]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/SSDrecpointTest.C
New version with the Bari/Salerno model as default for SPD simulation
[u/mrichter/AliRoot.git] / ITS / SSDrecpointTest.C
CommitLineData
6b8f55ce 1void SSDrecpointTest (Int_t evNumber1=0,Int_t evNumber2=0)
2 //void SSDrecpointTest (Int_t evNumber1=0,Int_t evNumber2=999)
3{
4/////////////////////////////////////////////////////////////////////////
5// This macro is a small example of a ROOT macro
6// illustrating how to read the output of GALICE
7// and fill some histograms.
8//
9// Root > .L anal.C //this loads the macro in memory
10// Root > anal(); //by default process first event
11// Root > anal(2); //process third event
12//Begin_Html
13/*
14<img src="gif/anal.gif">
15*/
16//End_Html
17/////////////////////////////////////////////////////////////////////////
18
19// Dynamically link some shared libs
20
21 if (gClassTable->GetID("AliRun") < 0) {
22 gROOT->LoadMacro("loadlibs.C");
23 loadlibs();
487a6bce 24 } else {
25 delete gAlice;
26 gAlice=0;
6b8f55ce 27 }
28
29// Connect the Root Galice file containing Geometry, Kine and Hits
30 TString *str = new TString("galice.root");
31 TFile *file = (TFile*)gROOT->GetListOfFiles()->FindObject(str->Data());
32 if (!file) file = new TFile(str->Data(),"UPDATE");
33
34// Get AliRun object from file or create it if not on file
35 // if (!gAlice) {
36 gAlice = (AliRun*)file->Get("gAlice");
37 if (gAlice) printf("AliRun object found on file\n");
38 if (!gAlice) gAlice = new AliRun("gAlice","Alice test program");
39 //}
40
41
42 // -------------- Create ntuples --------------------
43
44 // ntuple structures:
45
46
47 struct {
48 Int_t lay;
49 Int_t nxP;
50 Int_t nxN;
51 Int_t hitprim;
52 Int_t partcode;
f239b2fe 53 Int_t ntrover;
6b8f55ce 54 Float_t x;
55 Float_t z;
56 Float_t dx;
57 Float_t dz;
58 Float_t pmod;
59 } ntuple_st;
60
61 struct {
62 Int_t lay;
63 Int_t lad;
64 Int_t det;
65 Int_t nxP;
66 Int_t nxN;
67 Int_t noverlaps;
68 Int_t noverprim;
f239b2fe 69 Int_t ntrover;
6b8f55ce 70 Float_t qclP;
71 Float_t qclN;
72 Float_t qrec;
73 Float_t dx;
74 Float_t dz;
75 } ntuple1_st;
76
77 struct {
78 Int_t nxP;
79 Int_t nxN;
80 Float_t x;
81 Float_t z;
82 } ntuple2_st;
83
84 ntuple = new TTree("ntuple","Demo ntuple");
85 ntuple->Branch("lay",&ntuple_st.lay,"lay/I");
86 ntuple->Branch("nxP",&ntuple_st.nxP,"nxP/I");
87 ntuple->Branch("nxN",&ntuple_st.nxN,"nxN/I");
88 ntuple->Branch("hitprim",&ntuple_st.hitprim,"hitprim/I");
89 ntuple->Branch("partcode",&ntuple_st.partcode,"partcode/I");
f239b2fe 90 ntuple->Branch("ntrover",&ntuple_st.ntrover,"ntrover/I");
6b8f55ce 91 ntuple->Branch("x",&ntuple_st.x,"x/F");
92 ntuple->Branch("z",&ntuple_st.z,"z/F");
93 ntuple->Branch("dx",&ntuple_st.dx,"dx/F");
94 ntuple->Branch("dz",&ntuple_st.dz,"dz/F");
95 ntuple->Branch("pmod",&ntuple_st.pmod,"pmod/F");
