]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONResponseV0.h
Minor fixes in the event tag to take into account the new way of storing the trigger...
[u/mrichter/AliRoot.git] / MUON / AliMUONResponseV0.h
CommitLineData
a9e2aefa 1#ifndef ALIMUONRESPONSEV0_H
2#define ALIMUONRESPONSEV0_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5
6/* $Id$ */
30178c30 7// Revision of includes 07/05/2004
a9e2aefa 8
692de412 9/// \ingroup sim
10/// \class AliMUONResponseV0
11/// \brief Implementation of Mathieson response
12
a9e2aefa 13#include "AliMUONResponse.h"
a713db22 14#include "AliMUONMathieson.h"
a9e2aefa 15
a713db22 16class AliMUONResponseV0 : public AliMUONResponse
30178c30 17{
a9e2aefa 18 public:
885d501b 19 AliMUONResponseV0();
a713db22 20 virtual ~AliMUONResponseV0();
a9e2aefa 21 //
22 // Configuration methods
23 //
24 // Set number of sigmas over which cluster didintegration is performed
25 virtual void SetSigmaIntegration(Float_t p1) {fSigmaIntegration=p1;}
26 // Get number of sigmas over which cluster didintegration is performed
30178c30 27 virtual Float_t SigmaIntegration() const {return fSigmaIntegration;}
a9e2aefa 28 // Set single electron pulse height (ADCcounts/e)
29 virtual void SetChargeSlope(Float_t p1) {fChargeSlope=p1;}
30 // Get Set single electron pulse height (ADCcounts/e)
30178c30 31 virtual Float_t ChargeSlope() const {return fChargeSlope;}
a9e2aefa 32 // Set sigmas of the charge spread function
33 virtual void SetChargeSpread(Float_t p1, Float_t p2)
34 {fChargeSpreadX=p1; fChargeSpreadY=p2;}
35 // Get sigma_X of the charge spread function
30178c30 36 virtual Float_t ChargeSpreadX() const {return fChargeSpreadX;}
a9e2aefa 37 // Get sigma_Y of the charge spread function
30178c30 38 virtual Float_t ChargeSpreadY() const {return fChargeSpreadY;}
a9e2aefa 39 // Set maximum Adc-count value
40 virtual void SetMaxAdc(Int_t p1) {fMaxAdc=p1;}
a614d271 41 // Set saturation value
42 virtual void SetSaturation(Int_t p1) {fSaturation=p1;}
a9e2aefa 43 // Set zero suppression threshold
44 virtual void SetZeroSuppression(Int_t p1) {fZeroSuppression=p1;}
45 // Get maximum Adc-count value
30178c30 46 virtual Int_t MaxAdc() const {return fMaxAdc;}
a614d271 47 // Get saturation value
30178c30 48 virtual Int_t Saturation() const {return fSaturation;}
a614d271 49
a9e2aefa 50 // Get zero suppression threshold
30178c30 51 virtual Int_t ZeroSuppression() const {return fZeroSuppression;}
16d57990 52 // Set the charge correlation
53 virtual void SetChargeCorrel(Float_t correl){fChargeCorrel = correl;}
54 // Get the charge correlation
30178c30 55 virtual Float_t ChargeCorrel() const {return fChargeCorrel;}
a713db22 56
57
58 // Set anode cathode Pitch
59 virtual Float_t Pitch() const {return fMathieson->Pitch();}
60 // Get anode cathode Pitch
61 virtual void SetPitch(Float_t p1) {fMathieson->SetPitch(p1);};
62
a9e2aefa 63 // Set Mathieson parameters
a713db22 64 // Mathieson \sqrt{Kx3} and derived Kx2 and Kx4
65 // passing pointer to class Mathieson for backward compatibility
66 virtual void SetSqrtKx3AndDeriveKx2Kx4(Float_t SqrtKx3);
a9e2aefa 67 // Mathieson \sqrt{Kx3}
a713db22 68 virtual void SetSqrtKx3(Float_t p1) {fMathieson->SetSqrtKx3(p1);};
a9e2aefa 69 // Mathieson Kx2
a713db22 70 virtual void SetKx2(Float_t p1) {fMathieson->SetKx2(p1);};
a9e2aefa 71 // Mathieson Kx4
a713db22 72 virtual void SetKx4(Float_t p1) {fMathieson->SetKx4(p1);};
d5bfadcc 73 // Mathieson \sqrt{Ky3} and derived Ky2 and Ky4
74 virtual void SetSqrtKy3AndDeriveKy2Ky4(Float_t SqrtKy3);
a9e2aefa 75 // Mathieson \sqrt{Ky3}
a713db22 76 virtual void SetSqrtKy3(Float_t p1) {fMathieson->SetSqrtKy3(p1);};
a9e2aefa 77 // Mathieson Ky2
a713db22 78 virtual void SetKy2(Float_t p1) {fMathieson->SetKy2(p1);};
a9e2aefa 79 // Mathieson Ky4
a713db22 80 virtual void SetKy4(Float_t p1) {fMathieson->SetKy4(p1);};
a9e2aefa 81 //
82 // Chamber response methods
83 // Pulse height from scored quantity (eloss)
85fec35d 84 virtual Float_t IntPH(Float_t eloss) const;
a9e2aefa 85 // Charge disintegration
85fec35d 86 virtual Float_t IntXY(Int_t idDE,
87 AliMUONGeometrySegmentation* segmentation) const;
a9e2aefa 88 // Noise, zero-suppression, adc saturation
85fec35d 89 virtual Int_t DigitResponse(Int_t digit,
90 AliMUONTransientDigit* where) const;
a9e2aefa 91
885d501b 92 virtual Float_t GetAnod(Float_t x) const;
93
94 virtual void DisIntegrate(const AliMUONHit& hit, TList& digits);
95
96 virtual void Print(Option_t* opt="") const;
97
a9e2aefa 98 protected:
f29ba3e1 99 AliMUONResponseV0(const AliMUONResponseV0& rhs);
100 AliMUONResponseV0& operator = (const AliMUONResponseV0& rhs);
101
a9e2aefa 102 Float_t fChargeSlope; // Slope of the charge distribution
103 Float_t fChargeSpreadX; // Width of the charge distribution in x
104 Float_t fChargeSpreadY; // Width of the charge distribution in y
105 Float_t fSigmaIntegration; // Number of sigma's used for charge distribution
106 Int_t fMaxAdc; // Maximum ADC channel
a614d271 107 Int_t fSaturation; // Pad saturation in ADC channel
a9e2aefa 108 Int_t fZeroSuppression; // Zero suppression threshold
16d57990 109 Float_t fChargeCorrel; // amplitude of charge correlation on 2 cathods
110 // is RMS of ln(q1/q2)
a713db22 111 AliMUONMathieson* fMathieson; // pointer to mathieson fct
885d501b 112 Float_t fChargeThreshold; // Charges below this threshold are = 0
113
114 ClassDef(AliMUONResponseV0,2) // Implementation of detector response
a9e2aefa 115};
885d501b 116
a9e2aefa 117#endif
118
119
120
121
122
123
124
125
126
127
128