporting the ITS cable trays on Side A
2318//
2319// Input:
2320// moth : the TGeoVolume owing the volume structure
2321// mgr : the GeoManager (default gGeoManager)
2322// Output:
2323//
2324// Created: 14 Dec 2009 Mario Sitta
2325// Updated: 26 Feb 2010 Mario Sitta
2326//
2327// Technical data are taken from AutoCAD drawings, L.Simonetti technical
2328// drawings and other (oral) information given by F.Tosello
2329//
2330
2331 // Dimensions and positions of the A-Side Cable Tray Support Ring
2332 // (0872/G/A/01)
2333 const Double_t kSuppRingYTrans = 110.00 *fgkmm;
2334 const Double_t kSuppRingZTrans =(1011.00+435.00) *fgkmm;
2335 const Double_t kSuppForwYTrans = 185.00 *fgkmm;
2336
2337 const Double_t kExtSuppRingSpace1 = 33.00 *fgkmm;
2338 const Double_t kExtSuppRingSpace2 = 45.00 *fgkmm;
2339 const Double_t kExtSuppRingSpcAbov = 30.00 *fgkmm;
2340 const Double_t kExtSuppRingBase = 491.50 *fgkmm;
2341 const Double_t kExtSuppRingInward = 35.00 *fgkmm;
2342 const Double_t kExtSuppRingRmax = 540.00 *fgkmm;
2343 const Double_t kExtSuppRingRint1 = 465.00 *fgkmm;
2344 const Double_t kExtSuppRingRint2 = 467.00 *fgkmm;
2345 const Double_t kExtSuppRingInnerHi = 450.00 *fgkmm;
2346 const Double_t kExtSuppRingInWide = 100.00 *fgkmm;
2347 const Double_t kExtSuppRingR7 = 7.00 *fgkmm;
2348 const Double_t kExtSuppRingR5 = 5.00 *fgkmm;
2349 const Double_t kExtSuppRingThick = 20.00 *fgkmm;
2350
2351 const Double_t kExtSuppRingSpcAng = 10.50 *TMath::DegToRad();
2352 const Double_t kExtSuppRingPartPhi = 15.00 *TMath::DegToRad();
2353 const Double_t kExtSuppRingIntAng = 7.00 *TMath::DegToRad();
2354 const Double_t kExtSuppRingBaseAng = 75.00 *TMath::DegToRad();
2355 const Double_t kExtSuppRingR7Ang = 100.00 *TMath::DegToRad(); // Guessed
2356
2357 const Int_t kExtSuppRingNPtsArc = 10; // N.points to approximate arc
2358
2359 const Double_t kIntSuppRingThick1 = 15.00 *fgkmm;
2360 const Double_t kIntSuppRingThick2 = 13.00 *fgkmm;
2361 const Double_t kIntSuppRingInward = 24.00 *fgkmm;
2362 const Double_t kIntSuppRingThick = 20.00 *fgkmm;
2363
2364 const Double_t kSuppCylHeight = 340.00 *fgkmm;
2365 const Double_t kSuppCylRint = 475.00 *fgkmm;
2366 const Double_t kSuppCylRext = 478.00 *fgkmm;
2367 const Double_t kSuppCylDispl = 137.70 *fgkmm;
2368
2369 const Double_t kSuppSpacerHeight = 30.00 *fgkmm;
2370 const Double_t kSuppSpacerThick = 10.00 *fgkmm;
2371
2372 const Double_t kSuppSpacerAngle = 15.00; // Degrees
2373
2374 const Double_t kSuppForwRingRint1 = 500.00 *fgkmm;
2375 const Double_t kSuppForwRingRint2 = 540.00 *fgkmm;
2376 const Double_t kSuppForwRingRext = 560.00 *fgkmm;
2377 const Double_t kSuppForwRingThikAll = 50.00 *fgkmm;
2378 const Double_t kSuppForwRingThikInt = 20.00 *fgkmm;
2379
2380 // (0872/G/B/01)
2381 const Double_t kSuppForwConeRmin = 558.00 *fgkmm;
2382 const Double_t kSuppForwConeRmax = 681.00 *fgkmm;
2383 const Double_t kSuppForwConeLen1 = 318.00 *fgkmm;
2384 const Double_t kSuppForwConeLen2 = 662.00 *fgkmm;
2385 const Double_t kSuppForwConeThick = 3.00 *fgkmm;
2386
2387 const Double_t kSuppBackRingPlacTop = 90.00 *fgkmm;
2388 const Double_t kSuppBackRingPlacSid = 50.00 *fgkmm;
2389 const Double_t kSuppBackRingHeight = 760.00 *fgkmm;
2390 const Double_t kSuppBackRingRext = 760.00 *fgkmm;
2391 const Double_t kSuppBackRingRint = 685.00 *fgkmm;
2392// const Double_t kSuppBackRingRint2 = 675.00 *fgkmm;
2393 const Double_t kSuppBackRingR10 = 10.00 *fgkmm;
2394 const Double_t kSuppBackRingBase = 739.00 *fgkmm;
2395 const Double_t kSuppBackRingThikAll = 50.00 *fgkmm;
2396 const Double_t kSuppBackRingThick1 = 20.00 *fgkmm;
2397 const Double_t kSuppBackRingThick2 = 20.00 *fgkmm;
2398
2399// const Double_t kSuppBackRingPlacAng = 10.00 *TMath::DegToRad();
2400 const Double_t kSuppBackRingPlacAng = 10.25 *TMath::DegToRad();//Fix ovlp.
2401 const Double_t kSuppBackRing2ndAng1 = 78.40 *TMath::DegToRad();
2402 const Double_t kSuppBackRing2ndAng2 = 45.00 *TMath::DegToRad();
2403
2404 const Int_t kSuppBackRingNPtsArc = 10; // N.points to approximate arc
2405
2406 // (0872/G/C/01)
2407 const Double_t kRearSuppZTransGlob =(1011.00+9315.00-6040.00) *fgkmm;
2408 const Double_t kBackRodZTrans = 2420.00 *fgkmm;
2409
2410 const Double_t kBackRodLength = 1160.00 *fgkmm;
2411 const Double_t kBackRodThickLen = 20.00 *fgkmm;
2412 const Double_t kBackRodDiameter = 20.00 *fgkmm;
2413
2414 const Double_t kSuppRearRingRint = 360.00 *fgkmm;
2415 const Double_t kSuppRearRingRext1 = 410.00 *fgkmm;
2416 const Double_t kSuppRearRingRext2 = 414.00 *fgkmm;
2417 const Double_t kSuppRearRingHeight = 397.00 *fgkmm;
2418 const Double_t kSuppRearRingTopWide = 111.87 *fgkmm;
2419 const Double_t kSuppRearRingBase = 451.50 *fgkmm;
2420 const Double_t kSuppRearRingBaseHi = 58.00 *fgkmm;
2421 const Double_t kSuppRearRingSideHi = 52.00 *fgkmm;
2422 const Double_t kSuppRearRingInside = 40.00 *fgkmm;
2423 const Double_t kSuppRearRingInsideHi= 12.00 *fgkmm;
2424 const Double_t kSuppRearRingThick = 20.00 *fgkmm;
2425 const Double_t kSuppRearRingXRodHole= 441.50 *fgkmm;
2426 const Double_t kSuppRearRingYRodHole= 42.00 *fgkmm;
2427
2428 const Double_t kSuppRearRing1stAng = 22.00 *TMath::DegToRad();
2429 const Double_t kSuppRearRingStepAng = 15.00 *TMath::DegToRad();
2430
2431 const Int_t kSuppRearRingNPtsArc = 10; // N.points to approximate arc
2432
2433
2434 // Local variables
2435 Double_t xprof[2*(15+kExtSuppRingNPtsArc)],yprof[2*(15+kExtSuppRingNPtsArc)];
2436 Double_t slp1, slp2, phi, xm, ym;
2437 Double_t xloc, yloc, zloc, rmin, rmax, deltaR;
2438 Int_t npoints;
2439
2440
2441 // The whole support as an assembly
2442 TGeoVolumeAssembly *trayASuppStruct = new TGeoVolumeAssembly("ITSsuppSideAStructure");
2443
2444
2445 // First create all needed shapes
2446
2447 // The External Ring (part of 0872/G/A/01): a really complex Xtru
2448 TGeoXtru *extSuppRing = new TGeoXtru(2);
2449
2450 // First the upper notch...
2451 xprof[ 0] = kExtSuppRingSpace1;
2452 yprof[ 0] = kExtSuppRingInnerHi + kExtSuppRingSpcAbov;
2453
2454 slp1 = TMath::Tan(TMath::Pi()/2 - kExtSuppRingSpcAng);
2455 IntersectCircle(slp1, xprof[0], yprof[0], kExtSuppRingRmax, 0., 0.,
2456 xprof[5], yprof[5], xm, ym); // Ignore dummy xm,ym
2457
2458 xprof[ 4] = xprof[5];
2459 yprof[ 4] = yprof[5] - kExtSuppRingR5/TMath::Tan(kExtSuppRingSpcAng);
2460 xprof[ 3] = xprof[4] - kExtSuppRingR5*(1 - TMath::Cos(TMath::Pi()/6));
2461 yprof[ 3] = yprof[4] - kExtSuppRingR5*( TMath::Sin(TMath::Pi()/6));
2462 xprof[ 2] = xprof[4] - kExtSuppRingR5*(1 - TMath::Cos(TMath::Pi()/3));
2463 yprof[ 2] = yprof[4] - kExtSuppRingR5*( TMath::Sin(TMath::Pi()/3));
2464 xprof[ 1] = xprof[4] - kExtSuppRingR5;
2465 yprof[ 1] = yprof[4] - kExtSuppRingR5;
2466
2467 Int_t indx = 5+kExtSuppRingNPtsArc;
2468 // ...then the external arc, approximated with segments,...
2469 xprof[indx] = kExtSuppRingBase;
2470 yprof[indx] = TMath::Sqrt(kExtSuppRingRmax*kExtSuppRingRmax -
2471 kExtSuppRingBase*kExtSuppRingBase);
2472 Double_t alphamin = TMath::ASin(kExtSuppRingSpace2/kExtSuppRingRmax);
2473 Double_t alphamax = TMath::Pi()/2 -
2474 TMath::ASin(yprof[5+kExtSuppRingNPtsArc]/kExtSuppRingRmax);
2475
2476 for (Int_t jp = 1; jp < kExtSuppRingNPtsArc; jp++) {
2477 Double_t alpha = jp*(alphamax-alphamin)/kExtSuppRingNPtsArc;
2478 xprof[5+jp] = kExtSuppRingRmax*TMath::Sin(alpha);
2479 yprof[5+jp] = kExtSuppRingRmax*TMath::Cos(alpha);
2480 }
2481 // ...and finally the interior profile
2482 xprof[indx+1] = kExtSuppRingBase;
2483 yprof[indx+1] = kSuppRingYTrans;
2484 xprof[indx+2] = xprof[indx+1] - kExtSuppRingInward;
2485 yprof[indx+2] = yprof[indx+1];
2486
2487 phi = TMath::Pi()/2 - 4*kExtSuppRingPartPhi - kExtSuppRingIntAng;
2488 slp1 = TMath::Tan(TMath::Pi() - kExtSuppRingBaseAng);
2489 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2490 xm = kExtSuppRingRint2*TMath::Cos(phi);
2491 ym = kExtSuppRingRint2*TMath::Sin(phi);
2492 IntersectLines(slp1, xprof[indx+2], yprof[indx+2], slp2, xm, ym,
2493 xprof[indx+3], yprof[indx+3]);
2494
2495 slp1 = slp2;
2496 phi += kExtSuppRingPartPhi;
2497 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2498 xm = kExtSuppRingRint1*TMath::Cos(phi);
2499 ym = kExtSuppRingRint1*TMath::Sin(phi);
2500 IntersectLines(slp1, xprof[indx+3], yprof[indx+3], slp2, xm, ym,
2501 xprof[indx+4], yprof[indx+4]);
2502
2503 slp1 = slp2;
2504 phi += kExtSuppRingPartPhi;
2505 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2506 xm = kExtSuppRingRint2*TMath::Cos(phi);
2507 ym = kExtSuppRingRint2*TMath::Sin(phi);
2508 IntersectLines(slp1, xprof[indx+4], yprof[indx+4], slp2, xm, ym,
2509 xprof[indx+5], yprof[indx+5]);
2510
2511 slp1 = slp2;
2512 phi += kExtSuppRingPartPhi;
2513 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2514 xm = kExtSuppRingRint1*TMath::Cos(phi);
2515 ym = kExtSuppRingRint1*TMath::Sin(phi);
2516 IntersectLines(slp1, xprof[indx+5], yprof[indx+5], slp2, xm, ym,
2517 xprof[indx+6], yprof[indx+6]);
2518
2519 xprof[indx+9] = kExtSuppRingInWide;
2520 yprof[indx+9] = kExtSuppRingInnerHi;
2521 xprof[indx+8] = xprof[indx+9] +
2522 (1 - TMath::Cos(kExtSuppRingR7Ang/2))*kExtSuppRingR7;
2523 yprof[indx+8] = yprof[indx+9] +
2524 ( TMath::Sin(kExtSuppRingR7Ang/2))*kExtSuppRingR7;
2525 xprof[indx+7] = xprof[indx+9] +
2526 (1 + TMath::Cos(kExtSuppRingR7Ang ))*kExtSuppRingR7;
2527 yprof[indx+7] = yprof[indx+9] +
2528 ( TMath::Sin(kExtSuppRingR7Ang ))*kExtSuppRingR7;
2529 // Gosh, we did the right side! now reflex on the left side
2530 npoints = (sizeof(xprof)/sizeof(Double_t))/2;
2531 for (Int_t jp = 0; jp < npoints; jp++) {
2532 xprof[npoints+jp] = -xprof[npoints-1-jp];
2533 yprof[npoints+jp] = yprof[npoints-1-jp];
2534 }
2535 // wow! now the actual Xtru
2536 extSuppRing->DefinePolygon(2*npoints, xprof, yprof);
2537 extSuppRing->DefineSection(0,0);
2538 extSuppRing->DefineSection(1,kExtSuppRingThick);
2539
2540 // The Internal Ring (part of 0872/G/A/01): another complex Xtru
2541 TGeoXtru *intSuppRing = new TGeoXtru(2);
2542
2543 // First the external profile...
