]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONTrackParam.cxx
Merging the VirtualMC branch to the main development branch (HEAD)
[u/mrichter/AliRoot.git] / MUON / AliMUONTrackParam.cxx
CommitLineData
a9e2aefa 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17$Log$
b9d0a01d 18Revision 1.11.6.1 2002/10/11 06:56:48 hristov
19Updating VirtualMC to v3-09-02
20
21Revision 1.12 2002/09/19 10:14:00 cussonno
22Modified absorber correction. Added function FieldCorrection() to account
23for the effect of magnetic field in absorber.
24
b45fd22b 25Revision 1.11 2002/03/08 17:25:36 cussonno
26Update absorber energy loss and Branson corrections : simplified functions
27BransonCorrection and TotalMomentumEnergyLoss.
28
43af2cb6 29Revision 1.10 2001/04/25 14:50:42 gosset
30Corrections to violations of coding conventions
31
3831f268 32Revision 1.9 2000/10/16 15:30:40 gosset
33TotalMomentumEnergyLoss:
34correction for change in the absorber composition (JP Cussonneau)
35
6372a28d 36Revision 1.8 2000/10/02 21:28:09 fca
37Removal of useless dependecies via forward declarations
38
94de3818 39Revision 1.7 2000/10/02 16:58:29 egangler
40Cleaning of the code :
41-> coding conventions
42-> void Streamers
43-> some useless includes removed or replaced by "class" statement
44
ecfa008b 45Revision 1.6 2000/09/19 09:49:50 gosset
46AliMUONEventReconstructor package
47* track extrapolation independent from reco_muon.F, use of AliMagF...
48* possibility to use new magnetic field (automatic from generated root file)
49
a6f03ddb 50Revision 1.5 2000/07/18 16:04:06 gosset
51AliMUONEventReconstructor package:
52* a few minor modifications and more comments
53* a few corrections
54 * right sign for Z of raw clusters
55 * right loop over chambers inside station
56 * symmetrized covariance matrix for measurements (TrackChi2MCS)
57 * right sign of charge in extrapolation (ExtrapToZ)
58 * right zEndAbsorber for Branson correction below 3 degrees
59* use of TVirtualFitter instead of TMinuit for AliMUONTrack::Fit
60* no parameter for AliMUONTrack::Fit() but more fit parameters in Track object
61
956019b6 62Revision 1.4 2000/07/03 07:53:31 morsch
63Double declaration problem on HP solved.
64
88962f0c 65Revision 1.3 2000/06/30 10:15:48 gosset
66Changes to EventReconstructor...:
67precision fit with multiple Coulomb scattering;
68extrapolation to vertex with Branson correction in absorber (JPC)
69
04b5ea16 70Revision 1.2 2000/06/15 07:58:49 morsch
71Code from MUON-dev joined
72
a9e2aefa 73Revision 1.1.2.3 2000/06/09 21:03:09 morsch
74Make includes consistent with new file structure.
75
76Revision 1.1.2.2 2000/06/09 12:58:05 gosset
77Removed comment beginnings in Log sections of .cxx files
78Suppressed most violations of coding rules
79
80Revision 1.1.2.1 2000/06/07 14:44:53 gosset
81Addition of files for track reconstruction in C++
82*/
83
3831f268 84///////////////////////////////////////////////////
85//
86// Track parameters
87// in
88// ALICE
89// dimuon
90// spectrometer
a9e2aefa 91//
3831f268 92///////////////////////////////////////////////////
a9e2aefa 93
94#include <iostream.h>
95
96#include "AliCallf77.h"
3831f268 97#include "AliMUON.h"
a9e2aefa 98#include "AliMUONTrackParam.h"
3831f268 99#include "AliMUONChamber.h"
a9e2aefa 100#include "AliRun.h"
94de3818 101#include "AliMagF.h"
a9e2aefa 102
103ClassImp(AliMUONTrackParam) // Class implementation in ROOT context
104
a6f03ddb 105 // A few calls in Fortran or from Fortran (extrap.F).