96
97 ntuple1 = new TTree("ntuple1","Demo ntuple1");
98 ntuple1->Branch("lay",&ntuple1_st.lay,"lay/I");
99 ntuple1->Branch("lad",&ntuple1_st.lad,"lad/I");
100 ntuple1->Branch("det",&ntuple1_st.det,"det/I");
101 ntuple1->Branch("nxP",&ntuple1_st.nxP,"nxP/I");
102 ntuple1->Branch("nxN",&ntuple1_st.nxN,"nxN/I");
103 ntuple1->Branch("qclP",&ntuple1_st.qclP,"qclP/F");
104 ntuple1->Branch("qclN",&ntuple1_st.qclN,"qclN/F");
105 ntuple1->Branch("qrec",&ntuple1_st.qrec,"qrec/F");
106 ntuple1->Branch("dx",&ntuple1_st.dx,"dx/F");
107 ntuple1->Branch("dz",&ntuple1_st.dz,"dz/F");
108 ntuple1->Branch("noverlaps",&ntuple1_st.noverlaps,"noverlaps/I");
109 ntuple1->Branch("noverprim",&ntuple1_st.noverprim,"noverprim/I");
f239b2fe 110 ntuple1->Branch("ntrover",&ntuple1_st.ntrover,"ntrover/I");
6b8f55ce 111
112 ntuple2 = new TTree("ntuple2","Demo ntuple2");
113 ntuple2->Branch("nxP",&ntuple2_st.nxP,"nxP/I");
114 ntuple2->Branch("nxN",&ntuple2_st.nxN,"nxN/I");
115 ntuple2->Branch("x",&ntuple2_st.x,"x/F");
116 ntuple2->Branch("z",&ntuple2_st.z,"z/F");
117
118
119 // Create Histogramms
120
121 TH1F *NxP5 = new TH1F("NxP5","P cluster size for layer 5",20,0.,20.);
122 TH1F *NxN5 = new TH1F("NxN5","N cluster size for layer 5",20,0.,20.);
123 TH1F *NxP6 = new TH1F("NxP6","P cluster size for layer 6",20,0.,20.);
124 TH1F *NxN6 = new TH1F("NxN6","N cluster size for layer 6",20,0.,20.);
125
126 TH1F *Xres5 = new TH1F("Xres5","Xrec and Xgen difference (micr) for layers 5",100,-200.,200.);
127 TH1F *Xres6 = new TH1F("Xres6","Xrec and Xgen difference (micr) for layers 6",100,-200.,200.);
128 TH1F *Zres5 = new TH1F("Zres5","Zrec and Zgen difference (micr) for layers 5",100,-8000.,8000.);
129 TH1F *Zres6 = new TH1F("Zres6","Zrec and Zgen difference (micr) for layers 6",100,-8000.,8000.);
130 TH1F *Path5 = new TH1F("Path5","Path length in Si",100,0.,600.);
131 TH1F *Path6 = new TH1F("Path6","Path length in Si",100,0.,600.);
132 TH1F *dEdX = new TH1F("dEdX","dEdX (KeV)",100,0.,500.);
133 TH2F *adcPadcN5all = new TH2F("adcPadcN5all","adcP/N correlation for lay5",100,0.,200.,100,0.,200.);
134 TH2F *adcPadcN6all = new TH2F("adcPadcN6all","adcP/N correlation for lay6",100,0.,200.,100,0.,200.);
135 TH2F *adcPadcN5cut = new TH2F("adcPadcN5cut","adcP/N correlation for lay5 and cut of P-N signas",100,0.,200.,100,0.,200.);
136 TH2F *adcPadcN6cut = new TH2F("adcPadcN6cut","adcP/N correlation for lay6 and cut of P-N signals",100,0.,200.,100,0.,200.);
137
138
139 AliITS *ITS = (AliITS*) gAlice->GetModule("ITS");
140 if (!ITS) { cout << "no ITS" << endl; return; }
141
3f0d03a1 142 //AliITSgeom *aliitsgeo = ITS->GetITSgeom();
143 AliITSgeom *geom = ITS->GetITSgeom();
6b8f55ce 144
43c39b72 145
6b8f55ce 146 //Int_t cp[8]={0,0,0,0,0,0,0,0};
147
43c39b72 148 //cout << "SSD" << endl;
6b8f55ce 149