2544 npoints = 0;
2545
2546 slp1 = 0;
2547 phi = TMath::Pi()/2 - kExtSuppRingPartPhi - kExtSuppRingIntAng;
2548 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2549 xm = (kExtSuppRingRint1+kIntSuppRingThick1)*TMath::Cos(phi);
2550 ym = (kExtSuppRingRint1+kIntSuppRingThick1)*TMath::Sin(phi);
2551 IntersectLines(slp1, 0, kExtSuppRingInnerHi+kExtSuppRingSpcAbov,
2552 slp2, xm, ym,
2553 xprof[npoints], yprof[npoints]);
2554 npoints++;
2555
2556 slp1 = slp2;
2557 phi -= kExtSuppRingPartPhi;
2558 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2559 xm = (kExtSuppRingRint2+kIntSuppRingThick2)*TMath::Cos(phi);
2560 ym = (kExtSuppRingRint2+kIntSuppRingThick2)*TMath::Sin(phi);
2561 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
2562 slp2, xm, ym,
2563 xprof[npoints], yprof[npoints]);
2564 npoints++;
2565
2566 slp1 = slp2;
2567 phi -= kExtSuppRingPartPhi;
2568 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2569 xm = (kExtSuppRingRint1+kIntSuppRingThick1)*TMath::Cos(phi);
2570 ym = (kExtSuppRingRint1+kIntSuppRingThick1)*TMath::Sin(phi);
2571 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
2572 slp2, xm, ym,
2573 xprof[npoints], yprof[npoints]);
2574 npoints++;
2575
2576 slp1 = slp2;
2577 phi -= kExtSuppRingPartPhi;
2578 slp2 = TMath::Tan(TMath::Pi()/2 + phi);
2579 xm = (kExtSuppRingRint2+kIntSuppRingThick2)*TMath::Cos(phi);
2580 ym = (kExtSuppRingRint2+kIntSuppRingThick2)*TMath::Sin(phi);
2581 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
2582 slp2, xm, ym,
2583 xprof[npoints], yprof[npoints]);
2584 npoints++;
2585
2586 xprof[npoints] = kExtSuppRingBase-kIntSuppRingInward;
2587 yprof[npoints] = Yfrom2Points(xprof[npoints-1], yprof[npoints-1], xm, ym,
2588 xprof[npoints]);
2589 npoints++;
2590
2591 xprof[npoints] = xprof[npoints-1];
2592 yprof[npoints] = kSuppRingYTrans;
2593 npoints++;
2594 // ...and then the interior profile, which is identical to extSuppRing one
2595 for (Int_t jp=0; jp < 8; jp++) {
2596 xprof[npoints] = extSuppRing->GetX(17+jp);
2597 yprof[npoints] = extSuppRing->GetY(17+jp);
2598 npoints++;
2599 }
2600 // We did the right side! now reflex on the left side
2601 for (Int_t jp = 0; jp < npoints; jp++) {
2602 xprof[npoints+jp] = -xprof[npoints-1-jp];
2603 yprof[npoints+jp] = yprof[npoints-1-jp];
2604 }
2605 // And now the actual Xtru
2606 intSuppRing->DefinePolygon(2*npoints, xprof, yprof);
2607 intSuppRing->DefineSection(0,0);
2608 intSuppRing->DefineSection(1,kIntSuppRingThick);
2609
2610 // The intermediate cylinder (0872/G/A/03): a TubeSeg
2611 alphamin = TMath::ASin(kSuppCylDispl/kSuppCylRint)*TMath::RadToDeg();
2612 alphamax = 180 - alphamin;
2613 TGeoTubeSeg *interCylind = new TGeoTubeSeg(kSuppCylRint, kSuppCylRext,
2614 kSuppCylHeight/2, alphamin, alphamax);
2615
2616 // The spacer (0872/G/A/03): a simple Xtru
2617 TGeoXtru *suppSpacer = new TGeoXtru(2);
2618
2619 xprof[0] = kSuppSpacerHeight;
2620 yprof[0] = kSuppSpacerThick;
2621 xprof[1] = xprof[0];
2622 yprof[1] = 0;
2623 xprof[2] = 0;
2624 yprof[2] = 0;
2625 xprof[3] = kSuppSpacerThick*SinD(kSuppSpacerAngle);
2626 yprof[3] = yprof[0];
2627
2628 suppSpacer->DefinePolygon(4, xprof, yprof);
2629 suppSpacer->DefineSection(0,-kSuppCylHeight/2);
2630 suppSpacer->DefineSection(1, kSuppCylHeight/2);
2631
2632 // The forward ring (0872/G/B/02): a Pcon (slight oversimplification)
2633 Double_t rmean = (kSuppForwRingRint1+kSuppForwRingRext)/2;
2634 alphamin = TMath::ASin(kSuppForwYTrans/rmean)*TMath::RadToDeg();
2635 alphamax = 180 - alphamin;
2636
2637 TGeoPcon *forwardRing = new TGeoPcon(alphamin,alphamax-alphamin,4);
2638
2639 forwardRing->DefineSection(0,0,
2640 kSuppForwRingRint1,kSuppForwRingRext);
2641 forwardRing->DefineSection(1,kSuppForwRingThikInt,
2642 kSuppForwRingRint1,kSuppForwRingRext);
2643 forwardRing->DefineSection(2,kSuppForwRingThikInt,
2644 kSuppForwRingRint2,kSuppForwRingRext);
2645 forwardRing->DefineSection(3,kSuppForwRingThikAll,
2646 kSuppForwRingRint2,kSuppForwRingRext);
2647
2648 // The forward cone (0872/G/B/03): a TGeoPcon
2649 TGeoPcon *forwardCone = new TGeoPcon(alphamin,alphamax-alphamin,3);
2650
2651 forwardCone->DefineSection(0,0,
2652 kSuppForwConeRmin-kSuppForwConeThick,
2653 kSuppForwConeRmin);
2654 forwardCone->DefineSection(1,kSuppForwConeLen1,
2655 kSuppForwConeRmin-kSuppForwConeThick,
2656 kSuppForwConeRmin);
2657 forwardCone->DefineSection(2,kSuppForwConeLen1+kSuppForwConeLen2,
2658 kSuppForwConeRmax-kSuppForwConeThick,
2659 kSuppForwConeRmax);
2660
2661 // The first part of the Back Ring (part of 0872/G/B/01): a complex Xtru
2662 TGeoXtru *firstSuppBackRing = new TGeoXtru(2);
2663
2664 // First the external profile... (the arc is approximated with segments)
2665 npoints = 0;
2666
2667 xprof[npoints] = kSuppBackRingPlacTop;
2668 yprof[npoints] = kSuppBackRingHeight;
2669 npoints++;
2670
2671 alphamax = TMath::Pi()/2 - TMath::ASin(kSuppBackRingPlacTop/kSuppBackRingRext);
2672 alphamin = TMath::ASin((kSuppForwYTrans+kSuppBackRingPlacSid)/kSuppBackRingRext);
2673
2674 xprof[npoints] = xprof[npoints-1];
2675 yprof[npoints] = kSuppBackRingRext*TMath::Sin(alphamax);
2676 npoints++;
2677
2678 for (Int_t jp = 1; jp <= kSuppBackRingNPtsArc; jp++) {
2679 Double_t alpha = alphamax - jp*(alphamax-alphamin)/kSuppBackRingNPtsArc;
2680 xprof[npoints] = kSuppBackRingRext*TMath::Cos(alpha);
2681 yprof[npoints] = kSuppBackRingRext*TMath::Sin(alpha);
2682 npoints++;
2683 }
2684
2685 xprof[npoints] = kSuppBackRingBase -
2686 kSuppBackRingPlacSid*TMath::Tan(kSuppBackRingPlacAng);
2687 yprof[npoints] = yprof[npoints-1];
2688 npoints++;
2689
2690 xprof[npoints] = kSuppBackRingBase;
2691 yprof[npoints] = kSuppForwYTrans;
2692 npoints++;
2693 // ...then the internal profile (the arc is approximated with segments)
2694 alphamin = TMath::ASin(kSuppForwYTrans/kSuppBackRingRint);
2695 alphamax = TMath::Pi()/2;
2696
2697 for (Int_t jp = 0; jp < kSuppBackRingNPtsArc; jp++) {
2698 Double_t alpha = alphamin + jp*(alphamax-alphamin)/kSuppBackRingNPtsArc;
2699 xprof[npoints] = kSuppBackRingRint*TMath::Cos(alpha);
2700 yprof[npoints] = kSuppBackRingRint*TMath::Sin(alpha);
2701 npoints++;
2702 }
2703
2704 xprof[npoints] = 0;
2705 yprof[npoints] = kSuppBackRingRint;
2706 npoints++;
2707 // We did the right side! now reflex on the left side (except last point)
2708 for (Int_t jp = 0; jp < npoints-1; jp++) {
2709 xprof[npoints+jp] = -xprof[npoints-jp-2];
2710 yprof[npoints+jp] = yprof[npoints-jp-2];
2711 }
2712 // And now the actual Xtru
2713 firstSuppBackRing->DefinePolygon(2*npoints-1, xprof, yprof);
2714 firstSuppBackRing->DefineSection(0,0);
2715 firstSuppBackRing->DefineSection(1,kSuppBackRingThick1);
2716
2717 // The second part of the Back Ring (part of 0872/G/B/01): a Pcon
2718 // (slight oversimplification)
2719 alphamin = TMath::ASin(kSuppForwYTrans/kSuppBackRingRint)*TMath::RadToDeg();
2720 alphamax = 180 - alphamin;
2721
2722 TGeoPcon *secondSuppBackRing = new TGeoPcon(alphamin,alphamax-alphamin,6);
2723
2724 deltaR = kSuppBackRingThick2/TMath::Sin(kSuppBackRing2ndAng1);
2725 rmin = kSuppBackRingRint - kSuppBackRingThick1/TMath::Tan(kSuppBackRing2ndAng1);
2726 rmax = rmin + deltaR + kSuppBackRingR10*TMath::Sin(kSuppBackRing2ndAng1);
2727 secondSuppBackRing->DefineSection(0, 0, rmin, rmax);
2728
2729 zloc = kSuppBackRingR10*(1 - TMath::Cos(kSuppBackRing2ndAng1/3));
2730 rmax -= kSuppBackRingR10*TMath::Sin(kSuppBackRing2ndAng1/3);
2731 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2732 secondSuppBackRing->DefineSection(1, zloc, rmin, rmax);
2733
2734 zloc = kSuppBackRingR10*(1 - TMath::Cos(kSuppBackRing2ndAng1*2/3));
2735 rmax = secondSuppBackRing->GetRmax(0) - kSuppBackRingR10*TMath::Sin(kSuppBackRing2ndAng1*2/3);
2736 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2737 secondSuppBackRing->DefineSection(2, zloc, rmin, rmax);
2738
2739 zloc = kSuppBackRingR10*(1 - TMath::Cos(kSuppBackRing2ndAng1));
2740 rmax = secondSuppBackRing->GetRmax(0) - kSuppBackRingR10*TMath::Sin(kSuppBackRing2ndAng1);
2741 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2742 secondSuppBackRing->DefineSection(3, zloc, rmin, rmax);
2743
2744 slp1 = TMath::Tan(kSuppBackRing2ndAng2);
2745 slp2 = TMath::Tan(TMath::Pi()/2 + kSuppBackRing2ndAng1);
2746 IntersectLines(-slp1,kSuppBackRingThikAll,deltaR/2,
2747 slp2,kSuppBackRingThikAll,deltaR,
2748 xm, ym);
2749
2750 zloc = xm - kSuppBackRingThick1;
2751 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2752 rmax = rmin + deltaR;
2753 secondSuppBackRing->DefineSection(4, zloc, rmin, rmax);
2754
2755 zloc = kSuppBackRingThikAll - kSuppBackRingThick1;
2756 rmin = secondSuppBackRing->GetRmin(0) - zloc/TMath::Tan(kSuppBackRing2ndAng1);
2757 rmax = rmin + deltaR/2;
2758 secondSuppBackRing->DefineSection(5, zloc, rmin, rmax);
2759
2760 // The supporting rod: a Tube
2761 TGeoTube *suppRod = new TGeoTube(0, kBackRodDiameter/2,
2762 (kBackRodLength - kBackRodThickLen)/2);
2763
2764 // The Back Ring (0872/G/C/01): another complex Xtru
2765 TGeoXtru *suppRearRing = new TGeoXtru(2);
2766
2767 // First the external profile...
2768 npoints = 0;
2769
2770 xprof[npoints] = kSuppRearRingTopWide;
2771 yprof[npoints] = kSuppRearRingHeight;
2772 npoints++;
2773
2774 phi = kSuppRearRing1stAng;
2775 slp1 = TMath::Tan(TMath::Pi() - phi);
2776 phi += kSuppRearRingStepAng;
2777 slp2 = TMath::Tan(TMath::Pi() - phi);
2778 xm = kSuppRearRingRext2*TMath::Sin(phi);
2779 ym = kSuppRearRingRext2*TMath::Cos(phi);
2780 IntersectLines(slp1, kSuppRearRingTopWide, kSuppRearRingHeight,
2781 slp2, xm, ym,
2782 xprof[npoints], yprof[npoints]);
2783 npoints++;
2784
2785 slp1 = slp2;
2786 phi += kSuppRearRingStepAng;
2787 slp2 = TMath::Tan(TMath::Pi() - phi);
2788 xm = kSuppRearRingRext1*TMath::Sin(phi);
2789 ym = kSuppRearRingRext1*TMath::Cos(phi);
2790 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
2791 slp2, xm, ym,
2792 xprof[npoints], yprof[npoints]);
2793 npoints++;
2794
2795 slp1 = slp2;
2796 phi += kSuppRearRingStepAng;
2797 slp2 = TMath::Tan(TMath::Pi() - phi);
2798 xm = kSuppRearRingRext2*TMath::Sin(phi);
2799 ym = kSuppRearRingRext2*TMath::Cos(phi);
2800 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
2801 slp2, xm, ym,
2802 xprof[npoints], yprof[npoints]);
2803 npoints++;
2804
2805 slp1 = slp2;
2806 slp2 = 0;
2807 xm = kSuppRearRingBase;
2808 ym = kSuppRearRingBaseHi + kSuppRearRingSideHi;
2809 IntersectLines(slp1, xprof[npoints-1], yprof[npoints-1],
2810 slp2, xm, ym,
2811 xprof[npoints], yprof[npoints]);
2812 npoints++;
2813
2814 xprof[npoints] = kSuppRearRingBase;
2815 yprof[npoints] = kSuppRearRingBaseHi + kSuppRearRingSideHi;
2816 npoints++;
2817 xprof[npoints] = xprof[npoints - 1];
2818 yprof[npoints] = kSuppRearRingBaseHi;
2819 npoints++;
2820 xprof[npoints] = xprof[npoints - 1] - kSuppRearRingInside;
2821 yprof[npoints] = yprof[npoints - 1];
2822 npoints++;
2823 xprof[npoints] = xprof[npoints - 1];
2824 yprof[npoints] = yprof[npoints - 1] + kSuppRearRingInsideHi;
2825 npoints++;
2826 // ...then the internal arc, approximated with segments,...
2827 xprof[npoints] = kSuppRearRingRint;
2828 yprof[npoints] = yprof[npoints - 1];
2829
2830 alphamin = TMath::ASin(kSuppRearRingBaseHi/kSuppRearRingRint);
2831 alphamax = TMath::Pi()/2;
2832
2833 for (Int_t jp = 1; jp < kSuppRearRingNPtsArc; jp++) {
2834 Double_t alpha = alphamin + jp*(alphamax-alphamin)/kSuppRearRingNPtsArc;
2835 xprof[npoints+jp] = kSuppRearRingRint*TMath::Cos(alpha);
2836 yprof[npoints+jp] = kSuppRearRingRint*TMath::Sin(alpha);
2837 }
2838
2839 xprof[npoints+kSuppRearRingNPtsArc] = 0;
2840 yprof[npoints+kSuppRearRingNPtsArc] = kSuppRearRingRint;
2841 // We did the right side! now reflex on the left side
2842 Int_t nTotalPoints = npoints+kSuppRearRingNPtsArc;
2843 for (Int_t jp = 0; jp < nTotalPoints; jp++) {
2844 xprof[nTotalPoints+1+jp] = -xprof[nTotalPoints-1-jp];
2845 yprof[nTotalPoints+1+jp] = yprof[nTotalPoints-1-jp];
2846 }
2847
2848 // And now the actual Xtru
2849 suppRearRing->DefinePolygon(2*nTotalPoints+1, xprof, yprof);
2850 suppRearRing->DefineSection(0,0);
2851 suppRearRing->DefineSection(1,kSuppRearRingThick);
2852
2853
2854 // We have all shapes: now create the real volumes
2855 TGeoMedium *medAl = mgr->GetMedium("ITS_ANTICORODAL$");
2856
2857 TGeoVolume *sideAExtSuppRing = new TGeoVolume("ITSsuppSideAExtSuppRing",
2858 extSuppRing, medAl);
2859
2860 sideAExtSuppRing->SetVisibility(kTRUE);
2861 sideAExtSuppRing->SetLineColor(kMagenta+1);
2862 sideAExtSuppRing->SetLineWidth(1);
2863 sideAExtSuppRing->SetFillColor(sideAExtSuppRing->GetLineColor());
2864 sideAExtSuppRing->SetFillStyle(4000); // 0% transparent
2865
2866 TGeoVolume *sideAIntSuppRing = new TGeoVolume("ITSsuppSideAIntSuppRing",
2867 intSuppRing, medAl);
2868
2869 sideAIntSuppRing->SetVisibility(kTRUE);
2870 sideAIntSuppRing->SetLineColor(kMagenta+1);
2871 sideAIntSuppRing->SetLineWidth(1);
2872 sideAIntSuppRing->SetFillColor(sideAIntSuppRing->GetLineColor());
2873 sideAIntSuppRing->SetFillStyle(4000); // 0% transparent
2874
2875 TGeoVolume *sideASuppCyl = new TGeoVolume("ITSsuppSideASuppCyl",
2876 interCylind, medAl);
2877
2878 sideASuppCyl->SetVisibility(kTRUE);
2879 sideASuppCyl->SetLineColor(kMagenta+1);
2880 sideASuppCyl->SetLineWidth(1);
2881 sideASuppCyl->SetFillColor(sideASuppCyl->GetLineColor());
2882 sideASuppCyl->SetFillStyle(4000); // 0% transparent
2883
2884 TGeoVolume *sideASuppSpacer = new TGeoVolume("ITSsuppSideASuppSpacer",
2885 suppSpacer, medAl);
2886
2887 sideASuppSpacer->SetVisibility(kTRUE);
2888 sideASuppSpacer->SetLineColor(kMagenta+1);
2889 sideASuppSpacer->SetLineWidth(1);
2890 sideASuppSpacer->SetFillColor(sideASuppSpacer->GetLineColor());
2891 sideASuppSpacer->SetFillStyle(4000); // 0% transparent
2892
2893 TGeoVolume *sideASuppForwRing = new TGeoVolume("ITSsuppSideASuppForwRing",
2894 forwardRing, medAl);
2895
2896 sideASuppForwRing->SetVisibility(kTRUE);
2897 sideASuppForwRing->SetLineColor(kMagenta+1);
2898 sideASuppForwRing->SetLineWidth(1);
2899 sideASuppForwRing->SetFillColor(sideASuppForwRing->GetLineColor());
2900 sideASuppForwRing->SetFillStyle(4000); // 0% transparent
2901
2902 TGeoVolume *sideASuppForwCone = new TGeoVolume("ITSsuppSideASuppForwCone",
2903 forwardCone, medAl);
2904
2905 sideASuppForwCone->SetVisibility(kTRUE);
2906 sideASuppForwCone->SetLineColor(kMagenta+1);
2907 sideASuppForwCone->SetLineWidth(1);
2908 sideASuppForwCone->SetFillColor(sideASuppForwCone->GetLineColor());
2909 sideASuppForwCone->SetFillStyle(4000); // 0% transparent
2910
2911 TGeoVolume *sideAFirstSuppBackRing = new TGeoVolume("ITSsuppSideAFirstSuppBackRing",
2912 firstSuppBackRing, medAl);
2913
2914 sideAFirstSuppBackRing->SetVisibility(kTRUE);
2915 sideAFirstSuppBackRing->SetLineColor(kMagenta+1);
2916 sideAFirstSuppBackRing->SetLineWidth(1);
2917 sideAFirstSuppBackRing->SetFillColor(sideAFirstSuppBackRing->GetLineColor());
2918 sideAFirstSuppBackRing->SetFillStyle(4000); // 0% transparent
2919
2920 TGeoVolume *sideASecondSuppBackRing = new TGeoVolume("ITSsuppSideASecondSuppBackRing",
2921 secondSuppBackRing, medAl);
2922
2923 sideASecondSuppBackRing->SetVisibility(kTRUE);
2924 sideASecondSuppBackRing->SetLineColor(kMagenta+1);
2925 sideASecondSuppBackRing->SetLineWidth(1);