106 // Needed, instead of calls to Geant subroutines,
107 // because double precision is necessary for track fit converging with Minuit.
108 // The "extrap" functions should be translated into C++ ????
a9e2aefa 109#ifndef WIN32
a6f03ddb 110# define extrap_onestep_helix extrap_onestep_helix_
111# define extrap_onestep_helix3 extrap_onestep_helix3_
112# define extrap_onestep_rungekutta extrap_onestep_rungekutta_
113# define gufld_double gufld_double_
a9e2aefa 114#else
a6f03ddb 115# define extrap_onestep_helix EXTRAP_ONESTEP_HELIX
116# define extrap_onestep_helix3 EXTRAP_ONESTEP_HELIX3
117# define extrap_onestep_rungekutta EXTRAP_ONESTEP_RUNGEKUTTA
118# define gufld_double GUFLD_DOUBLE
a9e2aefa 119#endif
120
a6f03ddb 121extern "C" {
122 void type_of_call extrap_onestep_helix
123 (Double_t &Charge, Double_t &StepLength, Double_t *VGeant3, Double_t *VGeant3New);
124
125 void type_of_call extrap_onestep_helix3
126 (Double_t &Field, Double_t &StepLength, Double_t *VGeant3, Double_t *VGeant3New);
127
128 void type_of_call extrap_onestep_rungekutta
129 (Double_t &Charge, Double_t &StepLength, Double_t *VGeant3, Double_t *VGeant3New);
130
131 void type_of_call gufld_double(Double_t *Position, Double_t *Field) {
132 // interface to "gAlice->Field()->Field" for arguments in double precision
133 Float_t x[3], b[3];
134 x[0] = Position[0]; x[1] = Position[1]; x[2] = Position[2];
135 gAlice->Field()->Field(x, b);
136 Field[0] = b[0]; Field[1] = b[1]; Field[2] = b[2];
137 }
a9e2aefa 138}
139
a9e2aefa 140 //__________________________________________________________________________
141void AliMUONTrackParam::ExtrapToZ(Double_t Z)
142{
143 // Track parameter extrapolation to the plane at "Z".
144 // On return, the track parameters resulting from the extrapolation
145 // replace the current track parameters.
a9e2aefa 146 if (this->fZ == Z) return; // nothing to be done if same Z
147 Double_t forwardBackward; // +1 if forward, -1 if backward
148 if (Z > this->fZ) forwardBackward = 1.0;
149 else forwardBackward = -1.0;
a6f03ddb 150 Double_t vGeant3[7], vGeant3New[7]; // 7 in parameter ????
a9e2aefa 151 Int_t iGeant3, stepNumber;
152 Int_t maxStepNumber = 5000; // in parameter ????
153 // For safety: return kTRUE or kFALSE ????
a6f03ddb 154 // Parameter vector for calling EXTRAP_ONESTEP
a9e2aefa 155 SetGeant3Parameters(vGeant3, forwardBackward);
956019b6 156 // sign of charge (sign of fInverseBendingMomentum if forward motion)
a6f03ddb 157 // must be changed if backward extrapolation
956019b6 158 Double_t chargeExtrap = forwardBackward *
159 TMath::Sign(Double_t(1.0), this->fInverseBendingMomentum);
a9e2aefa 160 Double_t stepLength = 6.0; // in parameter ????
161 // Extrapolation loop
162 stepNumber = 0;
163 while (((forwardBackward * (vGeant3[2] - Z)) <= 0.0) &&
164 (stepNumber < maxStepNumber)) {
165 stepNumber++;
a6f03ddb 166 // Option for switching between helix and Runge-Kutta ????
167 // extrap_onestep_rungekutta(chargeExtrap, stepLength, vGeant3, vGeant3New);
168 extrap_onestep_helix(chargeExtrap, stepLength, vGeant3, vGeant3New);
a9e2aefa 169 if ((forwardBackward * (vGeant3New[2] - Z)) > 0.0) break; // one is beyond Z
170 // better use TArray ????