150 AliITSDetType *iDetType=ITS->DetType(2);
151 AliITSsegmentationSSD *seg2=(AliITSsegmentationSSD*)iDetType->GetSegmentationModel();
152 AliITSresponseSSD *res2 = (AliITSresponseSSD*)iDetType->GetResponseModel();
153 //res2->SetSigmaSpread(3.,2.);
154 AliITSsimulationSSD *sim2=new AliITSsimulationSSD(seg2,res2);
155 ITS->SetSimulationModel(2,sim2);
156
157 TClonesArray *dig2 = ITS->DigitsAddress(2);
158 TClonesArray *recp2 = ITS->ClustersAddress(2);
6b8f55ce 159 AliITSClusterFinderSSD *rec2=new AliITSClusterFinderSSD(seg2,dig2);
160 ITS->SetReconstructionModel(2,rec2);
43c39b72 161
6b8f55ce 162 // test
43c39b72 163 printf("SSD dimensions %f %f %f \n",seg2->Dx(),seg2->Dz(),seg2->Dy());
6b8f55ce 164 printf("SSD nstrips %d %d \n",seg2->Npz(),seg2->Npx());
43c39b72 165 Float_t ylim = seg2->Dy()/2 - 12;
6b8f55ce 166
167//
168// Loop over events
169//
170
171
172 Int_t Nh=0;
173 Int_t Nh1=0;
174 for (int nev=0; nev<= evNumber2; nev++) {
175 Int_t nparticles = 0;
176 nparticles = gAlice->GetEvent(nev);
177 cout << "nev " << nev <<endl;
178 cout << "nparticles " << nparticles <<endl;
179 if (nev < evNumber1) continue;
180 if (nparticles <= 0) return;
181
182 AliITShit *itsHit;
183 AliITSRecPoint *itsPnt = 0;
184 AliITSRawClusterSSD *itsClu = 0;
185
186 // Get Hit, Cluster & Recpoints Tree Pointers
187
188 TTree *TH = gAlice->TreeH();
189 Int_t nenthit=TH->GetEntries();
190 printf("Found %d entries in the Hit tree (must be one per track per event!)\n",nenthit);
191
192 ITS->GetTreeC(nev);
193 TTree *TC=ITS->TreeC();
194 Int_t nentclu=TC->GetEntries();
195 printf("Found %d entries in the Cluster tree (must be one per module per event!)\n",nentclu);
196
197 TTree *TR = gAlice->TreeR();
198 Int_t nentrec=TR->GetEntries();
199 printf("Found %d entries in the RecPoints tree\n",nentrec);
200
201 // Get Pointers to Clusters & Recpoints TClonesArrays
202
203 TClonesArray *ITSclu = ITS->ClustersAddress(2);
204 printf ("ITSclu %p \n",ITSclu);
205 TClonesArray *ITSrec = ITS->RecPoints();
206 printf ("ITSrec %p \n",ITSrec);
207
208 // check recpoints
209
210 //Int_t nbytes = 0;
211 Int_t totpoints = 0;
212 Int_t totclust = 0;
213
214 // check hits
215
216 Int_t nmodules=0;
3f0d03a1 217 Int_t mod;
6b8f55ce 218
219 ITS->InitModules(-1,nmodules);
220 ITS->FillModules(nev,0,nmodules,"","");
221
222 TObjArray *fITSmodules = ITS->GetModules();
223
3f0d03a1 224 Int_t first0 = geom->GetStartDet(0); // SPD
225 Int_t last0 = geom->GetLastDet(0); // SPD
226 Int_t first1 = geom->GetStartDet(1); // SDD
227 Int_t last1 = geom->GetLastDet(1); // SDD
228 Int_t first2 = geom->GetStartDet(2); // SSD
229 Int_t last2 = geom->GetLastDet(2); // SSD
230
231 // For the SPD: first0 = 0, last0 = 239 (240 modules);
232 // for the SDD: first1 = 240, last1 = 499 (260 modules);
233 // for the SSD: first2 = 500, last2 = 2269 (1770 modules).