2926 sideASecondSuppBackRing->SetFillColor(sideASecondSuppBackRing->GetLineColor());
2927 sideASecondSuppBackRing->SetFillStyle(4000); // 0% transparent
2928
2929 TGeoVolume *sideASuppRod = new TGeoVolume("ITSsuppSideASuppRod",
2930 suppRod, medAl);
2931
2932 sideASuppRod->SetVisibility(kTRUE);
2933 sideASuppRod->SetLineColor(kMagenta+1);
2934 sideASuppRod->SetLineWidth(1);
2935 sideASuppRod->SetFillColor(sideASuppRod->GetLineColor());
2936 sideASuppRod->SetFillStyle(4000); // 0% transparent
2937
2938 TGeoVolume *sideASuppRearRing = new TGeoVolume("ITSsuppSideASuppRearRing",
2939 suppRearRing, medAl);
2940
2941 sideASuppRearRing->SetVisibility(kTRUE);
2942 sideASuppRearRing->SetLineColor(kMagenta+1);
2943 sideASuppRearRing->SetLineWidth(1);
2944 sideASuppRearRing->SetFillColor(sideASuppRearRing->GetLineColor());
2945 sideASuppRearRing->SetFillStyle(4000); // 0% transparent
2946
2947
2948 // Now build up the support structure
2949 zloc = kSuppRingZTrans;
2950 trayASuppStruct->AddNode(sideAExtSuppRing, 1,
2951 new TGeoTranslation(0, 0, zloc) );
2952 trayASuppStruct->AddNode(sideAExtSuppRing, 2,
2953 new TGeoCombiTrans( 0, 0, zloc,
2954 new TGeoRotation("",180,0,0)));
2955
2956 zloc += kExtSuppRingThick;
2957 trayASuppStruct->AddNode(sideAIntSuppRing, 1,
2958 new TGeoTranslation(0, 0, zloc) );
2959 trayASuppStruct->AddNode(sideAIntSuppRing, 2,
2960 new TGeoCombiTrans( 0, 0, zloc,
2961 new TGeoRotation("",180,0,0)));
2962
2963 xloc = kExtSuppRingBase - kIntSuppRingInward;
2964 yloc = kSuppRingYTrans;
2965 zloc += (kIntSuppRingThick + kSuppCylHeight/2);
2966 trayASuppStruct->AddNode(sideASuppCyl, 1,
2967 new TGeoTranslation(0, 0, zloc) );
2968 trayASuppStruct->AddNode(sideASuppCyl, 2,
2969 new TGeoCombiTrans( 0, 0, zloc,
2970 new TGeoRotation("",180,0,0)));
2971 trayASuppStruct->AddNode(sideASuppSpacer, 1,
2972 new TGeoCombiTrans( xloc, yloc, zloc,
2973 new TGeoRotation("",90+kSuppSpacerAngle,0,0)));
2974 trayASuppStruct->AddNode(sideASuppSpacer, 2,
2975 new TGeoCombiTrans(-xloc, yloc, zloc,
2976 new TGeoRotation("",0,180,kSuppSpacerAngle-90)));
2977 trayASuppStruct->AddNode(sideASuppSpacer, 3,
2978 new TGeoCombiTrans( xloc,-yloc, zloc,
2979 new TGeoRotation("",180,180,kSuppSpacerAngle-90)));
2980 trayASuppStruct->AddNode(sideASuppSpacer, 4,
2981 new TGeoCombiTrans(-xloc,-yloc, zloc,
2982 new TGeoRotation("",270+kSuppSpacerAngle,0,0)));
2983
2984
2985 zloc += kSuppCylHeight/2;
2986 trayASuppStruct->AddNode(sideAIntSuppRing, 3,
2987 new TGeoTranslation(0, 0, zloc) );
2988 trayASuppStruct->AddNode(sideAIntSuppRing, 4,
2989 new TGeoCombiTrans( 0, 0, zloc,
2990 new TGeoRotation("",180,0,0)));
2991
2992 zloc += kIntSuppRingThick;
2993 trayASuppStruct->AddNode(sideAExtSuppRing, 3,
2994 new TGeoTranslation(0, 0, zloc) );
2995 trayASuppStruct->AddNode(sideAExtSuppRing, 4,
2996 new TGeoCombiTrans( 0, 0, zloc,
2997 new TGeoRotation("",180,0,0)));
2998
2999 zloc += kExtSuppRingThick;
3000 trayASuppStruct->AddNode(sideASuppForwRing, 1,
3001 new TGeoTranslation(0, 0, zloc) );
3002 trayASuppStruct->AddNode(sideASuppForwRing, 2,
3003 new TGeoCombiTrans( 0, 0, zloc,
3004 new TGeoRotation("",180,0,0)));
3005
3006 zloc += kSuppForwRingThikAll;
3007 trayASuppStruct->AddNode(sideASuppForwCone, 1,
3008 new TGeoTranslation(0, 0, zloc) );
3009 trayASuppStruct->AddNode(sideASuppForwCone, 2,
3010 new TGeoCombiTrans( 0, 0, zloc,
3011 new TGeoRotation("",180,0,0)));
3012
3013 zloc += (kSuppForwConeLen1+kSuppForwConeLen2);
3014 trayASuppStruct->AddNode(sideAFirstSuppBackRing, 1,
3015 new TGeoTranslation(0, 0, zloc) );
3016 trayASuppStruct->AddNode(sideAFirstSuppBackRing, 2,
3017 new TGeoCombiTrans( 0, 0, zloc,
3018 new TGeoRotation("",180,0,0)));
3019
3020 zloc += kSuppBackRingThick1;
3021 trayASuppStruct->AddNode(sideASecondSuppBackRing, 1,
3022 new TGeoTranslation(0, 0, zloc) );
3023 trayASuppStruct->AddNode(sideASecondSuppBackRing, 2,
3024 new TGeoCombiTrans( 0, 0, zloc,
3025 new TGeoRotation("",180,0,0)));
3026
3027 xloc = kSuppRearRingXRodHole;
3028 yloc = kSuppRearRingBaseHi + kSuppRearRingYRodHole;
3029 zloc = kRearSuppZTransGlob - kBackRodZTrans + suppRod->GetDz();
3030 trayASuppStruct->AddNode(sideASuppRod, 1,
3031 new TGeoTranslation( xloc, yloc, zloc) );
3032 trayASuppStruct->AddNode(sideASuppRod, 2,
3033 new TGeoTranslation(-xloc, yloc, zloc) );
3034 trayASuppStruct->AddNode(sideASuppRod, 3,
3035 new TGeoTranslation( xloc,-yloc, zloc) );
3036 trayASuppStruct->AddNode(sideASuppRod, 4,
3037 new TGeoTranslation(-xloc,-yloc, zloc) );
3038
3039 zloc += suppRod->GetDz();
3040 trayASuppStruct->AddNode(sideASuppRearRing, 1,
3041 new TGeoTranslation( 0, 0, zloc) );
3042 trayASuppStruct->AddNode(sideASuppRearRing, 2,
3043 new TGeoCombiTrans( 0, 0, zloc,
3044 new TGeoRotation("",180,0,0)));
3045
3046
3047 // Finally put everything in the mother volume
3048 moth->AddNode(trayASuppStruct,1,0);
3049
3050 return;
3051}
3052
3053//______________________________________________________________________
3054void AliITSv11GeometrySupport::ServicesCableSupportSPD(TGeoVolume *moth,
3055 TGeoManager *mgr){
3056//
3057// Creates the all SPD cable trays which are outside the ITS support cones
3058// but still inside the TPC
3059// In order to avoid a huge monolithic routine, this method actually
3060// calls inner methods to create and assemble the various (macro)pieces
3061//
3062// Input:
3063// moth : the TGeoVolume owing the volume structure
3064// mgr : the GeoManager (default gGeoManager)
3065// Output:
3066//
3067// Created: ??? Bjorn S. Nilsen
3068// Updated: 15 Nov 2009 Mario Sitta
3069//
3070// Technical data are taken from AutoCAD drawings and other (oral)
3071// information given by F.Tosello
3072//
3073
3074 SPDCableTraysSideA(moth, mgr);
3075// SPDCableTraysSideC(moth, mgr);
3076
3077}
3078
3079//______________________________________________________________________
3080void AliITSv11GeometrySupport::ServicesCableSupportSDD(TGeoVolume *moth,
3081 TGeoManager *mgr){
3082//
3083// Creates the all SDD cable trays which are outside the ITS support cones
3084// but still inside the TPC
3085// In order to avoid a huge monolithic routine, this method actually
3086// calls inner methods to create and assemble the various (macro)pieces
3087//
3088// Input:
3089// moth : the TGeoVolume owing the volume structure
3090// mgr : the GeoManager (default gGeoManager)
3091// Output:
3092//
3093// Created: 14 Dec 2009 Mario Sitta
3094//
3095
3096 SDDCableTraysSideA(moth, mgr);
3097// SDDCableTraysSideC(moth, mgr);
3098
3099 return;
3100}
3101
3102//______________________________________________________________________
3103void AliITSv11GeometrySupport::ServicesCableSupportSSD(TGeoVolume *moth,
3104 TGeoManager *mgr){
3105//
3106// Creates the SSD cable trays which are outside the ITS support cones
3107// but still inside the TPC
3108// In order to avoid a huge monolithic routine, this method actually
3109// calls inner methods to create and assemble the various (macro)pieces
3110//
3111// Input:
3112// moth : the TGeoVolume owing the volume structure
3113// mgr : the GeoManager (default gGeoManager)
3114// Output:
3115//
3116// Created: 15 Nov 2009 Mario Sitta
3117//
3118
3119 SSDCableTraysSideA(moth, mgr);
3120// SSDCableTraysSideC(moth, mgr);
3121
3122 return;
3123}
3124
3125//______________________________________________________________________
3126void AliITSv11GeometrySupport::SPDCableTraysSideA(TGeoVolume *moth,
3127 TGeoManager *mgr){
3128//
3129// Creates the SPD cable trays which are outside the ITS support cones
3130// but still inside the TPC on Side A
3131// (part of this code is taken or anyway inspired to ServicesCableSupport
3132// method of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06)
3133//
3134// Input:
3135// moth : the TGeoVolume owing the volume structure
3136// mgr : the GeoManager (default gGeoManager)
3137// Output:
3138//
3139// Created: 15 Feb 2010 Mario Sitta
3140//
3141// Technical data are taken from AutoCAD drawings, L.Simonetti technical
3142// drawings and other (oral) information given by F.Tosello and D.Elia
3143// (small differences with blueprints - e.g. -0.07mm in R1Trans and
3144// R2Trans - fix small overlaps; they are then compensated in positioning
3145// the Rear Tray to avoid its own overlaps with the rear supporting ring)
3146// Optical cables and low voltage cables are approximated with mean
3147// materials and square cross sections, but preserving the total material
3148// budget.
3149//
3150
3151 // Overall position and rotation of the A-Side Cable Trays
3152 // (parts of 0872/G/D)
3153 const Double_t kTrayAR1Trans = 396.93 *fgkmm;
3154 const Double_t kTrayAR2Trans = 413.93 *fgkmm;
3155 const Double_t kTrayAZTrans = 1011.00 *fgkmm;
3156 const Double_t kTrayAZRot = (180-169.5);// Degrees
3157 const Double_t kTrayAFirstRotAng = 22.00; // Degrees
3158 const Double_t kTrayASecondRotAng = 15.00; // Degrees
3159
3160 const Double_t kForwardTrayWide = 94.00 *fgkmm;//!!!TO BE CHECKED!!!
3161 const Double_t kForwardTrayFirstHigh = 83.00 *fgkmm;//!!!TO BE CHECKED!!!
3162 const Double_t kForwardTraySecondHigh = 52.70 *fgkmm;//!!!TO BE CHECKED!!!
3163 const Double_t kForwardTrayTotalLen = 853.00 *fgkmm;
3164 const Double_t kForwardTrayFirstLen = 435.00 *fgkmm;
3165 const Double_t kForwardTrayWingWide = 16.00 *fgkmm;//!!!TO BE CHECKED!!!
3166 const Double_t kForwardTrayInterSpace = 18.00 *fgkmm;//!!!TO BE CHECKED!!!
3167 const Double_t kForwardTrayThick = 2.00 *fgkmm;
3168
3169 const Int_t kForwardSideNpoints = 6;
3170
3171 const Double_t kExternalTrayLen = 1200.00 *fgkmm;
3172 const Double_t kExternalTrayWide = kForwardTrayWide;
3173 const Double_t kExternalTrayHigh = kForwardTraySecondHigh;
3174 const Double_t kExternalTrayThick = kForwardTrayThick;
3175
3176 const Double_t kCoolingTubeRmin = 5.00 *fgkmm;
3177 const Double_t kCoolingTubeRmax = 6.00 *fgkmm;
3178
3179 const Double_t kOpticalFibersSect = 8.696*fgkmm;//!!!ESTIMATED!!!
3180 const Double_t kLowVoltageCableSect = 3.412*fgkmm;//!!!ESTIMATED!!!
3181
3182 // Local variables
3183 Double_t xprof[kForwardSideNpoints], yprof[kForwardSideNpoints];
3184 Double_t xloc, yloc, zloc, alpharot;
3185
3186
3187 // The two tray components as assemblies
3188 TGeoVolumeAssembly *cableTrayAForw =
3189 new TGeoVolumeAssembly("ITSsupportSPDTrayAForwRear");
3190 TGeoVolumeAssembly *cableTrayAExt =
3191 new TGeoVolumeAssembly("ITSsupportSPDTrayAExt");
3192
3193
3194 // First create all needed shapes
3195
3196 // The lower face of the forward tray: a BBox
3197 TGeoBBox *forwTrayLowerFace = new TGeoBBox(kForwardTrayWide/2,
3198 kForwardTrayThick/2,
3199 kForwardTrayTotalLen/2);
3200
3201 // The side face of the forward tray: a Xtru
3202 TGeoXtru *forwTraySideFace = new TGeoXtru(2);
3203 forwTraySideFace->SetName("ITSsuppSPDForwTraySide");
3204
3205 xprof[0] = 0;
3206 yprof[0] = kForwardTrayThick;
3207 xprof[1] = kForwardTrayTotalLen;
3208 yprof[1] = yprof[0];
3209 xprof[2] = xprof[1];
3210 yprof[2] = kForwardTraySecondHigh - kForwardTrayThick;
3211 xprof[3] = kForwardTrayFirstLen;
3212 yprof[3] = yprof[2];
3213 xprof[4] = xprof[3];
3214 yprof[4] = kForwardTrayFirstHigh - kForwardTrayThick;
3215 xprof[5] = xprof[0];
3216 yprof[5] = yprof[4];
3217
3218 forwTraySideFace->DefinePolygon(6, xprof, yprof);
3219 forwTraySideFace->DefineSection(0, 0);
3220 forwTraySideFace->DefineSection(1, kForwardTrayThick);
3221
3222 // The covers of the forward tray: two BBox's
3223 TGeoBBox *forwTrayShortCover = new TGeoBBox(kForwardTrayWide/2,
3224 kForwardTrayThick/2,
3225 kForwardTrayFirstLen/2);
3226
3227 TGeoBBox *forwTrayLongCover = new TGeoBBox(kForwardTrayWide/2,
3228 kForwardTrayThick/2,
3229 (kForwardTrayTotalLen - kForwardTrayFirstLen)/2);
3230
3231 // Each small wing of the forward tray: a BBox
3232 TGeoBBox *forwTrayWing = new TGeoBBox(kForwardTrayWingWide/2,
3233 (kForwardTrayFirstHigh-kForwardTraySecondHigh)/2,
3234 kForwardTrayThick/2);
3235
3236 // The internal plane of the forward tray: a BBox
3237 TGeoBBox *forwTrayPlane = new TGeoBBox(kForwardTrayWide/2-kForwardTrayThick,
3238 kForwardTrayThick/2,
3239 kForwardTrayTotalLen/2);
3240
3241 // The internal wall of the forward tray: a BBox
3242 TGeoBBox *forwTrayWall = new TGeoBBox(kForwardTrayThick/2,
3243 (kForwardTrayInterSpace-kForwardTrayThick)/2,
3244 kForwardTrayTotalLen/2);
3245
3246 // Each horizontal face of the external tray: a BBox
3247 TGeoBBox *extTrayHorFace = new TGeoBBox(kExternalTrayWide/2-kExternalTrayThick,
3248 kExternalTrayThick/2,
3249 kExternalTrayLen/2);
3250
3251 // Each vertical face of the external tray: a BBox
3252 TGeoBBox *extTrayVerFace = new TGeoBBox(kExternalTrayThick/2,
3253 kExternalTrayHigh/2,
3254 kExternalTrayLen/2);
3255
3256 // The internal wall of the external tray: a BBox
3257 TGeoBBox *extTrayWall = new TGeoBBox(kExternalTrayThick/2,
3258 (kForwardTrayInterSpace-kExternalTrayThick)/2,
3259 kExternalTrayLen/2);
3260
3261 // The cooling tube inside the forward tray: a TubeSeg
3262 Double_t zelong = (kForwardTraySecondHigh - 2*kForwardTrayThick
3263 - 2*forwTrayWall->GetDY() - kCoolingTubeRmax)*SinD(kTrayAZRot);
3264 Double_t zlen = (zelong + kForwardTrayTotalLen)/2;
3265 TGeoTubeSeg *coolTubeForw = new TGeoTubeSeg(kCoolingTubeRmin,
3266 kCoolingTubeRmax, zlen, 0, 360);
3267
3268 // The cooling tube inside the external tray: a Ctub
3269 TGeoCtub *coolTubeExt = new TGeoCtub(kCoolingTubeRmin, kCoolingTubeRmax,
3270 kExternalTrayLen/2, 0, 360,
3271 0, SinD(kTrayAZRot),-CosD(kTrayAZRot),
3272 0, 0, 1);
3273
3274 // The optical fibers inside the forward tray: a BBox
3275 TGeoBBox *optFibsForw = new TGeoBBox(kOpticalFibersSect/2,
3276 kOpticalFibersSect/2,
3277 kForwardTrayTotalLen/2);
3278
3279 // The optical fibers inside the external tray: a Xtru
3280 TGeoXtru *optFibsExt = new TGeoXtru(2);
3281 optFibsExt->SetName("ITSsuppSPDExtTrayOptFibs");
3282
3283 yprof[0] = -kExternalTrayHigh + 2*kExternalTrayThick
3284 + 2*forwTrayWall->GetDY();
3285 xprof[0] = yprof[0]*TanD(kTrayAZRot);
3286 xprof[1] = kExternalTrayLen;
3287 yprof[1] = yprof[0];
3288 xprof[2] = xprof[1];
3289 yprof[2] = yprof[1] + kOpticalFibersSect;
3290 yprof[3] = yprof[2];
3291 xprof[3] = yprof[2]*TanD(kTrayAZRot);
3292
3293 optFibsExt->DefinePolygon(4, xprof, yprof);
3294 optFibsExt->DefineSection(0, 0);
3295 optFibsExt->DefineSection(1, kOpticalFibersSect);
3296
3297 // The Low Voltage cables inside the forward tray: a BBox
3298 TGeoBBox *lowCablesForw = new TGeoBBox(kLowVoltageCableSect/2,
3299 kLowVoltageCableSect/2,
3300 kForwardTrayTotalLen/2);
3301
3302 // The Low Voltage inside the external tray: a Xtru
3303 TGeoXtru *lowCablesExt = new TGeoXtru(2);
3304 lowCablesExt->SetName("ITSsuppSPDExtTrayLowVoltage");
3305
3306 yprof[0] = -kExternalTrayHigh + 2*kExternalTrayThick
3307 + 2*forwTrayWall->GetDY();
3308 xprof[0] = yprof[0]*TanD(kTrayAZRot);
3309 xprof[1] = kExternalTrayLen;
3310 yprof[1] = yprof[0];
3311 xprof[2] = xprof[1];
3312 yprof[2] = yprof[1] + kLowVoltageCableSect;
3313 yprof[3] = yprof[2];
3314 xprof[3] = yprof[2]*TanD(kTrayAZRot);
3315
3316 lowCablesExt->DefinePolygon(4, xprof, yprof);
3317 lowCablesExt->DefineSection(0, 0);
3318 lowCablesExt->DefineSection(1, kLowVoltageCableSect);