171 for (iGeant3 = 0; iGeant3 < 7; iGeant3++)
172 {vGeant3[iGeant3] = vGeant3New[iGeant3];}
173 }
174 // check maxStepNumber ????
a9e2aefa 175 // Interpolation back to exact Z (2nd order)
176 // should be in function ???? using TArray ????
177 Double_t dZ12 = vGeant3New[2] - vGeant3[2]; // 1->2
178 Double_t dZ1i = Z - vGeant3[2]; // 1-i
179 Double_t dZi2 = vGeant3New[2] - Z; // i->2
180 Double_t xPrime = (vGeant3New[0] - vGeant3[0]) / dZ12;
181 Double_t xSecond =
182 ((vGeant3New[3] / vGeant3New[5]) - (vGeant3[3] / vGeant3[5])) / dZ12;
183 Double_t yPrime = (vGeant3New[1] - vGeant3[1]) / dZ12;
184 Double_t ySecond =
185 ((vGeant3New[4] / vGeant3New[5]) - (vGeant3[4] / vGeant3[5])) / dZ12;
186 vGeant3[0] = vGeant3[0] + xPrime * dZ1i - 0.5 * xSecond * dZ1i * dZi2; // X
187 vGeant3[1] = vGeant3[1] + yPrime * dZ1i - 0.5 * ySecond * dZ1i * dZi2; // Y
188 vGeant3[2] = Z; // Z
189 Double_t xPrimeI = xPrime - 0.5 * xSecond * (dZi2 - dZ1i);
190 Double_t yPrimeI = yPrime - 0.5 * ySecond * (dZi2 - dZ1i);
956019b6 191 // (PX, PY, PZ)/PTOT assuming forward motion
a9e2aefa 192 vGeant3[5] =
193 1.0 / TMath::Sqrt(1.0 + xPrimeI * xPrimeI + yPrimeI * yPrimeI); // PZ/PTOT
194 vGeant3[3] = xPrimeI * vGeant3[5]; // PX/PTOT
195 vGeant3[4] = yPrimeI * vGeant3[5]; // PY/PTOT
956019b6 196 // Track parameters from Geant3 parameters,
197 // with charge back for forward motion
198 GetFromGeant3Parameters(vGeant3, chargeExtrap * forwardBackward);
a9e2aefa 199}
200
201 //__________________________________________________________________________
202void AliMUONTrackParam::SetGeant3Parameters(Double_t *VGeant3, Double_t ForwardBackward)
203{
204 // Set vector of Geant3 parameters pointed to by "VGeant3"
205 // from track parameters in current AliMUONTrackParam.
206 // Since AliMUONTrackParam is only geometry, one uses "ForwardBackward"
207 // to know whether the particle is going forward (+1) or backward (-1).
208 VGeant3[0] = this->fNonBendingCoor; // X
209 VGeant3[1] = this->fBendingCoor; // Y
210 VGeant3[2] = this->fZ; // Z
211 Double_t pYZ = TMath::Abs(1.0 / this->fInverseBendingMomentum);
212 Double_t pZ =
213 pYZ / TMath::Sqrt(1.0 + this->fBendingSlope * this->fBendingSlope);
214 VGeant3[6] =
215 TMath::Sqrt(pYZ * pYZ +
216 pZ * pZ * this->fNonBendingSlope * this->fNonBendingSlope); // PTOT
217 VGeant3[5] = ForwardBackward * pZ / VGeant3[6]; // PZ/PTOT
218 VGeant3[3] = this->fNonBendingSlope * VGeant3[5]; // PX/PTOT
219 VGeant3[4] = this->fBendingSlope * VGeant3[5]; // PY/PTOT
220}
221
222 //__________________________________________________________________________
223void AliMUONTrackParam::GetFromGeant3Parameters(Double_t *VGeant3, Double_t Charge)
224{
225 // Get track parameters in current AliMUONTrackParam
956019b6 226 // from Geant3 parameters pointed to by "VGeant3",
227 // assumed to be calculated for forward motion in Z.
a9e2aefa 228 // "InverseBendingMomentum" is signed with "Charge".