234
235 printf("det type %d first0, last0 %d %d \n",0,first0,last0);
236 printf("det type %d first1, last1 %d %d \n",1,first1,last1);
237 printf("det type %d first2, last2 %d %d \n",2,first2,last2);
6b8f55ce 238
3f0d03a1 239 // module loop for the SSD
43c39b72 240 for (mod=first2; mod<last2+1; mod++) { // for the "ALL" option
241 //for (mod=0; mod<last2-first2+1; mod++) { //for the "SSD" option
6b8f55ce 242
3f0d03a1 243 TTree *TR = gAlice->TreeR();
6b8f55ce 244 Int_t nentrec=TR->GetEntries();
245 //printf("Found %d entries in the RecPoints tree\n",nentrec);
246
247 //cout << "CLUSTERS: reset" << endl;
248 ITS->ResetClusters();
249 //cout << "CLUSTERS: get" << endl;
250 TC->GetEvent(mod);
251 //cout << "RECPOINTS: reset" << endl;
252 ITS->ResetRecPoints();
253 //cout << "RECPOINTS: get" << endl;
3f0d03a1 254 //TR->GetEvent(mod+1); // for the V3.04 AliRoot
255 TR->GetEvent(mod); // for the V3.05 AliRoot
6b8f55ce 256
257 Int_t nrecp = ITSrec->GetEntries();
258 totpoints += nrecp;
43c39b72 259 //if (nrecp) printf("Found %d rec points for module %d\n",nrecp,mod);
260 if (!nrecp) continue;
6b8f55ce 261 Int_t nclusters = ITSclu->GetEntries();
262 totclust += nclusters;
6b8f55ce 263 //if (nclusters) printf("Found %d clusters for module %d\n",nrecc,mod);
264
487a6bce 265 //AliITSmodule *Mod = (AliITSmodule *)fITSmodules->At(mod+first2);
0315d466 266 // for the "SSD" option
267
487a6bce 268 AliITSmodule *Mod = (AliITSmodule *)fITSmodules->At(mod);
0315d466 269 // for the "ALL" option
270
6b8f55ce 271 // printf("Mod: %X\n",Mod);
272 Int_t nhits = Mod->GetNhits();
273 Float_t epart = 0;
43c39b72 274 cout <<" module,nrecp,nclusters,nhits ="<<mod<<","<<nrecp<<","<<nclusters<<","<<nhits<< endl;
6b8f55ce 275
276 // ---------------- cluster/hit analysis ---------------------
277
278
279 Float_t pathInSSD = 300.;
280
281 // ---- Recpoint loop
282 for (Int_t pnt=0;pnt<nrecp;pnt++) {
283 itsPnt = (AliITSRecPoint*)ITSrec->At(pnt);
284 if(!itsPnt) continue;
285 itsClu = (AliITSRawClusterSSD*)ITSclu->At(pnt);
286 if(!itsClu) continue;
287
288 Int_t nxP = itsClu->fMultiplicity;
289 Int_t nxN = itsClu->fMultiplicityN;
f239b2fe 290 Int_t ntrover = itsClu->fNtracks;
6b8f55ce 291 Float_t qclP = itsClu->fSignalP; // in ADC
292 Float_t qclN = itsClu->fSignalN; // in ADC
293 //Float_t dq = qclP - qclN;
294 Float_t qcut = itsClu->fQErr; // abs(dq)/signal,
295 // where signal is
296 // max of qclP,qclN
297 Float_t xrec = 10000*itsPnt->GetX();
298 Float_t zrec = 10000*itsPnt->GetZ();
299 Float_t qrec = itsPnt->GetQ(); // in ADC, maximum from fSignalP/N
300 //Float_t dedx = itsPnt->GetdEdX(); // in KeV (ADC * 2.16)
301 Float_t dedx = itsPnt->fdEdX; // in KeV (ADC * 2.16)
302 Int_t ii = 0;
303 Int_t tr1 = itsPnt->GetLabel(ii);
304 Int_t ii = 1;
305 Int_t tr2 = itsPnt->GetLabel(ii);
306 Int_t ii = 2;
307 Int_t tr3 = itsPnt->GetLabel(ii);
6b8f55ce 308 // fill ntuple2
309 ntuple2_st.nxP = nxP;
310 ntuple2_st.nxN = nxN;
311 ntuple2_st.x = xrec/1000;
312 ntuple2_st.z = zrec/1000;
313
314 if(qcut < 0.18) ntuple2->Fill();