3319
3320
3321 // We have all shapes: now create the real volumes
3322 TGeoMedium *medAl = mgr->GetMedium("ITS_ALUMINUM$");
3323 TGeoMedium *medIn = mgr->GetMedium("ITS_INOX$");
3324 TGeoMedium *medFibs = mgr->GetMedium("ITS_SDD OPTICFIB$");//!!TO BE CHECKED!!
3325 TGeoMedium *medLVC = mgr->GetMedium("ITS_SPD_LOWCABLES$");
3326
3327 TGeoVolume *forwTrayABase = new TGeoVolume("ITSsuppSPDSideAForwTrayABase",
3328 forwTrayLowerFace, medAl);
3329
3330 forwTrayABase->SetVisibility(kTRUE);
3331 forwTrayABase->SetLineColor(6); // Purple
3332 forwTrayABase->SetLineWidth(1);
3333 forwTrayABase->SetFillColor(forwTrayABase->GetLineColor());
3334 forwTrayABase->SetFillStyle(4000); // 0% transparent
3335
3336 TGeoVolume *forwTrayASide = new TGeoVolume("ITSsuppSPDSideAForwTrayASide",
3337 forwTraySideFace, medAl);
3338
3339 forwTrayASide->SetVisibility(kTRUE);
3340 forwTrayASide->SetLineColor(6); // Purple
3341 forwTrayASide->SetLineWidth(1);
3342 forwTrayASide->SetFillColor(forwTrayASide->GetLineColor());
3343 forwTrayASide->SetFillStyle(4000); // 0% transparent
3344
3345 TGeoVolume *forwTrayACoverShort = new TGeoVolume("ITSsuppSPDSideAForwTrayASC",
3346 forwTrayShortCover, medAl);
3347
3348 forwTrayACoverShort->SetVisibility(kTRUE);
3349 forwTrayACoverShort->SetLineColor(6); // Purple
3350 forwTrayACoverShort->SetLineWidth(1);
3351 forwTrayACoverShort->SetFillColor(forwTrayACoverShort->GetLineColor());
3352 forwTrayACoverShort->SetFillStyle(4000); // 0% transparent
3353
3354 TGeoVolume *forwTrayACoverLong = new TGeoVolume("ITSsuppSPDSideAForwTrayALC",
3355 forwTrayLongCover, medAl);
3356
3357 forwTrayACoverLong->SetVisibility(kTRUE);
3358 forwTrayACoverLong->SetLineColor(6); // Purple
3359 forwTrayACoverLong->SetLineWidth(1);
3360 forwTrayACoverLong->SetFillColor(forwTrayACoverLong->GetLineColor());
3361 forwTrayACoverLong->SetFillStyle(4000); // 0% transparent
3362
3363 TGeoVolume *forwTrayAWing = new TGeoVolume("ITSsuppSPDSideAForwTrayAWing",
3364 forwTrayWing, medAl);
3365
3366 forwTrayAWing->SetVisibility(kTRUE);
3367 forwTrayAWing->SetLineColor(6); // Purple
3368 forwTrayAWing->SetLineWidth(1);
3369 forwTrayAWing->SetFillColor(forwTrayAWing->GetLineColor());
3370 forwTrayAWing->SetFillStyle(4000); // 0% transparent
3371
3372 TGeoVolume *forwTrayAPlane = new TGeoVolume("ITSsuppSPDSideAForwTrayAPlane",
3373 forwTrayPlane, medAl);
3374
3375 forwTrayAPlane->SetVisibility(kTRUE);
3376 forwTrayAPlane->SetLineColor(6); // Purple
3377 forwTrayAPlane->SetLineWidth(1);
3378 forwTrayAPlane->SetFillColor(forwTrayAPlane->GetLineColor());
3379 forwTrayAPlane->SetFillStyle(4000); // 0% transparent
3380
3381 TGeoVolume *forwTrayAWall = new TGeoVolume("ITSsuppSPDSideAForwTrayAWall",
3382 forwTrayWall, medAl);
3383
3384 forwTrayAWall->SetVisibility(kTRUE);
3385 forwTrayAWall->SetLineColor(6); // Purple
3386 forwTrayAWall->SetLineWidth(1);
3387 forwTrayAWall->SetFillColor(forwTrayAWall->GetLineColor());
3388 forwTrayAWall->SetFillStyle(4000); // 0% transparent
3389
3390 TGeoVolume *extTrayAHorFace = new TGeoVolume("ITSsuppSPDSideAExtTrayHorFace",
3391 extTrayHorFace, medAl);
3392
3393 extTrayAHorFace->SetVisibility(kTRUE);
3394 extTrayAHorFace->SetLineColor(6); // Purple
3395 extTrayAHorFace->SetLineWidth(1);
3396 extTrayAHorFace->SetFillColor(extTrayAHorFace->GetLineColor());
3397 extTrayAHorFace->SetFillStyle(4000); // 0% transparent
3398
3399 TGeoVolume *extTrayAVerFace = new TGeoVolume("ITSsuppSPDSideAExtTrayVerFace",
3400 extTrayVerFace, medAl);
3401
3402 extTrayAVerFace->SetVisibility(kTRUE);
3403 extTrayAVerFace->SetLineColor(6); // Purple
3404 extTrayAVerFace->SetLineWidth(1);
3405 extTrayAVerFace->SetFillColor(extTrayAVerFace->GetLineColor());
3406 extTrayAVerFace->SetFillStyle(4000); // 0% transparent
3407
3408 TGeoVolume *extTrayAWall = new TGeoVolume("ITSsuppSPDSideAExtTrayWall",
3409 extTrayWall, medAl);
3410
3411 extTrayAWall->SetVisibility(kTRUE);
3412 extTrayAWall->SetLineColor(6); // Purple
3413 extTrayAWall->SetLineWidth(1);
3414 extTrayAWall->SetFillColor(extTrayAWall->GetLineColor());
3415 extTrayAWall->SetFillStyle(4000); // 0% transparent
3416
3417 TGeoVolume *forwCoolTube = new TGeoVolume("ITSsuppSPDSideAForwTrayCoolTube",
3418 coolTubeForw, medIn);
3419
3420 forwCoolTube->SetVisibility(kTRUE);
3421 forwCoolTube->SetLineColor(kGray); // as in GeometrySPD
3422 forwCoolTube->SetLineWidth(1);
3423 forwCoolTube->SetFillColor(forwCoolTube->GetLineColor());
3424 forwCoolTube->SetFillStyle(4000); // 0% transparent
3425
3426 TGeoVolume *extCoolTube = new TGeoVolume("ITSsuppSPDSideAExtTrayCoolTube",
3427 coolTubeExt, medIn);
3428
3429 extCoolTube->SetVisibility(kTRUE);
3430 extCoolTube->SetLineColor(kGray); // as in GeometrySPD
3431 extCoolTube->SetLineWidth(1);
3432 extCoolTube->SetFillColor(extCoolTube->GetLineColor());
3433 extCoolTube->SetFillStyle(4000); // 0% transparent
3434
3435 TGeoVolume *forwOptFibs = new TGeoVolume("ITSsuppSPDSideAForwTrayOptFibs",
3436 optFibsForw, medFibs);
3437
3438 forwOptFibs->SetVisibility(kTRUE);
3439 forwOptFibs->SetLineColor(kOrange); // Orange
3440 forwOptFibs->SetLineWidth(1);
3441 forwOptFibs->SetFillColor(forwOptFibs->GetLineColor());
3442 forwOptFibs->SetFillStyle(4000); // 0% transparent
3443
3444 TGeoVolume *extOptFibs = new TGeoVolume("ITSsuppSPDSideAExtTrayOptFibs",
3445 optFibsExt, medFibs);
3446
3447 extOptFibs->SetVisibility(kTRUE);
3448 extOptFibs->SetLineColor(kOrange); // Orange
3449 extOptFibs->SetLineWidth(1);
3450 extOptFibs->SetFillColor(extOptFibs->GetLineColor());
3451 extOptFibs->SetFillStyle(4000); // 0% transparent
3452
3453 TGeoVolume *forwLowCabs = new TGeoVolume("ITSsuppSPDSideAForwTrayLowCabs",
3454 lowCablesForw, medLVC);
3455
3456 forwLowCabs->SetVisibility(kTRUE);
3457 forwLowCabs->SetLineColor(kRed); // Red
3458 forwLowCabs->SetLineWidth(1);
3459 forwLowCabs->SetFillColor(forwLowCabs->GetLineColor());
3460 forwLowCabs->SetFillStyle(4000); // 0% transparent
3461
3462 TGeoVolume *extLowCabs = new TGeoVolume("ITSsuppSPDSideAExtTrayLowCabs",
3463 lowCablesExt, medLVC);
3464
3465 extLowCabs->SetVisibility(kTRUE);
3466 extLowCabs->SetLineColor(kRed); // Red
3467 extLowCabs->SetLineWidth(1);
3468 extLowCabs->SetFillColor(extLowCabs->GetLineColor());
3469 extLowCabs->SetFillStyle(4000); // 0% transparent
3470
3471
3472 // Now build up the trays
3473 yloc = forwTrayLowerFace->GetDY();
3474 zloc = forwTrayLowerFace->GetDZ();
3475 cableTrayAForw->AddNode(forwTrayABase, 1,
3476 new TGeoTranslation(0, yloc, zloc));
3477
3478 xloc = kForwardTrayWide/2;
3479 cableTrayAForw->AddNode(forwTrayASide, 1,
3480 new TGeoCombiTrans( xloc, 0, 0,
3481 new TGeoRotation("",90,-90,-90)));
3482 cableTrayAForw->AddNode(forwTrayASide, 2,
3483 new TGeoCombiTrans(-xloc+kForwardTrayThick, 0, 0,
3484 new TGeoRotation("",90,-90,-90)));
3485
3486 yloc = kForwardTrayFirstHigh - forwTrayShortCover->GetDY();
3487 zloc = forwTrayShortCover->GetDZ();
3488 cableTrayAForw->AddNode(forwTrayACoverShort, 1,
3489 new TGeoTranslation(0, yloc, zloc));
3490
3491 yloc = kForwardTraySecondHigh - forwTrayLongCover->GetDY();
3492 zloc = kForwardTrayFirstLen + forwTrayLongCover->GetDZ();
3493 cableTrayAForw->AddNode(forwTrayACoverLong, 1,
3494 new TGeoTranslation(0, yloc, zloc));
3495
3496 xloc = kForwardTrayWide/2 - kForwardTrayThick - forwTrayWing->GetDX();
3497 yloc = kForwardTrayFirstHigh - kForwardTrayThick - forwTrayWing->GetDY();
3498 zloc = kForwardTrayFirstLen - forwTrayWing->GetDZ();
3499 cableTrayAForw->AddNode(forwTrayAWing, 1,
3500 new TGeoTranslation( xloc, yloc, zloc));
3501 cableTrayAForw->AddNode(forwTrayAWing, 2,
3502 new TGeoTranslation(-xloc, yloc, zloc));
3503
3504 yloc = kForwardTrayThick + kForwardTrayInterSpace - forwTrayPlane->GetDY();
3505 zloc = forwTrayPlane->GetDZ();
3506 cableTrayAForw->AddNode(forwTrayAPlane, 1,
3507 new TGeoTranslation(0, yloc, zloc));
3508
3509 yloc = kForwardTrayThick + forwTrayWall->GetDY();
3510 zloc = forwTrayWall->GetDZ();
3511 cableTrayAForw->AddNode(forwTrayAWall, 1,
3512 new TGeoTranslation(0, yloc, zloc));
3513
3514 yloc = 2*kForwardTrayThick + 2*forwTrayWall->GetDY()
3515 + coolTubeForw->GetRmax();
3516 zloc = coolTubeForw->GetDz();
3517 cableTrayAForw->AddNode(forwCoolTube, 1,
3518 new TGeoTranslation(0, yloc, zloc));
3519
3520 xloc = optFibsForw->GetDX() + coolTubeForw->GetRmax();
3521 yloc = 2*kForwardTrayThick + 2*forwTrayWall->GetDY() + optFibsForw->GetDY();
3522 zloc = optFibsForw->GetDZ();
3523 cableTrayAForw->AddNode(forwOptFibs, 1,
3524 new TGeoTranslation(xloc, yloc, zloc));
3525
3526 xloc = lowCablesForw->GetDX() + coolTubeForw->GetRmax();
3527 yloc = 2*kForwardTrayThick + 2*forwTrayWall->GetDY() +lowCablesForw->GetDY();
3528 zloc = lowCablesForw->GetDZ();
3529 cableTrayAForw->AddNode(forwLowCabs, 1,
3530 new TGeoTranslation(-xloc, yloc, zloc));
3531
3532 // To simplify following placement in MARS, origin is on top
3533 yloc = -kExternalTrayHigh + kExternalTrayThick/2;
3534 zloc = kExternalTrayLen/2;
3535 cableTrayAExt->AddNode(extTrayAHorFace, 1,
3536 new TGeoTranslation( 0, yloc, zloc));
3537
3538 xloc = kExternalTrayWide/2 - kExternalTrayThick/2;
3539 yloc = -kExternalTrayHigh/2;
3540 cableTrayAExt->AddNode(extTrayAVerFace, 1,
3541 new TGeoTranslation( xloc, yloc, zloc));
3542 cableTrayAExt->AddNode(extTrayAVerFace, 2,
3543 new TGeoTranslation(-xloc, yloc, zloc));
3544
3545 yloc = -kExternalTrayThick/2;
3546 cableTrayAExt->AddNode(extTrayAHorFace, 2,
3547 new TGeoTranslation( 0, yloc, zloc));
3548
3549 yloc = -kExternalTrayHigh
3550 + kExternalTrayThick + kForwardTrayInterSpace - kExternalTrayThick/2;
3551 cableTrayAExt->AddNode(extTrayAHorFace, 3,
3552 new TGeoTranslation( 0, yloc, zloc));
3553
3554 yloc = -kExternalTrayHigh + kExternalTrayThick + extTrayWall->GetDY();
3555 cableTrayAExt->AddNode(extTrayAWall, 1,
3556 new TGeoTranslation( 0, yloc, zloc));
3557
3558 yloc = -kExternalTrayHigh + 2*kExternalTrayThick + 2*extTrayWall->GetDY()
3559 + coolTubeExt->GetRmax();
3560 zloc = coolTubeExt->GetDz();
3561 cableTrayAExt->AddNode(extCoolTube, 1,
3562 new TGeoTranslation(0, yloc, zloc));
3563
3564 xloc = kOpticalFibersSect + coolTubeExt->GetRmax();
3565 cableTrayAExt->AddNode(extOptFibs, 1,
3566 new TGeoCombiTrans( xloc, 0, 0,
3567 new TGeoRotation("",90,-90,-90)));
3568
3569 xloc = kLowVoltageCableSect + coolTubeExt->GetRmax();
3570 cableTrayAExt->AddNode(extLowCabs, 1,
3571 new TGeoCombiTrans(-xloc, 0, 0,
3572 new TGeoRotation("",90,-90,-90)));
3573
3574
3575 // Finally put everything in the mother volume
3576 Double_t rExtTray = kTrayAR2Trans + kExternalTrayHigh;
3577
3578 moth->AddNode(cableTrayAForw,1,
3579 new TGeoTranslation( 0, kTrayAR1Trans, kTrayAZTrans));
3580 moth->AddNode(cableTrayAForw,2,
3581 new TGeoCombiTrans( 0,-kTrayAR1Trans, kTrayAZTrans,
3582 new TGeoRotation("",180, 0, 0)));
3583
3584 yloc = kTrayAR1Trans + kExternalTrayHigh;
3585 zloc = kTrayAZTrans + kForwardTrayTotalLen;
3586 moth->AddNode(cableTrayAExt,1,
3587 new TGeoCombiTrans( 0, yloc, zloc,
3588 new TGeoRotation("", 0,-kTrayAZRot, 0)));
3589 moth->AddNode(cableTrayAExt,2,
3590 new TGeoCombiTrans( 0,-yloc, zloc,
3591 new TGeoRotation("",180,-kTrayAZRot, 0)));
3592
3593 alpharot = kTrayAFirstRotAng + kTrayASecondRotAng;
3594 xloc = kTrayAR2Trans*SinD(alpharot);
3595 yloc = kTrayAR2Trans*CosD(alpharot);
3596 moth->AddNode(cableTrayAForw,3,
3597 new TGeoCombiTrans( xloc, yloc, kTrayAZTrans,
3598 new TGeoRotation("",-alpharot,0,0) ) );
3599 xloc = rExtTray*SinD(alpharot);
3600 yloc = rExtTray*CosD(alpharot);
3601 moth->AddNode(cableTrayAExt,3,
3602 new TGeoCombiTrans( xloc, yloc, zloc,
3603 new TGeoRotation("",-alpharot,-kTrayAZRot,0) ) );
3604
3605 alpharot += 180;
3606 xloc = kTrayAR2Trans*SinD(alpharot);
3607 yloc = kTrayAR2Trans*CosD(alpharot);
3608 moth->AddNode(cableTrayAForw,4,
3609 new TGeoCombiTrans( xloc, yloc, kTrayAZTrans,
3610 new TGeoRotation("",-alpharot,0,0) ) );
3611 xloc = rExtTray*SinD(alpharot);
3612 yloc = rExtTray*CosD(alpharot);
3613 moth->AddNode(cableTrayAExt,4,
3614 new TGeoCombiTrans( xloc, yloc, zloc,
3615 new TGeoRotation("",-alpharot,-kTrayAZRot,0) ) );
3616
3617 alpharot = - kTrayAFirstRotAng - kTrayASecondRotAng;
3618 xloc = kTrayAR2Trans*SinD(alpharot);
3619 yloc = kTrayAR2Trans*CosD(alpharot);
3620 moth->AddNode(cableTrayAForw,5,
3621 new TGeoCombiTrans( xloc, yloc, kTrayAZTrans,
3622 new TGeoRotation("",-alpharot,0,0) ) );
3623 xloc = rExtTray*SinD(alpharot);
3624 yloc = rExtTray*CosD(alpharot);
3625 moth->AddNode(cableTrayAExt,5,
3626 new TGeoCombiTrans( xloc, yloc, zloc,
3627 new TGeoRotation("",-alpharot,-kTrayAZRot,0) ) );
3628
3629 alpharot += 180;
3630 xloc = kTrayAR2Trans*SinD(alpharot);
3631 yloc = kTrayAR2Trans*CosD(alpharot);
3632 moth->AddNode(cableTrayAForw,6,
3633 new TGeoCombiTrans( xloc, yloc, kTrayAZTrans,
3634 new TGeoRotation("",-alpharot,0,0) ) );
3635 xloc = rExtTray*SinD(alpharot);