229 this->fNonBendingCoor = VGeant3[0]; // X
230 this->fBendingCoor = VGeant3[1]; // Y
231 this->fZ = VGeant3[2]; // Z
232 Double_t pYZ = VGeant3[6] * TMath::Sqrt(1.0 - VGeant3[3] * VGeant3[3]);
233 this->fInverseBendingMomentum = Charge / pYZ;
234 this->fBendingSlope = VGeant3[4] / VGeant3[5];
235 this->fNonBendingSlope = VGeant3[3] / VGeant3[5];
236}
237
238 //__________________________________________________________________________
239void AliMUONTrackParam::ExtrapToStation(Int_t Station, AliMUONTrackParam *TrackParam)
240{
241 // Track parameters extrapolated from current track parameters ("this")
242 // to both chambers of the station(0..) "Station"
243 // are returned in the array (dimension 2) of track parameters
244 // pointed to by "TrackParam" (index 0 and 1 for first and second chambers).
245 Double_t extZ[2], z1, z2;
ecfa008b 246 Int_t i1 = -1, i2 = -1; // = -1 to avoid compilation warnings
a9e2aefa 247 AliMUON *pMUON = (AliMUON*) gAlice->GetModule("MUON"); // necessary ????
248 // range of Station to be checked ????
249 z1 = (&(pMUON->Chamber(2 * Station)))->Z(); // Z of first chamber
250 z2 = (&(pMUON->Chamber(2 * Station + 1)))->Z(); // Z of second chamber
251 // First and second Z to extrapolate at
252 if ((z1 > this->fZ) && (z2 > this->fZ)) {i1 = 0; i2 = 1;}
253 else if ((z1 < this->fZ) && (z2 < this->fZ)) {i1 = 1; i2 = 0;}
254 else {
255 cout << "ERROR in AliMUONTrackParam::CreateExtrapSegmentInStation" << endl;
256 cout << "Starting Z (" << this->fZ << ") in between z1 (" << z1 <<
257 ") and z2 (" << z2 << ") of station(0..) " << Station << endl;
258 }
259 extZ[i1] = z1;
260 extZ[i2] = z2;
261 // copy of track parameters
262 TrackParam[i1] = *this;
263 // first extrapolation
264 (&(TrackParam[i1]))->ExtrapToZ(extZ[0]);
265 TrackParam[i2] = TrackParam[i1];
266 // second extrapolation
267 (&(TrackParam[i2]))->ExtrapToZ(extZ[1]);
268 return;
269}
270
04b5ea16 271 //__________________________________________________________________________
272void AliMUONTrackParam::ExtrapToVertex()
273{
274 // Extrapolation to the vertex.
275 // Returns the track parameters resulting from the extrapolation,
276 // in the current TrackParam.
956019b6 277 // Changes parameters according to Branson correction through the absorber
04b5ea16 278
279 Double_t zAbsorber = 503.0; // to be coherent with the Geant absorber geometry !!!!
280 // Extrapolates track parameters upstream to the "Z" end of the front absorber
b45fd22b 281 ExtrapToZ(zAbsorber); // !!!
04b5ea16 282 // Makes Branson correction (multiple scattering + energy loss)
283 BransonCorrection();
b45fd22b 284 // Makes a simple magnetic field correction through the absorber
285 FieldCorrection(zAbsorber);
04b5ea16 286}
287
43af2cb6 288
289// Keep this version for future developments
04b5ea16 290 //__________________________________________________________________________
43af2cb6 291// void AliMUONTrackParam::BransonCorrection()
292// {
293// // Branson correction of track parameters
294// // the entry parameters have to be calculated at the end of the absorber
295// Double_t zEndAbsorber, zBP, xBP, yBP;
296// Double_t pYZ, pX, pY, pZ, pTotal, xEndAbsorber, yEndAbsorber, radiusEndAbsorber2, pT, theta;
297// Int_t sign;
298// // Would it be possible to calculate all that from Geant configuration ????