315
316
317 Int_t noverlaps = 0;
318 Int_t noverprim = 0;
319 Int_t flaghit = 0;
320 Float_t xhit0 = 1e+7;
321 Float_t yhit0 = 1e+7;
322 Float_t zhit0 = 1e+7;
323
324 // Hit loop
325 for (Int_t hit=0;hit<nhits;hit++) {
326
327 itsHit = (AliITShit*)Mod->GetHit(hit);
328
329 Int_t flagtrack = 0;
330 Int_t hitlayer = itsHit->GetLayer();
331 Int_t hitladder= itsHit->GetLadder();
332 Int_t hitdet= itsHit->GetDetector();
333
334 Int_t track = itsHit->GetTrack();
335 Int_t dray = 0;
336 Int_t hitstat = itsHit->GetTrackStatus();
337
338 Float_t zhit = 10000*itsHit->GetZL();
339 Float_t xhit = 10000*itsHit->GetXL();
340 Float_t yhit = 10000*itsHit->GetYL();
341 Float_t ehit = 1.0e+6*itsHit->GetIonization(); // hit energy, KeV
342
343 Int_t parent = itsHit->GetParticle()->GetFirstMother();
344 Int_t partcode = itsHit->GetParticle()->GetPdgCode();
345
346 // partcode (pdgCode): 11 - e-, 13 - mu-, 22 - gamma, 111 - pi0, 211 - i+
347 // 310 - K0s, 321 - K+, 2112 - n, 2212 - p, 3122 - lambda
348
349 Float_t pmod = itsHit->GetParticle()->P(); // the momentum at the
350 // vertex
351 pmod *= 1.0e+3;
352
43c39b72 353 if(hitstat == 66 && yhit < -ylim) { // entering hit
6b8f55ce 354 xhit0 = xhit;
355 yhit0 = yhit;
356 zhit0 = zhit;
357 }
358
359 if(hitstat == 66) continue; // Take the not entering hits only
360
361 if(xhit0 > 9e+6 || zhit0 > 9e+6 || yhit0 > 9e+6) {
362 //cout<<"default xhit0,zhit0,yhit0 ="<<xhit0<<","<<zhit0<<","<<yhit0<<endl;
363 continue;
364 }
365
366
367
368 // Consider the hits only with the track number equaled to one
369 // of the recpoint
f239b2fe 370 if((track == tr1) || (track == tr2) || (track == tr3)) flagtrack = 1;
6b8f55ce 371
372 if(flagtrack == 1) { // the hit corresponds to the recpoint
373
374 flaghit = 1;
375
376 //Float_t px = itsHit->GetPXL(); // the momenta at this GEANT point
377 //Float_t py = itsHit->GetPYL();
378 //Float_t pz = itsHit->GetPZL();
379
380 Int_t hitprim = 0;
381
382 if(partcode == 11 && pmod < 6) dray = 1; // delta ray is e-
383 // at p < 6 MeV/c
384
385 if((hitstat == 68 || hitstat == 33) && dray == 0) noverlaps=noverlaps + 1;
386 // overlapps for all hits but
387 // not for delta ray which
388 // also went out from the
389 // detector and returned
390 // again
391
392
393 // x,z resolution colculation
f239b2fe 394 if((hitstat == 68 || hitsat == 33) && dray == 0) {
6b8f55ce 395 Float_t xmed = (xhit + xhit0)/2;
396 Float_t zmed = (zhit + zhit0)/2;
397 Float_t xdif = xmed - xrec;
398 Float_t zdif = zmed - zrec;
399
0315d466 400 if(parent < 0) {
401 hitprim = 1; // hitprim=1 for the primery particles
402 noverprim += 1;
403 }
6b8f55ce 404 pathInSSD = TMath::Sqrt((xhit0-xhit)*(xhit0-xhit)+(yhit0-yhit)*(yhit0-yhit)+(zhit0-zhit)*(zhit0-zhit));
405
487a6bce 406 // fill ntuple
6b8f55ce 407 ntuple_st.lay = hitlayer;
408 ntuple_st.nxP = nxP;
409 ntuple_st.nxN = nxN;
410 ntuple_st.hitprim = hitprim;
411 ntuple_st.partcode = partcode;
f239b2fe 412 ntuple_st.ntrover = ntrover;
6b8f55ce 413 ntuple_st.x = xrec/1000;
