]> git.uio.no Git - u/mrichter/AliRoot.git/blame - ITS/UPGRADE/DetectorK.h
Removed obsolete scripts
[u/mrichter/AliRoot.git] / ITS / UPGRADE / DetectorK.h
CommitLineData
d4945a3b 1#ifndef DETECTORK_H\r
2#define DETECTORK_H\r
3\r
4#include <TNamed.h>\r
5#include <TList.h>\r
6#include <TGraph.h>\r
7#include <Riostream.h>\r
8\r
9/***********************************************************\r
10\r
11Fast Simulation tool for Inner Tracker Systems\r
12\r
13original code of using the billoir technique was developed\r
14for the HFT (STAR), James H. Thomas, jhthomas@lbl.gov\r
15http://rnc.lbl.gov/~jhthomas\r
16\r
17Changes by S. Rossegger\r
18\r
19July 2011 - Adding the possibility of "fake calculation" and "efficiency calculation" \r
20 with a number of "at least correct clusters on the track"\r
21 Done using the complete combinatorics table with 3^nLayer track outcomes.\r
22\r
23April 2011 - Now uses the Kalman method (aliroot implementation) instead of the Billoir\r
24 technique ... (changes by Ruben Shahoyan)\r
25\r
26March 2011 - Changes to comply with the Alice Offline coding conventions\r
27\r
28Feb. 2011 - Improvement in "lowest pt allowed" -> now uses helix param. for calc. of a,b\r
29\r
30 - Adding a more sophisticaed efficiency calculation which includes\r
31 the possibility to make chi2 cuts via Confidence Levels (method of Ruben Shahoyan)\r
32 plus adding 'basic' detection efficiencies per layer ...\r
33\r
34 - Adding "ITS Stand alone" tracking capabilities via \r
35 forward+backward tracking -> Kalman smoothing is then \r
36 used for the parameter estimates (important for efficiencies)\r
37\r
38Jan. 2011 - Inclusion of ImpactParameter Plots (with vtx estimates)\r
39 to allow comparison with ITS performances in pp data\r
40\r
41Dec. 2010 - Translation into C++ class format \r
42 - Adding various Setters and Getters to build the geometry \r
43 (based on cylinders) plus handling of the layer properties \r
44\r
45\r
46***********************************************************/\r
47\r
48class AliExternalTrackParam; \r
49#include <TMatrixD.h>\r
50\r
51class DetectorK : public TNamed {\r
52\r
53 public:\r
54 \r
55 DetectorK();\r
56 DetectorK(char *name,char *title);\r
57 virtual ~DetectorK();\r
58\r
59 enum {kNptBins = 100}; // less then 400 !!\r
60 \r
61 void AddLayer(char *name, Float_t radius, Float_t radL, Float_t phiRes=999999, Float_t zRes=999999, Float_t eff=0.99);\r
62\r
63 void KillLayer(char *name);\r
64 void SetRadius(char *name, Float_t radius);\r
65 void SetRadiationLength(char *name, Float_t radL);\r
66 void SetResolution(char *name, Float_t phiRes=999999, Float_t zRes=999999);\r
67 void SetLayerEfficiency(char *name, Float_t eff=1.0);\r
68 void RemoveLayer(char *name);\r
69\r
70 Float_t GetRadius(char *name);\r
71 Float_t GetRadiationLength(char *name);\r
72 Float_t GetResolution(char *name, Int_t axis=0);\r
73 Float_t GetLayerEfficiency(char *name);\r
74\r
75 void PrintLayout(); \r
76 void PlotLayout(Int_t plotDead = kTRUE);\r
77 \r
78 void MakeAliceAllNew(Bool_t flagTPC =1,Bool_t flagMon=1);\r
79 void MakeAliceCurrent(Int_t AlignResiduals = 0, Bool_t flagTPC =1);\r
80 void AddTPC(Float_t phiResMean, Float_t zResMean, Int_t skip=1);\r
81 void RemoveTPC();\r
82\r
83 void SetBField(Float_t bfield) {fBField = bfield; }\r
84 Float_t GetBField() const {return fBField; }\r
85 void SetLhcUPCscale(Float_t lhcUPCscale) {fLhcUPCscale = lhcUPCscale; }\r
86 Float_t GetLhcUPCscale() const { return fLhcUPCscale; }\r
87 void SetParticleMass(Float_t particleMass) {fParticleMass = particleMass; }\r
88 Float_t GetParticleMass() const { return fParticleMass; }\r
89 void SetIntegrationTime(Float_t integrationTime) {fIntegrationTime = integrationTime; }\r
90 Float_t GetIntegrationTime() const { return fIntegrationTime; }\r
91 void SetMaxRadiusOfSlowDetectors(Float_t maxRadiusSlowDet) {fMaxRadiusSlowDet = maxRadiusSlowDet; }\r
92 Float_t GetMaxRadiusOfSlowDetectors() const { return fMaxRadiusSlowDet; }\r
93 void SetAvgRapidity(Float_t avgRapidity) {fAvgRapidity = avgRapidity; }\r
94 Float_t GetAvgRapidity() const { return fAvgRapidity; }\r
95 void SetConfidenceLevel(Float_t confLevel) {fConfLevel = confLevel; }\r
96 Float_t GetConfidenceLevel() const { return fConfLevel; }\r
97 void SetAtLeastCorr(Int_t atLeastCorr ) {fAtLeastCorr = atLeastCorr; }\r
98 Int_t GetAtLeastCorr() const { return fAtLeastCorr; }\r
99 void SetAtLeastFake(Int_t atLeastFake ) {fAtLeastFake = atLeastFake; }\r