299// // and to get the Branson parameters from a function in ABSO module ????
300// // with an eventual contribution from other detectors like START ????
301// // Radiation lengths outer part theta > 3 degres
302// static Double_t x01[9] = { 18.8, // C (cm)
303// 10.397, // Concrete (cm)
304// 0.56, // Plomb (cm)
305// 47.26, // Polyethylene (cm)
306// 0.56, // Plomb (cm)
307// 47.26, // Polyethylene (cm)
308// 0.56, // Plomb (cm)
309// 47.26, // Polyethylene (cm)
310// 0.56 }; // Plomb (cm)
311// // inner part theta < 3 degres
312// static Double_t x02[3] = { 18.8, // C (cm)
313// 10.397, // Concrete (cm)
314// 0.35 }; // W (cm)
315// // z positions of the materials inside the absober outer part theta > 3 degres
316// static Double_t z1[10] = { 90, 315, 467, 472, 477, 482, 487, 492, 497, 502 };
317// // inner part theta < 3 degres
318// static Double_t z2[4] = { 90, 315, 467, 503 };
319// static Bool_t first = kTRUE;
320// static Double_t zBP1, zBP2, rLimit;
321// // Calculates z positions of the Branson's planes: zBP1 for outer part and zBP2 for inner part (only at the first call)
322// if (first) {
323// first = kFALSE;
324// Double_t aNBP = 0.0;
325// Double_t aDBP = 0.0;
326// Int_t iBound;
327
328// for (iBound = 0; iBound < 9; iBound++) {
329// aNBP = aNBP +
330// (z1[iBound+1] * z1[iBound+1] * z1[iBound+1] -
331// z1[iBound] * z1[iBound] * z1[iBound] ) / x01[iBound];
332// aDBP = aDBP +
333// (z1[iBound+1] * z1[iBound+1] - z1[iBound] * z1[iBound] ) / x01[iBound];
334// }
335// zBP1 = (2.0 * aNBP) / (3.0 * aDBP);
336// aNBP = 0.0;
337// aDBP = 0.0;
338// for (iBound = 0; iBound < 3; iBound++) {
339// aNBP = aNBP +
340// (z2[iBound+1] * z2[iBound+1] * z2[iBound+1] -
341// z2[iBound] * z2[iBound ] * z2[iBound] ) / x02[iBound];
342// aDBP = aDBP +
343// (z2[iBound+1] * z2[iBound+1] - z2[iBound] * z2[iBound]) / x02[iBound];
344// }
345// zBP2 = (2.0 * aNBP) / (3.0 * aDBP);
346// rLimit = z2[3] * TMath::Tan(3.0 * (TMath::Pi()) / 180.);
347// }
348
349// pYZ = TMath::Abs(1.0 / fInverseBendingMomentum);
350// sign = 1;
351// if (fInverseBendingMomentum < 0) sign = -1;
352// pZ = pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope));
353// pX = pZ * fNonBendingSlope;
354// pY = pZ * fBendingSlope;
355// pTotal = TMath::Sqrt(pYZ *pYZ + pX * pX);
356// xEndAbsorber = fNonBendingCoor;
357// yEndAbsorber = fBendingCoor;
358// radiusEndAbsorber2 = xEndAbsorber * xEndAbsorber + yEndAbsorber * yEndAbsorber;
359
360// if (radiusEndAbsorber2 > rLimit*rLimit) {
361// zEndAbsorber = z1[9];
362// zBP = zBP1;
363// } else {
364// zEndAbsorber = z2[3];
365// zBP = zBP2;
366// }
367
368// xBP = xEndAbsorber - (pX / pZ) * (zEndAbsorber - zBP);
369// yBP = yEndAbsorber - (pY / pZ) * (zEndAbsorber - zBP);
370
371// // new parameters after Branson and energy loss corrections
372// pZ = pTotal * zBP / TMath::Sqrt(xBP * xBP + yBP * yBP + zBP * zBP);
373// pX = pZ * xBP / zBP;
374// pY = pZ * yBP / zBP;
375// fBendingSlope = pY / pZ;
376// fNonBendingSlope = pX / pZ;
377
378// pT = TMath::Sqrt(pX * pX + pY * pY);
379// theta = TMath::ATan2(pT, pZ);
380// pTotal =
381// TotalMomentumEnergyLoss(rLimit, pTotal, theta, xEndAbsorber, yEndAbsorber);
382
383// fInverseBendingMomentum = (sign / pTotal) *
384// TMath::Sqrt(1.0 +
385// fBendingSlope * fBendingSlope +
386// fNonBendingSlope * fNonBendingSlope) /
387// TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope);
388
389// // vertex position at (0,0,0)
390// // should be taken from vertex measurement ???