3636 yloc = rExtTray*CosD(alpharot);
3637 moth->AddNode(cableTrayAExt,6,
3638 new TGeoCombiTrans( xloc, yloc, zloc,
3639 new TGeoRotation("",-alpharot,-kTrayAZRot,0) ) );
3640
3641 alpharot = kTrayAFirstRotAng + 3*kTrayASecondRotAng;
3642 xloc = kTrayAR2Trans*SinD(alpharot);
3643 yloc = kTrayAR2Trans*CosD(alpharot);
3644 moth->AddNode(cableTrayAForw,7,
3645 new TGeoCombiTrans( xloc, yloc, kTrayAZTrans,
3646 new TGeoRotation("",-alpharot,0,0) ) );
3647 xloc = rExtTray*SinD(alpharot);
3648 yloc = rExtTray*CosD(alpharot);
3649 moth->AddNode(cableTrayAExt,7,
3650 new TGeoCombiTrans( xloc, yloc, zloc,
3651 new TGeoRotation("",-alpharot,-kTrayAZRot,0) ) );
3652
3653 alpharot += 180;
3654 xloc = kTrayAR2Trans*SinD(alpharot);
3655 yloc = kTrayAR2Trans*CosD(alpharot);
3656 moth->AddNode(cableTrayAForw,8,
3657 new TGeoCombiTrans( xloc, yloc, kTrayAZTrans,
3658 new TGeoRotation("",-alpharot,0,0) ) );
3659 xloc = rExtTray*SinD(alpharot);
3660 yloc = rExtTray*CosD(alpharot);
3661 moth->AddNode(cableTrayAExt,8,
3662 new TGeoCombiTrans( xloc, yloc, zloc,
3663 new TGeoRotation("",-alpharot,-kTrayAZRot,0) ) );
3664
3665 alpharot = - kTrayAFirstRotAng - 3*kTrayASecondRotAng;
3666 xloc = kTrayAR2Trans*SinD(alpharot);
3667 yloc = kTrayAR2Trans*CosD(alpharot);
3668 moth->AddNode(cableTrayAForw,9,
3669 new TGeoCombiTrans( xloc, yloc, kTrayAZTrans,
3670 new TGeoRotation("",-alpharot,0,0) ) );
3671 xloc = rExtTray*SinD(alpharot);
3672 yloc = rExtTray*CosD(alpharot);
3673 moth->AddNode(cableTrayAExt,9,
3674 new TGeoCombiTrans( xloc, yloc, zloc,
3675 new TGeoRotation("",-alpharot,-kTrayAZRot,0) ) );
3676
3677 alpharot += 180;
3678 xloc = kTrayAR2Trans*SinD(alpharot);
3679 yloc = kTrayAR2Trans*CosD(alpharot);
3680 moth->AddNode(cableTrayAForw,10,
3681 new TGeoCombiTrans( xloc, yloc, kTrayAZTrans,
3682 new TGeoRotation("",-alpharot,0,0) ) );
3683 xloc = rExtTray*SinD(alpharot);
3684 yloc = rExtTray*CosD(alpharot);
3685 moth->AddNode(cableTrayAExt,10,
3686 new TGeoCombiTrans( xloc, yloc, zloc,
3687 new TGeoRotation("",-alpharot,-kTrayAZRot,0) ) );
3688
3689
3690 return;
3691}
3692
3693//______________________________________________________________________
3694void AliITSv11GeometrySupport::SDDCableTraysSideA(TGeoVolume *moth,
3695 TGeoManager *mgr){
3696//
3697// Creates the SDD cable trays which are outside the ITS support cones
3698// but still inside the TPC on Side A
3699// (part of this code is taken or anyway inspired to ServicesCableSupport
3700// method of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06)
3701//
3702// Input:
3703// moth : the TGeoVolume owing the volume structure
3704// mgr : the GeoManager (default gGeoManager)
3705// Output:
3706//
3707// Created: ??? Bjorn S. Nilsen
3708// Updated: 5 Jan 2010 Mario Sitta
3709// Updated: 26 Feb 2010 Mario Sitta
3710//
3711// Technical data are taken from AutoCAD drawings, L.Simonetti technical
3712// drawings and other (oral) information given by F.Tosello
3713//
3714
3715 // Overall position and rotation of the A-Side Cable Trays
3716 // (parts of 0872/G/D)
3717 const Double_t kTrayARTrans = 410.00 *fgkmm;
3718 const Double_t kTrayAZTrans = 1011.00 *fgkmm;
3719 const Double_t kTrayAZToSupportRing = 435.00 *fgkmm;
3720 const Double_t kExternTrayZTrans = 853.00 *fgkmm;
3721 const Double_t kExternCoverYTrans = 2.00 *fgkmm;
3722 const Double_t kTrayAZRot = (180-169.5);// Degrees
3723 const Double_t kTrayAFirstRotAng = 22.00; // Degrees
3724 const Double_t kTrayASecondRotAng = 15.00; // Degrees
3725
3726 const Double_t kForwardTrayTailHeight = 100.00 *fgkmm; // Computed
3727 const Double_t kForwardTrayTotalHeight = 170.00 *fgkmm; // Computed
3728 const Double_t kForwardTrayUpperLength = 405.00 *fgkmm; // Computed
3729 const Double_t kForwardCoverLength = 380.00 *fgkmm;
3730 const Double_t kForwardCoverWide = 133.00 *fgkmm;
3731 const Double_t kForwardCoverHeight = 10.00 *fgkmm;
3732 const Double_t kForwardCoverThick = 1.00 *fgkmm;
3733
3734 const Double_t kExternTrayTotalLen = 1200.00 *fgkmm;
3735 const Double_t kExternTrayTotalHeight = 52.00 *fgkmm;
3736 const Double_t kExternCoverLen = kExternTrayTotalLen;
3737 const Double_t kExternCoverThick = 5.00 *fgkmm;
3738 const Double_t kExternCoverSideThick = 3.00 *fgkmm;
3739
3740 const Int_t kForwardTrayNpoints = 8;
3741
3742
3743 // Local variables
3744 Double_t xprof[kForwardTrayNpoints], yprof[kForwardTrayNpoints];
3745 Double_t xloc, yloc, zloc, alpharot;
3746
3747
3748 // The whole tray as an assembly
3749 TGeoVolumeAssembly *cableTrayA = new TGeoVolumeAssembly("ITSsupportSDDTrayA");
3750
3751
3752 // First create all needed shapes
3753
3754 // The forward tray is very complex and deserves a dedicated method
3755 TGeoVolumeAssembly *forwardTray = CreateSDDForwardTraySideA(mgr);
3756
3757 // The forward cover: a Xtru
3758 TGeoXtru *forwardCover = new TGeoXtru(2);
3759 forwardCover->SetName("ITSsuppSDDForwCover");
3760
3761 xprof[0] = kForwardCoverWide/2;
3762 yprof[0] = kForwardCoverHeight;
3763 xprof[1] = xprof[0];
3764 yprof[1] = 0;
3765 xprof[2] = xprof[1] - kForwardCoverThick;
3766 yprof[2] = yprof[1];
3767 xprof[3] = xprof[2];
3768 yprof[3] = yprof[0] - kForwardCoverThick;
3769
3770 // We did the right side, now reflex on the left side
3771 for (Int_t jp = 0; jp < 4; jp++) {
3772 xprof[4+jp] = -xprof[3-jp];
3773 yprof[4+jp] = yprof[3-jp];
3774 }
3775
3776 forwardCover->DefinePolygon(8, xprof, yprof);
3777 forwardCover->DefineSection(0, 0);
3778 forwardCover->DefineSection(1, kForwardCoverLength);
3779
3780 // The external tray (as 0872/G/D/03): a Xtru
3781 TGeoXtru *externalTray = CreateSDDSSDTraysSideA(kExternTrayTotalLen,
3782 kExternTrayTotalHeight);
3783
3784 // The external covers: a Composite Shape
3785 TGeoCompositeShape *externCover = CreateTrayAExternalCover(kExternCoverLen);
3786
3787
3788 // We have all shapes: now create the real volumes
3789 TGeoMedium *medAl = mgr->GetMedium("ITS_ALUMINUM$");
3790 TGeoMedium *medAntic = mgr->GetMedium("ITS_ANTICORODAL$");
3791
3792 TGeoVolume *forwardTrayCover = new TGeoVolume("ITSsuppSDDSideAForwTrayCover",
3793 forwardCover, medAl);
3794
3795 forwardTrayCover->SetVisibility(kTRUE);
3796 forwardTrayCover->SetLineColor(kMagenta+1); // Purple
3797 forwardTrayCover->SetLineWidth(1);
3798 forwardTrayCover->SetFillColor(forwardTrayCover->GetLineColor());
3799 forwardTrayCover->SetFillStyle(4000); // 0% transparent
3800
3801 TGeoVolume *externalTraySDD = new TGeoVolume("ITSsuppSDDSideAExternalTray",
3802 externalTray, medAl);
3803
3804 externalTraySDD->SetVisibility(kTRUE);
3805 externalTraySDD->SetLineColor(6); // Purple
3806 externalTraySDD->SetLineWidth(1);
3807 externalTraySDD->SetFillColor(externalTraySDD->GetLineColor());
3808 externalTraySDD->SetFillStyle(4000); // 0% transparent
3809
3810 TGeoVolume *externTrayCover = new TGeoVolume("ITSsuppSDDSideAExtTrayCover",
3811 externCover, medAntic);
3812
3813 externTrayCover->SetVisibility(kTRUE);
3814 externTrayCover->SetLineColor(kMagenta+1); // Purple
3815 externTrayCover->SetLineWidth(1);
3816 externTrayCover->SetFillColor(externTrayCover->GetLineColor());
3817 externTrayCover->SetFillStyle(4000); // 0% transparent
3818
3819
3820 // Now build up the tray
3821 yloc = kForwardTrayTotalHeight - forwardCover->GetY(3) +
3822 kExternTrayTotalHeight +
3823 kExternCoverSideThick - kForwardTrayTailHeight;
3824 zloc = kTrayAZToSupportRing - kForwardCoverLength;
3825 cableTrayA->AddNode(forwardTrayCover, 1,
3826 new TGeoTranslation( 0, yloc, zloc) );
3827
3828 Double_t totalhi = kExternTrayTotalHeight + kExternCoverThick
3829 - kExternCoverYTrans;
3830
3831 yloc = totalhi*(1 - CosD(kTrayAZRot));
3832 zloc = kExternTrayZTrans + totalhi*SinD(kTrayAZRot);
3833 cableTrayA->AddNode(externalTraySDD, 1,
3834 new TGeoCombiTrans( 0, yloc, zloc,
3835 new TGeoRotation("", 0,-kTrayAZRot, 0) ) );
3836
3837 yloc = kExternTrayTotalHeight - kExternCoverYTrans;
3838 zloc = kExternTrayZTrans - yloc*SinD(kTrayAZRot);
3839 yloc *= CosD(kTrayAZRot);
3840 zloc += totalhi*SinD(kTrayAZRot);
3841 yloc += totalhi*(1 - CosD(kTrayAZRot));
3842 cableTrayA->AddNode(externTrayCover,1,
3843 new TGeoCombiTrans( 0, yloc, zloc,
3844 new TGeoRotation("", 0,-kTrayAZRot, 0) ) );
3845
3846
3847 // Finally put everything in the mother volume
3848 alpharot = -kTrayAFirstRotAng;
3849 xloc = kTrayARTrans*SinD(alpharot);
3850 yloc = kTrayARTrans*CosD(alpharot);
3851 zloc = kTrayAZTrans;
3852 moth->AddNode(cableTrayA,1,
3853 new TGeoCombiTrans( xloc, yloc, zloc,
3854 new TGeoRotation("",-alpharot,0,0) ) );
3855
3856 alpharot += 180;
3857 xloc = kTrayARTrans*SinD(alpharot);
3858 yloc = kTrayARTrans*CosD(alpharot);
3859 moth->AddNode(cableTrayA,2,
3860 new TGeoCombiTrans( xloc, yloc, zloc,
3861 new TGeoRotation("",-alpharot,0,0) ) );
3862
3863 alpharot = kTrayAFirstRotAng + 2*kTrayASecondRotAng;
3864 xloc = kTrayARTrans*SinD(alpharot);
3865 yloc = kTrayARTrans*CosD(alpharot);
3866 moth->AddNode(cableTrayA,3,
3867 new TGeoCombiTrans( xloc, yloc, zloc,
3868 new TGeoRotation("",-alpharot,0,0) ) );
3869
3870 alpharot += 180;
3871 xloc = kTrayARTrans*SinD(alpharot);
3872 yloc = kTrayARTrans*CosD(alpharot);
3873 moth->AddNode(cableTrayA,4,
3874 new TGeoCombiTrans( xloc, yloc, zloc,
3875 new TGeoRotation("",-alpharot,0,0) ) );
3876
3877 // To avoid putting an assembly inside another assembly,
3878 // the forwardTray is put directly in the mother volume
3879 Double_t rforw = kTrayARTrans + kExternTrayTotalHeight +
3880 kExternCoverSideThick -
3881 kForwardTrayTailHeight;
3882
3883 alpharot = -kTrayAFirstRotAng;
3884 xloc = rforw*SinD(alpharot);
3885 yloc = rforw*CosD(alpharot);
3886 zloc = kTrayAZTrans + kTrayAZToSupportRing - kForwardTrayUpperLength;
3887
3888 moth->AddNode(forwardTray,1,
3889 new TGeoCombiTrans( xloc, yloc, zloc,
3890 new TGeoRotation("",-alpharot,0,0) ) );
3891
3892 alpharot += 180;
3893 xloc = rforw*SinD(alpharot);
3894 yloc = rforw*CosD(alpharot);
3895 moth->AddNode(forwardTray,2,
3896 new TGeoCombiTrans( xloc, yloc, zloc,
3897 new TGeoRotation("",-alpharot,0,0) ) );
3898
3899 alpharot = kTrayAFirstRotAng + 2*kTrayASecondRotAng;
3900 xloc = rforw*SinD(alpharot);
3901 yloc = rforw*CosD(alpharot);
3902 moth->AddNode(forwardTray,3,
3903 new TGeoCombiTrans( xloc, yloc, zloc,
3904 new TGeoRotation("",-alpharot,0,0) ) );
3905
3906 alpharot += 180;
3907 xloc = rforw*SinD(alpharot);
3908 yloc = rforw*CosD(alpharot);
3909 moth->AddNode(forwardTray,4,
3910 new TGeoCombiTrans( xloc, yloc, zloc,
3911 new TGeoRotation("",-alpharot,0,0) ) );
3912
3913
3914 return;
3915}
3916
3917//______________________________________________________________________
3918void AliITSv11GeometrySupport::SSDCableTraysSideA(TGeoVolume *moth,
3919 TGeoManager *mgr){
3920//
3921// Creates the SSD cable trays which are outside the ITS support cones
3922// but still inside the TPC on Side A
3923// (part of this code is taken or anyway inspired to ServicesCableSupport
3924// method of AliITSv11GeometrySupport.cxx,v 1.9 2007/06/06)
3925//
3926// Input:
3927// moth : the TGeoVolume owing the volume structure
3928// mgr : the GeoManager (default gGeoManager)
3929// Output:
3930//
3931// Created: ??? Bjorn S. Nilsen
3932// Updated: 30 Dec 2009 Mario Sitta
3933//
3934// Technical data are taken from AutoCAD drawings, L.Simonetti technical
3935// drawings and other (oral) information given by F.Tosello and
3936// Ton van den Brink
3937// Cables and cooling tubes are approximated with proper materials and
3938// rectangular cross sections, always preserving the total material budget.
3939//
3940
3941 // Dimensions and positions of the A-Side Cable Trays
3942 // (parts of 0872/G/D)
3943 const Double_t kTrayARTrans = 410.00 *fgkmm;
3944 const Double_t kTrayAZTrans = 1011.00 *fgkmm;
3945 const Double_t kForwardSideYTrans = 12.00 *fgkmm;//!!!TO BE CHECKED!!!
3946 const Double_t kCoversYTrans = 2.00 *fgkmm;
3947 const Double_t kTrayAZRot = (180-169.5);// Degrees
3948 const Double_t kTrayAFirstRotAng = 22.00; // Degrees
3949 const Double_t kTrayASecondRotAng = 15.00; // Degrees
3950
3951 const Double_t kTrayTotalHeight = 52.00 *fgkmm;
3952 const Double_t kTrayHeighToBend = 32.00 *fgkmm;
3953 const Double_t kTrayWidth = 130.00 *fgkmm;
3954 const Double_t kTrayThick = 2.00 *fgkmm;
3955
3956 const Double_t kTrayBendAngle = 22.00 *TMath::DegToRad();
3957
3958 const Double_t kForwardTrayTotalLen = 853.00 *fgkmm;
3959 const Double_t kForwardTrayFirstLen = 350.00 *fgkmm;
3960 const Double_t kForwardTrayFirstHeight = 47.00 *fgkmm;
3961 const Double_t kForwardCoverLen = 420.00 *fgkmm;
3962
3963 const Double_t kForwardSideLength = kForwardTrayFirstLen;//!!!TO BE CHECKED!!!
3964 const Double_t kForwardSideHeight = 90.00 *fgkmm;//!!!TO BE CHECKED!!!
3965 const Double_t kForwardSideThick = 1.00 *fgkmm;//!!!TO BE CHECKED!!!
3966 const Double_t kForwardCoverHeight = 10.00 *fgkmm;//!!!TO BE CHECKED!!!