414 ntuple_st.z = zrec/1000;
415 ntuple_st.dx = xdif;
416 ntuple_st.dz = zdif;
417 ntuple_st.pmod = pmod;
418
0315d466 419 //if(qcut < 0.18) ntuple->Fill();
420 ntuple->Fill();
6b8f55ce 421
0315d466 422 //if(hitlayer == 5 && qcut < 0.18) {
487a6bce 423
0315d466 424 if(hitlayer == 5 ) {
6b8f55ce 425 Xres5->Fill(xdif);
426 Zres5->Fill(zdif);
427 Path5->Fill(pathInSSD);
0315d466 428 }
429 //if(hitlayer == 6 && qcut < 0.18) {
430 if(hitlayer == 6) {
6b8f55ce 431 Xres6->Fill(xdif);
432 Zres6->Fill(zdif);
433 Path6->Fill(pathInSSD);
434 }
435 } // hitstat 68/33
436 } else { // non correspondent hit
437 xhit0 = 1e+7;
438 zhit0 = 1e+7;
439 } // end of hit-recpoint correspondence
440 } // hit loop
441
442 if(flaghit == 1) {
6b8f55ce 443
444 if(noverlaps == 0) noverlaps = 1; // cluster contains one or more
445 // delta rays only
446
447 // fill ntuple1
448 ntuple1_st.lay = hitlayer;
449 ntuple1_st.lad = hitladder;
450 ntuple1_st.det = hitdet;
451 ntuple1_st.nxP = nxP;
452 ntuple1_st.nxN = nxN;
453 ntuple1_st.qclP = qclP*300/pathInSSD;
454 ntuple1_st.qclN = qclN*300/pathInSSD;
455 ntuple1_st.qrec = qrec*300/pathInSSD;
456 ntuple1_st.dx = xdif;
457 ntuple1_st.dz = zdif;
458 noverlaps -= 1;
459 noverprim -= 1;
460 ntuple1_st.noverlaps = noverlaps;
461 ntuple1_st.noverprim = noverprim;
f239b2fe 462 ntuple1_st.ntrover = ntrover;
6b8f55ce 463
0315d466 464 //if(qcut < 0.18) ntuple1->Fill();
465 ntuple1->Fill();
6b8f55ce 466
467 Float_t de = dedx*300./pathInSSD;
468 dEdX->Fill(de);
469 if(hitlayer == 5 ) {
470 adcPadcN5all->Fill(qclP,qclN);
471 }
472 if(hitlayer == 6 ) {
473 adcPadcN6all->Fill(qclP,qclN);
474 }
475 if(hitlayer == 5 && qcut < 0.18) {
476 adcPadcN5cut->Fill(qclP,qclN);
477 NxP5->Fill(nxP);
478 NxN5->Fill(nxN);
479 }
480 if(hitlayer == 6 && qcut < 0.18) {
481 adcPadcN6cut->Fill(qclP,qclN);
482 NxP6->Fill(nxP);
483 NxN6->Fill(nxN);
484 }
485 } // flaghit = 1
486 } //b.b. recpoint loop
487 } //b.b. module loop
488 } //b.b. evnt loop
489
490 TFile fhistos("SSD_his.root","RECREATE");
491
492 ntuple->Write();
493 ntuple1->Write();
494 ntuple2->Write();
495 NxP5->Write();
496 NxN5->Write();
497 NxP6->Write();
498 NxN6->Write();
499 Xres5->Write();
500 Zres5->Write();
501 Xres6->Write();
502 Zres6->Write();
503 Path5->Write();
504 Path6->Write();
505 adcPadcN5all->Write();
506 adcPadcN6all->Write();
507 adcPadcN5cut->Write();
508 adcPadcN6cut->Write();
509 dEdX->Write();
510
511 fhistos.Close();
512
513 cout<<"!!! Histogramms and ntuples were written"<<endl;
514
515 TCanvas *c1 = new TCanvas("c1","ITS clusters",400,10,600,700);
516 c1->Divide(2,2);
517 c1->cd(1);
518 gPad->SetFillColor(33);
519 Xres5->SetFillColor(42);
520 Xres5->Draw();
521 c1->cd(2);
522 gPad->SetFillColor(33);
523 Zres5->SetFillColor(46);
524 Zres5->Draw();
525 c1->cd(3);
526 gPad->SetFillColor(33);
527 Xres6->SetFillColor(42);
528 Xres6->Draw();
529 c1->cd(4);
530 gPad->SetFillColor(33);
531 Zres6->SetFillColor(46);
532 Zres6->Draw();
533
534 cout<<"END test for clusters and hits "<<endl;
535
536}
537
538
539
540
541
542