391// fBendingCoor = 0.0;
392// fNonBendingCoor = 0;
393// fZ= 0;
394// }
395
04b5ea16 396void AliMUONTrackParam::BransonCorrection()
397{
398 // Branson correction of track parameters
399 // the entry parameters have to be calculated at the end of the absorber
43af2cb6 400 // simplified version: the z positions of Branson's planes are no longer calculated
401 // but are given as inputs. One can use the macros MUONTestAbso.C and DrawTestAbso.C
402 // to test this correction.
04b5ea16 403 // Would it be possible to calculate all that from Geant configuration ????
956019b6 404 // and to get the Branson parameters from a function in ABSO module ????
405 // with an eventual contribution from other detectors like START ????
43af2cb6 406 Double_t zBP, xBP, yBP;
407 Double_t pYZ, pX, pY, pZ, pTotal, xEndAbsorber, yEndAbsorber, radiusEndAbsorber2, pT, theta;
408 Int_t sign;
04b5ea16 409 static Bool_t first = kTRUE;
b45fd22b 410 static Double_t zBP1, zBP2, rLimit, thetaLimit, zEndAbsorber;
43af2cb6 411 // zBP1 for outer part and zBP2 for inner part (only at the first call)
04b5ea16 412 if (first) {
413 first = kFALSE;
43af2cb6 414
415 zEndAbsorber = 503;
b45fd22b 416 thetaLimit = 3.0 * (TMath::Pi()) / 180.;
417 rLimit = zEndAbsorber * TMath::Tan(thetaLimit);
418 zBP1 = 450; // values close to those calculated with EvalAbso.C
43af2cb6 419 zBP2 = 480;
04b5ea16 420 }
421
422 pYZ = TMath::Abs(1.0 / fInverseBendingMomentum);
423 sign = 1;
424 if (fInverseBendingMomentum < 0) sign = -1;
425 pZ = pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope));
426 pX = pZ * fNonBendingSlope;
427 pY = pZ * fBendingSlope;
428 pTotal = TMath::Sqrt(pYZ *pYZ + pX * pX);
429 xEndAbsorber = fNonBendingCoor;
430 yEndAbsorber = fBendingCoor;
431 radiusEndAbsorber2 = xEndAbsorber * xEndAbsorber + yEndAbsorber * yEndAbsorber;
432
433 if (radiusEndAbsorber2 > rLimit*rLimit) {
04b5ea16 434 zBP = zBP1;
435 } else {
04b5ea16 436 zBP = zBP2;
437 }
438
439 xBP = xEndAbsorber - (pX / pZ) * (zEndAbsorber - zBP);
440 yBP = yEndAbsorber - (pY / pZ) * (zEndAbsorber - zBP);
441
442 // new parameters after Branson and energy loss corrections
b45fd22b 443// Float_t zSmear = zBP - gRandom->Gaus(0.,2.); // !!! possible smearing of Z vertex position
444 Float_t zSmear = zBP;
445
446 pZ = pTotal * zSmear / TMath::Sqrt(xBP * xBP + yBP * yBP + zSmear * zSmear);
447 pX = pZ * xBP / zSmear;
448 pY = pZ * yBP / zSmear;
04b5ea16 449 fBendingSlope = pY / pZ;
450 fNonBendingSlope = pX / pZ;
451
452 pT = TMath::Sqrt(pX * pX + pY * pY);
453 theta = TMath::ATan2(pT, pZ);
b45fd22b 454 pTotal = TotalMomentumEnergyLoss(thetaLimit, pTotal, theta);
04b5ea16 455
456 fInverseBendingMomentum = (sign / pTotal) *
457 TMath::Sqrt(1.0 +
458 fBendingSlope * fBendingSlope +
459 fNonBendingSlope * fNonBendingSlope) /
460 TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope);
461
462 // vertex position at (0,0,0)
463 // should be taken from vertex measurement ???