3967
3968 const Double_t kExternalTrayTotalLen = 1200.00 *fgkmm;
3969 const Double_t kExternalCoverLen = kExternalTrayTotalLen;
3970 const Double_t kExternalCoverThick = 5.00 *fgkmm;
3971
3972 const Int_t kForwardTrayNpoints = 16;
3973
3974 const Double_t kServicesWidth = 100.00 *fgkmm;
3975 const Double_t kCopperHeight = 11.20 *fgkmm;// 1120 mm^2
3976 const Double_t kCablePlasticHeight = 11.50 *fgkmm;// 1150 mm^2
3977 const Double_t kCoolingWaterHeight = 2.65 *fgkmm;// 265 mm^2
3978 const Double_t kPoliUrethaneHeight = 4.62 *fgkmm;// 462 mm^2
3979
3980
3981 // Local variables
3982 Double_t xprof[kForwardTrayNpoints], yprof[kForwardTrayNpoints];
3983 Double_t xloc, yloc, zloc, alpharot, totalhi;
3984
3985
3986 // The two tray components as assemblies
3987 TGeoVolumeAssembly *cableTrayAFR =
3988 new TGeoVolumeAssembly("ITSsupportSSDTrayAForwRear");
3989 TGeoVolumeAssembly *cableTrayAExt =
3990 new TGeoVolumeAssembly("ITSsupportSSDTrayAExt");
3991
3992
3993 // First create all needed shapes
3994
3995 // The first part of the forward tray (part of 0872/G/D/07): a Xtru
3996 TGeoXtru *forwTrayPart1 = new TGeoXtru(2);
3997
3998 xprof[3] = kTrayWidth/2;
3999 yprof[3] = kForwardTrayFirstHeight;
4000 xprof[2] = xprof[3] - kTrayThick;
4001 yprof[2] = yprof[3];
4002 xprof[4] = xprof[3];
4003 yprof[4] = kTrayTotalHeight - kTrayHeighToBend;
4004 xprof[5] = xprof[4] - yprof[4]*TMath::Tan(kTrayBendAngle);
4005 yprof[5] = 0;
4006
4007 InsidePoint( xprof[3], yprof[3], xprof[4], yprof[4], xprof[5], yprof[5],
4008 -kTrayThick, xprof[1], yprof[1]);
4009
4010 xprof[6] = -xprof[5];
4011 yprof[6] = yprof[5];
4012
4013 InsidePoint( xprof[4], yprof[4], xprof[5], yprof[5], xprof[6], yprof[6],
4014 -kTrayThick, xprof[0], yprof[0]);
4015
4016 // We did the right side, now reflex on the left side
4017 for (Int_t jp = 0; jp < 6; jp++) {
4018 xprof[6+jp] = -xprof[5-jp];
4019 yprof[6+jp] = yprof[5-jp];
4020 }
4021
4022 // And now the actual Xtru
4023 forwTrayPart1->DefinePolygon(12, xprof, yprof);
4024 forwTrayPart1->DefineSection(0, 0);
4025 forwTrayPart1->DefineSection(1, kForwardTrayFirstLen);
4026
4027 // The second part of the forward tray (part of 0872/G/D/07): a Xtru
4028 TGeoXtru *forwTrayPart2 =
4029 CreateSDDSSDTraysSideA(kForwardTrayTotalLen - kForwardTrayFirstLen,
4030 kTrayTotalHeight);
4031
4032 // The external tray (as 0872/G/D/03): a Xtru with same profile
4033 TGeoXtru *externalTray = CreateSDDSSDTraysSideA(kExternalTrayTotalLen,
4034 kTrayTotalHeight);
4035
4036 // The side wall of the forward tray: a BBox
4037 TGeoBBox *forwSide = new TGeoBBox(kForwardSideThick/2,
4038 kForwardSideHeight/2,
4039 kForwardSideLength/2);
4040
4041 // The side cover over the walls: a Xtru
4042 TGeoXtru *forwSideCover = new TGeoXtru(2);
4043 forwSideCover->SetName("ITSsuppSSDForwCover");
4044
4045 xprof[0] = kTrayWidth/2 + 2*kForwardSideThick;
4046 yprof[0] = kForwardCoverHeight;
4047 xprof[1] = xprof[0];
4048 yprof[1] = 0;
4049 xprof[2] = xprof[1] - kForwardSideThick;
4050 yprof[2] = yprof[1];
4051 xprof[3] = xprof[2];
4052 yprof[3] = yprof[0] - kForwardSideThick;
4053
4054 // We did the right side, now reflex on the left side
4055 for (Int_t jp = 0; jp < 4; jp++) {
4056 xprof[4+jp] = -xprof[3-jp];
4057 yprof[4+jp] = yprof[3-jp];
4058 }
4059
4060 forwSideCover->DefinePolygon(8, xprof, yprof);
4061 forwSideCover->DefineSection(0, 0);
4062 forwSideCover->DefineSection(1, kForwardSideLength);
4063
4064 // The forward and external covers: two Composite Shape's
4065 TGeoCompositeShape *forwardCover = CreateTrayAForwardCover(kForwardCoverLen);
4066
4067 TGeoCompositeShape *externCover = CreateTrayAExternalCover(kExternalCoverLen);
4068
4069 // The cable copper inside the forward tray: a BBox
4070 TGeoBBox *forwCopper = new TGeoBBox(kServicesWidth/2,
4071 kCopperHeight/2,
4072 kForwardTrayTotalLen/2);
4073
4074 // The cable copper inside the forward tray: a Xtru
4075 TGeoXtru *extCopper = new TGeoXtru(2);
4076 extCopper->SetName("ITSsuppSSDExtTrayCopper");
4077
4078 totalhi = kTrayTotalHeight + kExternalCoverThick - kCoversYTrans
4079 - kTrayThick;
4080
4081 xprof[0] = -totalhi*TanD(kTrayAZRot);
4082 yprof[0] = kTrayThick;
4083 xprof[1] = kExternalTrayTotalLen;
4084 yprof[1] = yprof[0];
4085 xprof[2] = xprof[1];
4086 yprof[2] = yprof[1] + kCopperHeight;
4087 totalhi -= kCopperHeight;
4088 xprof[3] = -totalhi*TanD(kTrayAZRot);
4089 yprof[3] = yprof[2];
4090
4091 extCopper->DefinePolygon(4, xprof, yprof);
4092 extCopper->DefineSection(0, 0);
4093 extCopper->DefineSection(1, kServicesWidth);
4094
4095 // The cable plastic inside the forward tray: a BBox
4096 TGeoBBox *forwPlastic = new TGeoBBox(kServicesWidth/2,
4097 kCablePlasticHeight/2,
4098 kForwardTrayTotalLen/2);
4099
4100 // The cable plastic inside the forward tray: a Xtru
4101 TGeoXtru *extPlastic = new TGeoXtru(2);
4102 extPlastic->SetName("ITSsuppSSDExtTrayPlastic");
4103
4104 totalhi = kTrayTotalHeight + kExternalCoverThick - kCoversYTrans
4105 - kTrayThick - kCopperHeight;
4106
4107 xprof[0] = -totalhi*TanD(kTrayAZRot);
4108 yprof[0] = kTrayThick;
4109 xprof[1] = kExternalTrayTotalLen;
4110 yprof[1] = yprof[0];
4111 xprof[2] = xprof[1];
4112 yprof[2] = yprof[1] + kCablePlasticHeight;
4113 totalhi -= kCablePlasticHeight;
4114 xprof[3] = -totalhi*TanD(kTrayAZRot);
4115 yprof[3] = yprof[2];
4116
4117 extPlastic->DefinePolygon(4, xprof, yprof);
4118 extPlastic->DefineSection(0, 0);
4119 extPlastic->DefineSection(1, kServicesWidth);
4120
4121 // The cooling water inside the forward tray: a BBox
4122 TGeoBBox *forwWater = new TGeoBBox(kServicesWidth/2,
4123 kCoolingWaterHeight/2,
4124 kForwardTrayTotalLen/2);
4125
4126 // The cooling water inside the forward tray: a Xtru
4127 TGeoXtru *extWater = new TGeoXtru(2);
4128 extWater->SetName("ITSsuppSSDExtTrayWater");
4129
4130 totalhi = kTrayTotalHeight + kExternalCoverThick - kCoversYTrans
4131 - kTrayThick - kCopperHeight - kCablePlasticHeight;
4132
4133 xprof[0] = -totalhi*TanD(kTrayAZRot);
4134 yprof[0] = kTrayThick;
4135 xprof[1] = kExternalTrayTotalLen;
4136 yprof[1] = yprof[0];
4137 xprof[2] = xprof[1];
4138 yprof[2] = yprof[1] + kCoolingWaterHeight;
4139 totalhi -= kCoolingWaterHeight;
4140 xprof[3] = -totalhi*TanD(kTrayAZRot);
4141 yprof[3] = yprof[2];
4142
4143 extWater->DefinePolygon(4, xprof, yprof);
4144 extWater->DefineSection(0, 0);
4145 extWater->DefineSection(1, kServicesWidth);
4146
4147 // The polyurethane inside the forward tray: a BBox
4148 TGeoBBox *forwPUR = new TGeoBBox(kServicesWidth/2,
4149 kPoliUrethaneHeight/2,
4150 kForwardTrayTotalLen/2);
4151
4152 // The poliurethane inside the forward tray: a Xtru
4153 TGeoXtru *extPUR = new TGeoXtru(2);
4154 extPUR->SetName("ITSsuppSSDExtTrayPUR");
4155
4156 totalhi = kTrayTotalHeight + kExternalCoverThick - kCoversYTrans
4157 - kTrayThick - kCopperHeight - kCablePlasticHeight
4158 - kCoolingWaterHeight;
4159
4160 xprof[0] = -totalhi*TanD(kTrayAZRot);
4161 yprof[0] = kTrayThick;
4162 xprof[1] = kExternalTrayTotalLen;
4163 yprof[1] = yprof[0];
4164 xprof[2] = xprof[1];
4165 yprof[2] = yprof[1] + kPoliUrethaneHeight;
4166 totalhi -= kPoliUrethaneHeight;
4167 xprof[3] = -totalhi*TanD(kTrayAZRot);
4168 yprof[3] = yprof[2];
4169
4170 extPUR->DefinePolygon(4, xprof, yprof);
4171 extPUR->DefineSection(0, 0);
4172 extPUR->DefineSection(1, kServicesWidth);
4173
4174
4175 // We have all shapes: now create the real volumes
4176 TGeoMedium *medAl = mgr->GetMedium("ITS_ALUMINUM$");
4177 TGeoMedium *medAntic = mgr->GetMedium("ITS_ANTICORODAL$");
4178 TGeoMedium *medCu = mgr->GetMedium("ITS_COPPER$");
4179 TGeoMedium *medFEP = mgr->GetMedium("ITS_SSD FEP$");
4180 TGeoMedium *medH2O = mgr->GetMedium("ITS_WATER$");
4181 TGeoMedium *medPUR = mgr->GetMedium("ITS_POLYURETHANE$");
4182
4183 TGeoVolume *forwTrayFirst = new TGeoVolume("ITSsuppSSDSideAForwTrayFirst",
4184 forwTrayPart1, medAl);
4185
4186 forwTrayFirst->SetVisibility(kTRUE);
4187 forwTrayFirst->SetLineColor(6); // Purple
4188 forwTrayFirst->SetLineWidth(1);
4189 forwTrayFirst->SetFillColor(forwTrayFirst->GetLineColor());
4190 forwTrayFirst->SetFillStyle(4000); // 0% transparent
4191
4192 TGeoVolume *forwTraySecond = new TGeoVolume("ITSsuppSSDSideAForwTraySecond",
4193 forwTrayPart2, medAl);
4194
4195 forwTraySecond->SetVisibility(kTRUE);
4196 forwTraySecond->SetLineColor(6); // Purple
4197 forwTraySecond->SetLineWidth(1);
4198 forwTraySecond->SetFillColor(forwTraySecond->GetLineColor());
4199 forwTraySecond->SetFillStyle(4000); // 0% transparent
4200
4201 TGeoVolume *forwTraySide = new TGeoVolume("ITSsuppSSDSideAForwTraySide",
4202 forwSide, medAl);
4203
4204 forwTraySide->SetVisibility(kTRUE);
4205 forwTraySide->SetLineColor(6); // Purple
4206 forwTraySide->SetLineWidth(1);
4207 forwTraySide->SetFillColor(forwTraySide->GetLineColor());
4208 forwTraySide->SetFillStyle(4000); // 0% transparent
4209
4210 TGeoVolume *forwTraySideCover = new TGeoVolume("ITSsuppSSDSideAForwTraySideCover",
4211 forwSideCover, medAl);
4212
4213 forwTraySideCover->SetVisibility(kTRUE);
4214 forwTraySideCover->SetLineColor(6); // Purple
4215 forwTraySideCover->SetLineWidth(1);
4216 forwTraySideCover->SetFillColor(forwTraySideCover->GetLineColor());
4217 forwTraySideCover->SetFillStyle(4000); // 0% transparent
4218
4219 TGeoVolume *externalTraySSD = new TGeoVolume("ITSsuppSSDSideAExternalTray",
4220 externalTray, medAl);
4221
4222 externalTraySSD->SetVisibility(kTRUE);
4223 externalTraySSD->SetLineColor(6); // Purple
4224 externalTraySSD->SetLineWidth(1);
4225 externalTraySSD->SetFillColor(externalTraySSD->GetLineColor());
4226 externalTraySSD->SetFillStyle(4000); // 0% transparent
4227
4228 TGeoVolume *forwardTrayCover = new TGeoVolume("ITSsuppSSDSideAForwTrayCover",
4229 forwardCover, medAntic);
4230
4231 forwardTrayCover->SetVisibility(kTRUE);
4232 forwardTrayCover->SetLineColor(kMagenta+1); // Purple
4233 forwardTrayCover->SetLineWidth(1);
4234 forwardTrayCover->SetFillColor(forwardTrayCover->GetLineColor());
4235 forwardTrayCover->SetFillStyle(4000); // 0% transparent
4236
4237 TGeoVolume *externTrayCover = new TGeoVolume("ITSsuppSSDSideAExtTrayCover",
4238 externCover, medAntic);
4239
4240 externTrayCover->SetVisibility(kTRUE);
4241 externTrayCover->SetLineColor(kMagenta+1); // Purple
4242 externTrayCover->SetLineWidth(1);
4243 externTrayCover->SetFillColor(externTrayCover->GetLineColor());
4244 externTrayCover->SetFillStyle(4000); // 0% transparent
4245
4246 TGeoVolume *forwCableCu = new TGeoVolume("ITSsuppSSDSideAForwCableCu",
4247 forwCopper, medCu);
4248
4249 forwCableCu->SetVisibility(kTRUE);
4250 forwCableCu->SetLineColor(kRed); // Red
4251 forwCableCu->SetLineWidth(1);
4252 forwCableCu->SetFillColor(forwCableCu->GetLineColor());
4253 forwCableCu->SetFillStyle(4000); // 0% transparent
4254
4255 TGeoVolume *extCableCu = new TGeoVolume("ITSsuppSSDSideAExtCableCu",
4256 extCopper, medCu);
4257
4258 extCableCu->SetVisibility(kTRUE);
4259 extCableCu->SetLineColor(kRed); // Red
4260 extCableCu->SetLineWidth(1);
4261 extCableCu->SetFillColor(extCableCu->GetLineColor());
4262 extCableCu->SetFillStyle(4000); // 0% transparent
4263
4264 TGeoVolume *forwCableFEP = new TGeoVolume("ITSsuppSSDSideAForwCableFEP",
4265 forwPlastic, medFEP);
4266
4267 forwCableFEP->SetVisibility(kTRUE);
4268 forwCableFEP->SetLineColor(kYellow); // Yellow
4269 forwCableFEP->SetLineWidth(1);
4270 forwCableFEP->SetFillColor(forwCableFEP->GetLineColor());
4271 forwCableFEP->SetFillStyle(4000); // 0% transparent
4272
4273 TGeoVolume *extCableFEP = new TGeoVolume("ITSsuppSSDSideAExtCableFEP",
4274 extPlastic, medFEP);
4275
4276 extCableFEP->SetVisibility(kTRUE);
4277 extCableFEP->SetLineColor(kYellow); // Yellow
4278 extCableFEP->SetLineWidth(1);
4279 extCableFEP->SetFillColor(extCableFEP->GetLineColor());
4280 extCableFEP->SetFillStyle(4000); // 0% transparent
4281
4282 TGeoVolume *forwTrayWater = new TGeoVolume("ITSsuppSSDSideAForwTrayWater",
4283 forwWater, medH2O);
4284
4285 forwTrayWater->SetVisibility(kTRUE);
4286 forwTrayWater->SetLineColor(kBlue); // Blue
4287 forwTrayWater->SetLineWidth(1);
4288 forwTrayWater->SetFillColor(forwTrayWater->GetLineColor());
4289 forwTrayWater->SetFillStyle(4000); // 0% transparent
4290
4291 TGeoVolume *extTrayWater = new TGeoVolume("ITSsuppSSDSideAExtTrayWater",
4292 extWater, medH2O);
4293
4294 extTrayWater->SetVisibility(kTRUE);
4295 extTrayWater->SetLineColor(kBlue); // Blue
4296 extTrayWater->SetLineWidth(1);
4297 extTrayWater->SetFillColor(extTrayWater->GetLineColor());
4298 extTrayWater->SetFillStyle(4000); // 0% transparent
4299
4300 TGeoVolume *forwPolyUr = new TGeoVolume("ITSsuppSSDSideAForwPolyUr",
4301 forwPUR, medPUR);
4302
4303 forwPolyUr->SetVisibility(kTRUE);
4304 forwPolyUr->SetLineColor(kGray); // Gray
4305 forwPolyUr->SetLineWidth(1);
4306 forwPolyUr->SetFillColor(forwPolyUr->GetLineColor());
4307 forwPolyUr->SetFillStyle(4000); // 0% transparent
4308
4309 TGeoVolume *extPolyUr = new TGeoVolume("ITSsuppSSDSideAExtPolyUr",
4310 extPUR, medPUR);
4311
4312 extPolyUr->SetVisibility(kTRUE);
4313 extPolyUr->SetLineColor(kGray); // Gray
4314 extPolyUr->SetLineWidth(1);
4315 extPolyUr->SetFillColor(extPolyUr->GetLineColor());
4316 extPolyUr->SetFillStyle(4000); // 0% transparent
4317
4318
4319 // Now build up the tray
4320 cableTrayAFR->AddNode(forwTrayFirst, 1, 0);
4321
4322 cableTrayAFR->AddNode(forwTraySecond, 1,
4323 new TGeoTranslation(0, 0, kForwardTrayFirstLen) );
4324
4325 xloc = kTrayWidth/2 + kForwardSideThick/2;