100 Int_t GetAtLeastFake() const { return fAtLeastFake; }\r
101\r
102 void SetdNdEtaCent(Int_t dNdEtaCent ) {fdNdEtaCent = dNdEtaCent; }\r
103 Float_t GetdNdEtaCent() const { return fdNdEtaCent; }\r
104\r
105 \r
106 Float_t GetNumberOfActiveLayers() const {return fNumberOfActiveLayers; }\r
107 Float_t GetNumberOfActiveITSLayers() const {return fNumberOfActiveITSLayers; }\r
108\r
109 void SolveViaBilloir(Int_t flagD0=1,Int_t print=1, Bool_t allPt=1, Double_t meanPt =0.750);\r
110 void SolveDOFminusOneAverage();\r
111\r
112 // Helper functions\r
113 Double_t ThetaMCS ( Double_t mass, Double_t RadLength, Double_t momentum ) const;\r
114 Double_t ProbGoodHit ( Double_t radius, Double_t searchRadiusRPhi, Double_t searchRadiusZ ) ; \r
115 Double_t ProbGoodChiSqHit ( Double_t radius, Double_t searchRadiusRPhi, Double_t searchRadiusZ ) ; \r
116 Double_t ProbGoodChiSqPlusConfHit ( Double_t radius, Double_t leff, Double_t searchRadiusRPhi, Double_t searchRadiusZ ) ; \r
117 Double_t ProbNullChiSqPlusConfHit ( Double_t radius, Double_t leff, Double_t searchRadiusRPhi, Double_t searchRadiusZ ) ; \r
118 \r
119 // Howard W. hit distribution and convolution integral\r
120 Double_t Dist ( Double_t Z, Double_t radius ) ; \r
121 Double_t HitDensity ( Double_t radius ) ;\r
122 Double_t UpcHitDensity ( Double_t radius ) ;\r
123 Double_t IntegratedHitDensity ( Double_t multiplicity, Double_t radius ) ;\r
124 Double_t OneEventHitDensity ( Double_t multiplicity, Double_t radius ) const ;\r
125 Double_t D0IntegratedEfficiency( Double_t pt, Double_t corrEfficiency[][400] ) const ;\r
126 \r
127 TGraph* GetGraphMomentumResolution(Int_t color, Int_t linewidth=1);\r
128 TGraph* GetGraphPointingResolution(Int_t axis,Int_t color, Int_t linewidth=1);\r
129 TGraph* GetGraphPointingResolutionTeleEqu(Int_t axis,Int_t color, Int_t linewidth=1);\r
130\r
131 TGraph* GetGraphImpactParam(Int_t mode, Int_t axis, Int_t color, Int_t linewidth=1);\r
132\r
133 TGraph* GetGraphRecoEfficiency(Int_t particle, Int_t color, Int_t linewidth=1); \r
134 TGraph* GetGraphRecoFakes(Int_t particle,Int_t color, Int_t linewidth);\r
135 TGraph* GetGraphRecoPurity(Int_t particle,Int_t color, Int_t linewidth);\r
136\r
137 TGraph* GetGraph(Int_t number, Int_t color, Int_t linewidth=1);\r
138\r
139 void MakeStandardPlots(Bool_t add =0, Int_t color=1, Int_t linewidth=1,Bool_t onlyPionEff=0);\r
140\r
141 // method to extend AliExternalTrackParam functionality\r
142 Bool_t GetXatLabR(AliExternalTrackParam* tr,Double_t r,Double_t &x, Double_t bz, Int_t dir=0) const;\r
143\r
144 Double_t* PrepareEffFakeKombinations(TMatrixD *probKomb, TMatrixD *probLay);\r
145\r
146 protected:\r
147 \r
148 Int_t fNumberOfLayers; // total number of layers in the model\r
149 Int_t fNumberOfActiveLayers; // number of active layers in the model\r
150 Int_t fNumberOfActiveITSLayers; // number of active ITS layers in the model\r
151 TList fLayers; // List of layer pointers\r
152 Float_t fBField; // Magnetic Field in Tesla\r
153 Float_t fLhcUPCscale; // UltraPeripheralElectrons: scale from RHIC to LHC\r
154 Float_t fIntegrationTime; // electronics integration time\r
155 Float_t fConfLevel; // Confidence Level for the tracking\r
156 Float_t fAvgRapidity; // rapidity of the track (= mean)\r
157 Float_t fParticleMass; // Particle used for tracking. Standard: mass of pion\r
158 Double_t fMaxRadiusSlowDet; // Maximum radius for slow detectors. Fast detectors \r
159 // and only fast detectors reside outside this radius.\r
160 Int_t fAtLeastCorr; // min. number of correct hits for the track to be "good"\r
161 Int_t fAtLeastFake; // min. number of fake hits for the track to be "fake"\r
162\r
163 Int_t fdNdEtaCent; // Multiplicity\r
164\r
165 enum {kMaxNumberOfDetectors = 200};\r
166 \r
167 Double_t fTransMomenta[kNptBins]; // array of transverse momenta\r
168 Double_t fMomentumRes[kNptBins]; // array of momentum resolution\r
169 Double_t fResolutionRPhi[kNptBins]; // array of rphi resolution\r
170 Double_t fResolutionZ[kNptBins]; // array of z resolution\r
171 Double_t fDetPointRes[kMaxNumberOfDetectors][kNptBins]; // array of rphi resolution per layer\r
172 Double_t fDetPointZRes[kMaxNumberOfDetectors][kNptBins]; // array of z resolution per layer\r
173 Double_t fEfficiency[3][kNptBins]; // efficiency for different particles\r
174 Double_t fFake[3][kNptBins]; // fake prob for different particles\r
175\r
176 ClassDef(DetectorK,1);\r
177};\r
178\r
179#endif\r