4326 yloc = kForwardTrayFirstHeight + kForwardSideHeight/2 - kForwardSideYTrans;
4327 zloc = kForwardSideLength/2;
4328 cableTrayAFR->AddNode(forwTraySide,1,
4329 new TGeoTranslation( xloc, yloc, zloc) );
4330 cableTrayAFR->AddNode(forwTraySide,2,
4331 new TGeoTranslation(-xloc, yloc, zloc) );
4332
4333 yloc = kForwardTrayFirstHeight + kForwardSideHeight - kForwardSideYTrans
4334 - kForwardCoverHeight;
4335 cableTrayAFR->AddNode(forwTraySideCover,1,
4336 new TGeoTranslation(0, yloc, 0) );
4337
4338 yloc = kTrayTotalHeight - kCoversYTrans;
4339 zloc = kForwardTrayTotalLen - kForwardCoverLen;
4340 cableTrayAFR->AddNode(forwardTrayCover,1,
4341 new TGeoTranslation(0, yloc, zloc) );
4342
4343 yloc = kTrayThick + forwCopper->GetDY();
4344 zloc = forwCopper->GetDZ();
4345 cableTrayAFR->AddNode(forwCableCu, 1,
4346 new TGeoTranslation(0, yloc, zloc) );
4347
4348 yloc = kTrayThick + kCopperHeight + forwPlastic->GetDY();
4349 zloc = forwPlastic->GetDZ();
4350 cableTrayAFR->AddNode(forwCableFEP, 1,
4351 new TGeoTranslation(0, yloc, zloc) );
4352
4353 yloc = kTrayThick + kCopperHeight + kCablePlasticHeight + forwWater->GetDY();
4354 zloc = forwWater->GetDZ();
4355 cableTrayAFR->AddNode(forwTrayWater, 1,
4356 new TGeoTranslation(0, yloc, zloc) );
4357
4358 yloc = kTrayThick + kCopperHeight + kCablePlasticHeight
4359 + kCoolingWaterHeight + forwPUR->GetDY();
4360 zloc = forwPUR->GetDZ();
4361 cableTrayAFR->AddNode(forwPolyUr, 1,
4362 new TGeoTranslation(0, yloc, zloc) );
4363
4364 // To simplify following placement in MARS, origin is on top
4365 totalhi = kTrayTotalHeight + kExternalCoverThick - kCoversYTrans;
4366
4367 yloc = -totalhi;
4368 cableTrayAExt->AddNode(externalTraySSD, 1,
4369 new TGeoTranslation(0, yloc, 0) );
4370
4371 yloc = -totalhi + kTrayTotalHeight - kCoversYTrans;
4372 cableTrayAExt->AddNode(externTrayCover,1,
4373 new TGeoTranslation(0, yloc, 0) );
4374
4375 xloc = extCopper->GetDZ();
4376 yloc = -totalhi;
4377 cableTrayAExt->AddNode(extCableCu,1,
4378 new TGeoCombiTrans( xloc, yloc, 0,
4379 new TGeoRotation("",-90, 90, 90) ) );
4380
4381 xloc = extPlastic->GetDZ();
4382 yloc = -totalhi + kCopperHeight;
4383 cableTrayAExt->AddNode(extCableFEP,1,
4384 new TGeoCombiTrans( xloc, yloc, 0,
4385 new TGeoRotation("",-90, 90, 90) ) );
4386
4387 xloc = extWater->GetDZ();
4388 yloc = -totalhi + kCopperHeight + kCablePlasticHeight;
4389 cableTrayAExt->AddNode(extTrayWater,1,
4390 new TGeoCombiTrans( xloc, yloc, 0,
4391 new TGeoRotation("",-90, 90, 90) ) );
4392
4393 xloc = extPUR->GetDZ();
4394 yloc = -totalhi + kCopperHeight + kCablePlasticHeight + kCoolingWaterHeight;
4395 cableTrayAExt->AddNode(extPolyUr,1,
4396 new TGeoCombiTrans( xloc, yloc, 0,
4397 new TGeoRotation("",-90, 90, 90) ) );
4398
4399
4400 // Finally put everything in the mother volume
4401 zloc = kTrayAZTrans;
4402 Double_t zlocext = zloc + kForwardTrayTotalLen;
4403 Double_t rExtTray = kTrayARTrans + kTrayTotalHeight;
4404
4405 alpharot = kTrayAFirstRotAng;
4406 xloc = kTrayARTrans*SinD(alpharot);
4407 yloc = kTrayARTrans*CosD(alpharot);
4408 moth->AddNode(cableTrayAFR,1,
4409 new TGeoCombiTrans( xloc, yloc, zloc,
4410 new TGeoRotation("",-alpharot,0,0) ) );
4411 xloc = rExtTray*SinD(alpharot);
4412 yloc = rExtTray*CosD(alpharot);
4413 moth->AddNode(cableTrayAExt,1,
4414 new TGeoCombiTrans( xloc, yloc, zlocext,
4415 new TGeoRotation("",-alpharot,-kTrayAZRot,0) ) );
4416
4417 alpharot += 180;
4418 xloc = kTrayARTrans*SinD(alpharot);
4419 yloc = kTrayARTrans*CosD(alpharot);
4420 moth->AddNode(cableTrayAFR,2,
4421 new TGeoCombiTrans( xloc, yloc, zloc,
4422 new TGeoRotation("",-alpharot,0,0) ) );
4423 xloc = rExtTray*SinD(alpharot);
4424 yloc = rExtTray*CosD(alpharot);
4425 moth->AddNode(cableTrayAExt,2,
4426 new TGeoCombiTrans( xloc, yloc, zlocext,
4427 new TGeoRotation("",-alpharot,-kTrayAZRot,0) ) );
4428
4429 alpharot = -kTrayAFirstRotAng - 2*kTrayASecondRotAng;
4430 xloc = kTrayARTrans*SinD(alpharot);
4431 yloc = kTrayARTrans*CosD(alpharot);
4432 moth->AddNode(cableTrayAFR,3,
4433 new TGeoCombiTrans( xloc, yloc, zloc,
4434 new TGeoRotation("",-alpharot,0,0) ) );
4435 xloc = rExtTray*SinD(alpharot);
4436 yloc = rExtTray*CosD(alpharot);
4437 moth->AddNode(cableTrayAExt,3,
4438 new TGeoCombiTrans( xloc, yloc, zlocext,
4439 new TGeoRotation("",-alpharot,-kTrayAZRot,0) ) );
4440
4441 alpharot += 180;
4442 xloc = kTrayARTrans*SinD(alpharot);
4443 yloc = kTrayARTrans*CosD(alpharot);
4444 moth->AddNode(cableTrayAFR,4,
4445 new TGeoCombiTrans( xloc, yloc, zloc,
4446 new TGeoRotation("",-alpharot,0,0) ) );
4447 xloc = rExtTray*SinD(alpharot);
4448 yloc = rExtTray*CosD(alpharot);
4449 moth->AddNode(cableTrayAExt,4,
4450 new TGeoCombiTrans( xloc, yloc, zlocext,
4451 new TGeoRotation("",-alpharot,-kTrayAZRot,0) ) );
4452
4453
4454 return;
4455}
4456
4457//______________________________________________________________________
4458TGeoVolumeAssembly* AliITSv11GeometrySupport::CreateSDDForwardTraySideA(TGeoManager *mgr){
4459//
4460// Creates the forward SDD tray on Side A (0872/G/D/01)
4461//
4462// Input:
4463// mgr : the GeoManager (used only to get the proper material)
4464//
4465// Output:
4466//
4467// Return: a TGeoVolumeAssembly for the tray
4468//
4469// Created: 08 Jan 2010 Mario Sitta
4470//
4471// Technical data are taken from AutoCAD drawings, L.Simonetti technical
4472// drawings and other (oral) information given by F.Tosello
4473//
4474
4475 // Dimensions of the A-Side Forward Cable Tray (0872/G/D/01)
4476 const Double_t kForwardTrayThick = 2.00 *fgkmm;
4477 const Double_t kForwardTraySideLength = 823.00 *fgkmm;
4478 const Double_t kForwardTrayTailLength = 212.00 *fgkmm;
4479 const Double_t kForwardTrayBaseHalfWide = 55.00 *fgkmm;
4480 const Double_t kForwardTrayNotchLength = 47.20 *fgkmm;
4481 const Double_t kForwardTrayNotchHeight = 25.00 *fgkmm;
4482 const Double_t kForwardTrayNotchDown = 10.00 *fgkmm;
4483 const Double_t kForwardTraySide1Height = 39.00 *fgkmm;
4484 const Double_t kForwardTraySide2Height = 26.00 *fgkmm;
4485 const Double_t kForwardTraySide2Expand = 10.50 *fgkmm;
4486 const Double_t kForwardTraySide3TailLen = 418.00 *fgkmm;
4487 const Double_t kForwardTraySide3TailHi = 31.00 *fgkmm;
4488 const Double_t kForwardTraySide3HeadLen = 425.00 *fgkmm;
4489 const Double_t kForwardTraySide3HeadHi = 72.00 *fgkmm;
4490 const Double_t kForwardTrayHorWingWide = 10.50 *fgkmm;
4491 const Double_t kForwardTrayVertWingWide = 15.00 *fgkmm;
4492
4493 const Int_t kForwardTraySideNpoints = 9;
4494
4495
4496 // Local variables
4497 Double_t xprof[kForwardTraySideNpoints], yprof[kForwardTraySideNpoints];
4498 Double_t ylen, zlen;
4499 Double_t xloc, yloc, zloc;
4500
4501
4502 // The tray has a very complex shape, so it is made by assembling
4503 // different elements (with some small simplifications): the result
4504 // is a TGeoAssembly returned to the caller
4505 TGeoVolumeAssembly *forwardTray = new TGeoVolumeAssembly("ITSsuppSDDForwardTray");
4506
4507 // The tray base: a BBox
4508 zlen = (kForwardTraySideLength-kForwardTrayTailLength)/2;
4509 TGeoBBox *trayBase = new TGeoBBox(kForwardTrayBaseHalfWide,
4510 kForwardTrayThick/2, zlen);
4511
4512 // The first part of the side wall: a Xtru
4513 TGeoXtru *traySide1 = new TGeoXtru(2);
4514
4515 xprof[0] = 0;
4516 yprof[0] = kForwardTrayThick;
4517 xprof[1] = kForwardTraySideLength-kForwardTrayTailLength;
4518 yprof[1] = yprof[0];
4519 xprof[2] = kForwardTraySideLength;
4520 yprof[2] = kForwardTraySide1Height + kForwardTrayThick;
4521 xprof[3] = 0;
4522 yprof[3] = yprof[2];
4523
4524 traySide1->DefinePolygon(4, xprof, yprof);
4525 traySide1->DefineSection(0, 0);
4526 traySide1->DefineSection(1, kForwardTrayThick);
4527
4528 // The second part of the side wall: a Xtru
4529 TGeoXtru *traySide2 = new TGeoXtru(2);
4530
4531 xprof[0] = kForwardTrayBaseHalfWide - kForwardTrayThick;
4532 yprof[0] = traySide1->GetY(2);
4533 xprof[1] = kForwardTrayBaseHalfWide;
4534 yprof[1] = yprof[0];
4535 xprof[2] = xprof[1] + kForwardTraySide2Expand;
4536 yprof[2] = yprof[1] + kForwardTraySide2Height;
4537 xprof[3] = xprof[2] - kForwardTrayThick;
4538 yprof[3] = yprof[2];
4539
4540 traySide2->DefinePolygon(4, xprof, yprof);
4541 traySide2->DefineSection(0, 0);
4542 traySide2->DefineSection(1, kForwardTraySideLength);
4543
4544 // The third part of the side wall: a Xtru
4545 TGeoXtru *traySide3 = new TGeoXtru(2);
4546
4547 xprof[0] = 0;
4548 yprof[0] = traySide2->GetY(2);
4549 xprof[1] = kForwardTraySideLength;
4550 yprof[1] = yprof[0];
4551 xprof[2] = xprof[1];
4552 yprof[2] = yprof[1] + kForwardTraySide3TailHi - kForwardTrayThick;
4553 xprof[3] = xprof[2] - kForwardTraySide3TailLen - kForwardTrayThick;
4554 yprof[3] = yprof[2];
4555 xprof[4] = xprof[3];
4556 yprof[4] = yprof[3] + kForwardTraySide3HeadHi + kForwardTrayThick;
4557 xprof[5] = xprof[4] - kForwardTraySide3HeadLen;
4558 yprof[5] = yprof[4];
4559 xprof[6] = xprof[5];
4560 yprof[6] = yprof[5] - kForwardTrayNotchHeight;
4561 xprof[7] = xprof[6] + kForwardTrayNotchLength;
4562 yprof[7] = yprof[6];
4563 xprof[8] = xprof[7];
4564 yprof[8] = yprof[7] - kForwardTrayNotchDown;
4565
4566 traySide3->DefinePolygon(9, xprof, yprof);
4567 traySide3->DefineSection(0, 0);
4568 traySide3->DefineSection(1, kForwardTrayThick);
4569
4570 // The horizontal wing: a BBox
4571 TGeoBBox *trayHorWing = new TGeoBBox(kForwardTrayHorWingWide/2,
4572 kForwardTrayThick/2,
4573 kForwardTraySide3TailLen/2);
4574
4575 // The vertical wing: a BBox
4576 ylen = (traySide3->GetY(4) - traySide3->GetY(3))/2;
4577 TGeoBBox *trayVertWing = new TGeoBBox(kForwardTrayVertWingWide/2,
4578 ylen, kForwardTrayThick/2);
4579
4580
4581 // We have all shapes: now create the real volumes
4582 TGeoMedium *medAl = mgr->GetMedium("ITS_ALUMINUM$");
4583
4584 TGeoVolume *forwTrayBase = new TGeoVolume("ITSsuppSDDSideAForwTrayBase",
4585 trayBase, medAl);
4586
4587 forwTrayBase->SetVisibility(kTRUE);
4588 forwTrayBase->SetLineColor(6); // Purple
4589 forwTrayBase->SetLineWidth(1);
4590 forwTrayBase->SetFillColor(forwTrayBase->GetLineColor());
4591 forwTrayBase->SetFillStyle(4000); // 0% transparent
4592
4593 TGeoVolume *forwTraySide1 = new TGeoVolume("ITSsuppSDDSideAForwTraySide1",
4594 traySide1, medAl);
4595
4596 forwTraySide1->SetVisibility(kTRUE);
4597 forwTraySide1->SetLineColor(6); // Purple
4598 forwTraySide1->SetLineWidth(1);
4599 forwTraySide1->SetFillColor(forwTraySide1->GetLineColor());
4600 forwTraySide1->SetFillStyle(4000); // 0% transparent
4601
4602 TGeoVolume *forwTraySide2 = new TGeoVolume("ITSsuppSDDSideAForwTraySide2",
4603 traySide2, medAl);
4604
4605 forwTraySide2->SetVisibility(kTRUE);
4606 forwTraySide2->SetLineColor(6); // Purple
4607 forwTraySide2->SetLineWidth(1);
4608 forwTraySide2->SetFillColor(forwTraySide2->GetLineColor());
4609 forwTraySide2->SetFillStyle(4000); // 0% transparent
4610
4611 TGeoVolume *forwTraySide3 = new TGeoVolume("ITSsuppSDDSideAForwTraySide3",
4612 traySide3, medAl);
4613
4614 forwTraySide3->SetVisibility(kTRUE);
4615 forwTraySide3->SetLineColor(6); // Purple
4616 forwTraySide3->SetLineWidth(1);
4617 forwTraySide3->SetFillColor(forwTraySide3->GetLineColor());
4618 forwTraySide3->SetFillStyle(4000); // 0% transparent
4619
4620 TGeoVolume *forwTrayHWing = new TGeoVolume("ITSsuppSDDSideAForwTrayHorWing",
4621 trayHorWing, medAl);
4622
4623 forwTrayHWing->SetVisibility(kTRUE);
4624 forwTrayHWing->SetLineColor(6); // Purple
4625 forwTrayHWing->SetLineWidth(1);
4626 forwTrayHWing->SetFillColor(forwTrayHWing->GetLineColor());
4627 forwTrayHWing->SetFillStyle(4000); // 0% transparent
4628
4629 TGeoVolume *forwTrayVWing = new TGeoVolume("ITSsuppSDDSideAForwTrayVertWing",
4630 trayVertWing, medAl);
4631
4632 forwTrayVWing->SetVisibility(kTRUE);
4633 forwTrayVWing->SetLineColor(6); // Purple
4634 forwTrayVWing->SetLineWidth(1);
4635 forwTrayVWing->SetFillColor(forwTrayVWing->GetLineColor());
4636 forwTrayVWing->SetFillStyle(4000); // 0% transparent
4637
4638
4639 // Now build up the tray
4640 yloc = kForwardTrayThick/2;
4641 zloc = zlen;
4642 forwardTray->AddNode(forwTrayBase, 1,
4643 new TGeoTranslation(0, yloc, zloc) );
4644
4645 xloc = kForwardTrayBaseHalfWide;
4646 forwardTray->AddNode(forwTraySide1, 1,
4647 new TGeoCombiTrans(xloc, 0, 0,
4648 new TGeoRotation("",90,-90,-90)));
4649 xloc = -xloc + kForwardTrayThick;
4650 forwardTray->AddNode(forwTraySide1, 2,
4651 new TGeoCombiTrans(xloc, 0, 0,
4652 new TGeoRotation("",90,-90,-90)));
4653
4654 forwardTray->AddNode(forwTraySide2, 1, 0);
4655 zloc = kForwardTraySideLength;
4656 forwardTray->AddNode(forwTraySide2, 2,
4657 new TGeoCombiTrans(0, 0, zloc,
4658 new TGeoRotation("",90,-180,-90)));
4659
4660 xloc = kForwardTrayBaseHalfWide + kForwardTraySide2Expand;
4661 forwardTray->AddNode(forwTraySide3, 1,
4662 new TGeoCombiTrans(xloc, 0, 0,
4663 new TGeoRotation("",90,-90,-90)));
4664 xloc = -xloc + kForwardTrayThick;
4665 forwardTray->AddNode(forwTraySide3, 2,
4666 new TGeoCombiTrans(xloc, 0, 0,
4667 new TGeoRotation("",90,-90,-90)));
4668
4669 xloc = kForwardTrayBaseHalfWide + kForwardTraySide2Expand
4670 - kForwardTrayHorWingWide/2;
4671 yloc = traySide3->GetY(2) + kForwardTrayThick/2;
4672 zloc = kForwardTraySideLength - trayHorWing->GetDZ();
4673 forwardTray->AddNode(forwTrayHWing, 1,
4674 new TGeoTranslation( xloc, yloc, zloc) );
4675 forwardTray->AddNode(forwTrayHWing, 2,
4676 new TGeoTranslation(-xloc, yloc, zloc) );
4677
4678 xloc = kForwardTrayBaseHalfWide + kForwardTraySide2Expand
4679 - kForwardTrayVertWingWide/2;
4680 yloc = traySide3->GetY(2) + trayVertWing->GetDY();
4681 zloc = traySide3->GetX(3) + kForwardTrayThick/2;
4682 forwardTray->AddNode(forwTrayVWing, 1,
4683 new TGeoTranslation( xloc, yloc, zloc) );
4684 forwardTray->AddNode(forwTrayVWing, 2,
4685 new TGeoTranslation(-xloc, yloc, zloc) );
4686
4687
4688 return forwardTray;
4689}
4690
4691//______________________________________________________________________
4692TGeoCompositeShape* AliITSv11GeometrySupport::CreateTrayAForwardCover(const Double_t coverLen){
4693//
4694// Creates the forward cover of the SDD and SSD cable trays on Side A
4695// (0872/G/D/02)
4696//
4697// Input:
4698// coverLen: the total length of the cover
4699//
4700// Output:
4701//
4702// Return: a TGeoCompositeShape for the cover
4703//
4704// Created: 03 Jan 2010 Mario Sitta
4705//
4706// Technical data are taken from AutoCAD drawings, L.Simonetti technical
4707// drawings and other (oral) information given by F.Tosello
4708//
4709
4710 // Dimensions and positions of the A-Side Cable Tray Forward Cover
4711 // (0872/G/D/02)
4712 const Double_t kForwardCoverWide = 130.00 *fgkmm;
4713 const Double_t kForwardCoverSideWide = 10.00 *fgkmm;
4714 const Double_t kForwardCoverHoleLen = 160.00 *fgkmm;
4715 const Double_t kForwardCoverHoleWide = 90.00 *fgkmm;
4716 const Double_t kForwardCoverHoleR10 = 10.00 *fgkmm;
4717 const Double_t kForwardCoverTotalThick = 5.00 *fgkmm;
4718 const Double_t kForwardCoverSideThick = 3.00 *fgkmm;
4719 const Double_t kForwardCoverInternThick = 2.00 *fgkmm;
4720
4721 const Double_t kForwardCoverHoleZTrans = 40.00 *fgkmm;
4722
4723
4724 // Local variables
4725 Double_t xprof[16], yprof[16];
4726 Double_t yloc, zloc;
4727
4728
4729 // The main shape: a Xtru
4730 TGeoXtru *forwCoverMain = new TGeoXtru(2);
4731 forwCoverMain->SetName("ITSsuppForwCoverMain");
4732
4733 xprof[0] = kForwardCoverWide/2;
4734 yprof[0] = kForwardCoverTotalThick;
4735 xprof[1] = xprof[0];
4736 yprof[1] = yprof[0] - kForwardCoverSideThick;
4737 xprof[2] = xprof[1] - kForwardCoverSideWide;
4738 yprof[2] = yprof[1];
4739 xprof[3] = xprof[2];
4740 yprof[3] = 0;
4741
4742 // We did the right side, now reflex on the left side
4743 for (Int_t jp = 0; jp < 4; jp++) {
4744 xprof[4+jp] = -xprof[3-jp];
4745 yprof[4+jp] = yprof[3-jp];
4746 }
4747
4748 // And now the actual Xtru
4749 forwCoverMain->DefinePolygon(8, xprof, yprof);
4750 forwCoverMain->DefineSection(0, 0);
4751 forwCoverMain->DefineSection(1, coverLen);
4752
4753 // The hole: another Xtru (rounded corners approximated with segments)
4754 TGeoXtru *forwCoverHole = new TGeoXtru(2);
4755 forwCoverHole->SetName("ITSsuppForwCoverHole");
4756
4757 CreateTrayACoverHolesShape(kForwardCoverHoleWide, kForwardCoverHoleLen,
4758 kForwardCoverHoleR10 , xprof, yprof);
4759
4760 // And now the actual Xtru
4761 forwCoverHole->DefinePolygon(16, xprof, yprof);
4762 forwCoverHole->DefineSection(0, 0);
4763 forwCoverHole->DefineSection(1, kForwardCoverTotalThick-kForwardCoverInternThick);
4764
4765 // Now the proper rototranslation matrices for the two holes
4766 yloc = kForwardCoverTotalThick-kForwardCoverInternThick-0.01;//Precision fix
4767 zloc = kForwardCoverHoleZTrans;
4768 TGeoCombiTrans *mf1 = new TGeoCombiTrans(0, yloc, zloc,
4769 new TGeoRotation("", 0, 90, 0) );
4770 mf1->SetName("mf1");
4771 mf1->RegisterYourself();
4772
4773 zloc = coverLen - kForwardCoverHoleZTrans - kForwardCoverHoleLen;
4774 TGeoCombiTrans *mf2 = new TGeoCombiTrans(0, yloc, zloc,
4775 new TGeoRotation("", 0, 90, 0) );
4776 mf2->SetName("mf2");
4777 mf2->RegisterYourself();
4778
4779 // Finally the actual cover shape
4780 TGeoCompositeShape *cover = new TGeoCompositeShape("ITSsuppForwardCoverMain",
4781 "ITSsuppForwCoverMain-ITSsuppForwCoverHole:mf1-ITSsuppForwCoverHole:mf2");
4782
4783 return cover;
172b0d90 4784}
798b4e0c 4785
4786//______________________________________________________________________
4787TGeoCompositeShape* AliITSv11GeometrySupport::CreateTrayAExternalCover(const Double_t coverLen){
4788//
4789// Creates the external cover of the SDD and SSD cable trays on Side A
4790// (0872/G/D/04)
4791//
4792// Input:
4793// coverLen: the total length of the cover
4794//
4795// Output:
4796//
4797// Return: a TGeoCompositeShape for the cover
4798//
4799// Created: 03 Jan 2010 Mario Sitta
4800//
4801// Technical data are taken from AutoCAD drawings, L.Simonetti technical
4802// drawings and other (oral) information given by F.Tosello
4803//
4804
4805 // Dimensions and positions of the A-Side Cable Tray External Cover
4806 // (0872/G/D/04)
4807 const Double_t kExternalCoverWide = 130.00 *fgkmm;
4808 const Double_t kExternalCoverSideWide = 10.00 *fgkmm;
4809 const Double_t kExternalCoverHoleLen1 = 262.00 *fgkmm;
4810 const Double_t kExternalCoverHoleLen2 = 280.00 *fgkmm;
4811 const Double_t kExternalCoverHoleLen3 = 205.00 *fgkmm;
4812 const Double_t kExternalCoverHoleLen4 = 55.00 *fgkmm;
4813 const Double_t kExternalCoverHoleWide = 90.00 *fgkmm;
4814 const Double_t kExternalCoverHoleR10 = 10.00 *fgkmm;
4815 const Double_t kExternalCoverTotalThick = 5.00 *fgkmm;
4816 const Double_t kExternalCoverSideThick = 3.00 *fgkmm;
4817 const Double_t kExternalCoverInternThick = 2.00 *fgkmm;
4818
4819 const Double_t kExternalCoverHole1ZTrans = 28.00 *fgkmm;
4820 const Double_t kExternalCoverHolesZTrans = 20.00 *fgkmm;
4821
4822
4823 // Local variables
4824 Double_t xprof[16], yprof[16];
4825 Double_t yloc, zloc;
4826
4827
4828 // The main shape: a Xtru
4829 TGeoXtru *externCoverMain = new TGeoXtru(2);
4830 externCoverMain->SetName("ITSsuppExternCoverMain");
4831
4832 xprof[0] = kExternalCoverWide/2;
4833 yprof[0] = kExternalCoverTotalThick;
4834 xprof[1] = xprof[0];
4835 yprof[1] = yprof[0] - kExternalCoverSideThick;
4836 xprof[2] = xprof[1] - kExternalCoverSideWide;
4837 yprof[2] = yprof[1];
4838 xprof[3] = xprof[2];
4839 yprof[3] = 0;
4840
4841 // We did the right side, now reflex on the left side
4842 for (Int_t jp = 0; jp < 4; jp++) {
4843 xprof[4+jp] = -xprof[3-jp];
4844 yprof[4+jp] = yprof[3-jp];
4845 }
4846
4847 // And now the actual Xtru
4848 externCoverMain->DefinePolygon(8, xprof, yprof);
4849 externCoverMain->DefineSection(0, 0);
4850 externCoverMain->DefineSection(1, coverLen);
4851
4852 // The first hole: a Xtru (rounded corners approximated with segments)
4853 Double_t holethick = kExternalCoverTotalThick-kExternalCoverInternThick;
4854
4855 TGeoXtru *extCoverHole1 = new TGeoXtru(2);
4856 extCoverHole1->SetName("ITSsuppExtCoverHole1");
4857
4858 CreateTrayACoverHolesShape(kExternalCoverHoleWide, kExternalCoverHoleLen1,
4859 kExternalCoverHoleR10 , xprof, yprof);
4860
4861 extCoverHole1->DefinePolygon(16, xprof, yprof);
4862 extCoverHole1->DefineSection(0, 0);
4863 extCoverHole1->DefineSection(1, holethick);
4864
4865 // The second (and third) hole: another Xtru
4866 TGeoXtru *extCoverHole2 = new TGeoXtru(2);
4867 extCoverHole2->SetName("ITSsuppExtCoverHole2");
4868
4869 CreateTrayACoverHolesShape(kExternalCoverHoleWide, kExternalCoverHoleLen2,
4870 kExternalCoverHoleR10 , xprof, yprof);
4871
4872 extCoverHole2->DefinePolygon(16, xprof, yprof);
4873 extCoverHole2->DefineSection(0, 0);
4874 extCoverHole2->DefineSection(1, holethick);
4875
4876 // The fourth hole: another Xtru
4877 TGeoXtru *extCoverHole3 = new TGeoXtru(2);
4878 extCoverHole3->SetName("ITSsuppExtCoverHole3");
4879
4880 CreateTrayACoverHolesShape(kExternalCoverHoleWide, kExternalCoverHoleLen3,
4881 kExternalCoverHoleR10 , xprof, yprof);
4882
4883 extCoverHole3->DefinePolygon(16, xprof, yprof);
4884 extCoverHole3->DefineSection(0, 0);
4885 extCoverHole3->DefineSection(1, holethick);
4886
4887 // The fifth and last hole: another Xtru
4888 TGeoXtru *extCoverHole4 = new TGeoXtru(2);
4889 extCoverHole4->SetName("ITSsuppExtCoverHole4");
4890
4891 CreateTrayACoverHolesShape(kExternalCoverHoleWide, kExternalCoverHoleLen4,
4892 kExternalCoverHoleR10 , xprof, yprof);
4893
4894 extCoverHole4->DefinePolygon(16, xprof, yprof);
4895 extCoverHole4->DefineSection(0, 0);
4896 extCoverHole4->DefineSection(1, holethick);
4897
4898 // Now the proper rototranslation matrices for the holes
4899 yloc = kExternalCoverTotalThick - kExternalCoverInternThick-0.01;
4900 zloc = kExternalCoverHole1ZTrans;
4901 TGeoCombiTrans *me1 = new TGeoCombiTrans(0, yloc, zloc,
4902 new TGeoRotation("", 0, 90, 0) );
4903 me1->SetName("me1");
4904 me1->RegisterYourself();
4905
4906 zloc += (kExternalCoverHoleLen1 + kExternalCoverHolesZTrans);
4907 TGeoCombiTrans *me2 = new TGeoCombiTrans(0, yloc, zloc,
4908 new TGeoRotation("", 0, 90, 0) );
4909 me2->SetName("me2");
4910 me2->RegisterYourself();
4911
4912 zloc += (kExternalCoverHoleLen2 + kExternalCoverHolesZTrans);
4913 TGeoCombiTrans *me3 = new TGeoCombiTrans(0, yloc, zloc,
4914 new TGeoRotation("", 0, 90, 0) );
4915 me3->SetName("me3");
4916 me3->RegisterYourself();
4917
4918 zloc += (kExternalCoverHoleLen2 + kExternalCoverHolesZTrans);
4919 TGeoCombiTrans *me4 = new TGeoCombiTrans(0, yloc, zloc,
4920 new TGeoRotation("", 0, 90, 0) );
4921 me4->SetName("me4");
4922 me4->RegisterYourself();
4923
4924 zloc += (kExternalCoverHoleLen3 + kExternalCoverHolesZTrans);
4925 TGeoCombiTrans *me5 = new TGeoCombiTrans(0, yloc, zloc,
4926 new TGeoRotation("", 0, 90, 0) );
4927 me5->SetName("me5");
4928 me5->RegisterYourself();
4929
4930 // Finally the actual cover shape
4931 TGeoCompositeShape *cover = new TGeoCompositeShape("ITSsuppExternCoverMain",
4932 "ITSsuppExternCoverMain-ITSsuppExtCoverHole1:me1-ITSsuppExtCoverHole2:me2-ITSsuppExtCoverHole2:me3-ITSsuppExtCoverHole3:me4-ITSsuppExtCoverHole4:me5");
4933
4934 return cover;
4935}
4936
4937//______________________________________________________________________
4938void AliITSv11GeometrySupport::CreateTrayACoverHolesShape(const Double_t wide,
4939 const Double_t length, const Double_t r10,
4940 Double_t *x, Double_t *y){
4941//
4942// Creates the proper sequence of X and Y coordinates to determine
4943// the base XTru polygon for the holes in the SDD and SSD tray covers
4944// (here the rounded corners are approximated with segments)
4945//
4946// Input:
4947// wide : the hole wide
4948// length : the hole length
4949// r10 : the radius of the rounded corners
4950//
4951// Output:
4952// x, y : coordinate vectors [16]
4953//
4954// Created: 03 Jan 2010 Mario Sitta
4955//
4956// Caller must guarantee that x and y have the correct dimensions
4957// (but being this a private method it's easy to tell)
4958//
4959
4960 x[0] = wide/2 - r10;
4961 y[0] = length;
4962 x[1] = x[0] + r10*SinD(30);
4963 y[1] = y[0] - r10*(1 - CosD(30));
4964 x[2] = x[0] + r10*SinD(60);
4965 y[2] = y[0] - r10*(1 - CosD(60));
4966 x[3] = x[0] + r10;
4967 y[3] = y[0] - r10;
4968 x[4] = x[3];
4969 y[4] = r10;
4970 x[5] = x[4] - r10*(1 - CosD(30));
4971 y[5] = y[4] - r10*SinD(30);
4972 x[6] = x[4] - r10*(1 - CosD(60));
4973 y[6] = y[4] - r10*SinD(60);
4974 x[7] = x[4] - r10;
4975 y[7] = 0;
4976
4977 // We did the right side, now reflex on the left side
4978 for (Int_t jp = 0; jp < 8; jp++) {
4979 x[8+jp] = -x[7-jp];
4980 y[8+jp] = y[7-jp];
4981 }
4982
4983 return;
4984}
4985
4986//______________________________________________________________________
4987TGeoXtru* AliITSv11GeometrySupport::CreateSDDSSDTraysSideA(
4988 const Double_t trayLen,
4989 const Double_t trayHi){
4990//
4991// Creates parts of the SDD and SSD Trays on Side A which are identical
4992// (0872/G/D/03, part of 0872/G/D/07, 0872/G/C/11)
4993//
4994// Input:
4995// trayLen : the length of the tray part
4996// trayHi : the height of the tray part
4997//
4998// Output:
4999//
5000// Return: a TGeoXtru
5001//
5002// Created: 26 Feb 2010 Mario Sitta
5003//
5004// Technical data are taken from AutoCAD drawings, L.Simonetti technical
5005// drawings and other (oral) information given by F.Tosello
5006//
5007
5008 // Dimensions and positions of the A-Side Cable Trays
5009 // (parts of 0872/G/C)
5010 const Double_t kTrayWidth = 130.00 *fgkmm;
5011 const Double_t kTrayWingWidth = 10.00 *fgkmm;
5012 const Double_t kTrayHeightToBend = 20.00 *fgkmm;
5013 const Double_t kTrayThick = 2.00 *fgkmm;
5014
5015 const Double_t kTrayBendAngle = 22.00 *TMath::DegToRad();
5016
5017 const Int_t kTrayNpoints = 16;
5018
5019 // Local variables
5020 Double_t xprof[kTrayNpoints], yprof[kTrayNpoints];
5021
5022
5023 // The tray shape: a Xtru
5024 TGeoXtru *trayPart = new TGeoXtru(2);
5025
5026 xprof[2] = kTrayWidth/2 - kTrayThick;
5027 yprof[2] = trayHi - kTrayThick;
5028 xprof[3] = kTrayWidth/2 - kTrayWingWidth;
5029 yprof[3] = yprof[2];
5030 xprof[4] = xprof[3];
5031 yprof[4] = trayHi;
5032 xprof[5] = kTrayWidth/2;
5033 yprof[5] = yprof[4];
5034 xprof[6] = xprof[5];
5035 yprof[6] = kTrayHeightToBend;
5036 xprof[7] = xprof[6] - yprof[6]*TMath::Tan(kTrayBendAngle);
5037 yprof[7] = 0;
5038
5039 InsidePoint( xprof[5], yprof[5], xprof[6], yprof[6], xprof[7], yprof[7],
5040 -kTrayThick, xprof[1], yprof[1]);
5041
5042 xprof[8] = -xprof[7];
5043 yprof[8] = yprof[7];
5044
5045 InsidePoint( xprof[6], yprof[6], xprof[7], yprof[7], xprof[8], yprof[8],
5046 -kTrayThick, xprof[0], yprof[0]);
5047
5048 // We did the right side, now reflex on the left side
5049 for (Int_t jp = 0; jp < 8; jp++) {
5050 xprof[8+jp] = -xprof[7-jp];
5051 yprof[8+jp] = yprof[7-jp];
5052 }
5053
5054 // And now the actual Xtru
5055 trayPart->DefinePolygon(kTrayNpoints, xprof, yprof);
5056 trayPart->DefineSection(0, 0);
5057 trayPart->DefineSection(1, trayLen);
5058
5059
5060 return trayPart;
5061}
5062