464 fBendingCoor = 0.0;
465 fNonBendingCoor = 0;
466 fZ= 0;
467}
b45fd22b 468
04b5ea16 469 //__________________________________________________________________________
b45fd22b 470Double_t AliMUONTrackParam::TotalMomentumEnergyLoss(Double_t thetaLimit, Double_t pTotal, Double_t theta)
04b5ea16 471{
472 // Returns the total momentum corrected from energy loss in the front absorber
43af2cb6 473 // One can use the macros MUONTestAbso.C and DrawTestAbso.C
474 // to test this correction.
b45fd22b 475 // Momentum energy loss behaviour evaluated with the simulation of single muons (april 2002)
04b5ea16 476 Double_t deltaP, pTotalCorrected;
477
b45fd22b 478 // Parametrization to be redone according to change of absorber material ????
956019b6 479 // See remark in function BransonCorrection !!!!
04b5ea16 480 // The name is not so good, and there are many arguments !!!!
b45fd22b 481 if (theta < thetaLimit ) {
482 if (pTotal < 20) {
483 deltaP = 2.5938 + 0.0570 * pTotal - 0.001151 * pTotal * pTotal;
04b5ea16 484 } else {
b45fd22b 485 deltaP = 3.0714 + 0.011767 *pTotal;
04b5ea16 486 }
487 } else {
b45fd22b 488 if (pTotal < 20) {
489 deltaP = 2.1207 + 0.05478 * pTotal - 0.00145079 * pTotal * pTotal;
04b5ea16 490 } else {
b45fd22b 491 deltaP = 2.6069 + 0.0051705 * pTotal;
04b5ea16 492 }
493 }
494 pTotalCorrected = pTotal + deltaP / TMath::Cos(theta);
495 return pTotalCorrected;
496}
497
b45fd22b 498 //__________________________________________________________________________
499void AliMUONTrackParam::FieldCorrection(Double_t Z)
500{
501 //
502 // Correction of the effect of the magnetic field in the absorber
503 // Assume a constant field along Z axis.
504
505 Float_t b[3],x[3];
506 Double_t bZ;
507 Double_t pYZ,pX,pY,pZ,pT;
508 Double_t pXNew,pYNew;
509 Double_t c;
510
511 pYZ = TMath::Abs(1.0 / fInverseBendingMomentum);
512 c = TMath::Sign(1.0,fInverseBendingMomentum); // particle charge
513
514 pZ = pYZ / (TMath::Sqrt(1.0 + fBendingSlope * fBendingSlope));
515 pX = pZ * fNonBendingSlope;
516 pY = pZ * fBendingSlope;
517 pT = TMath::Sqrt(pX*pX+pY*pY);
518
519 if (pZ <= 0) return;
520 x[2] = Z/2;
521 x[0] = x[2]*fNonBendingSlope;
522 x[1] = x[2]*fBendingSlope;
523
524 // Take magn. field value at position x.
525 gAlice->Field()->Field(x, b);
526 bZ = b[2];
527
528 // Transverse momentum rotation
529 // Parameterized with the study of DeltaPhi = phiReco - phiGen as a function of pZ.
530 Double_t phiShift = c*0.436*0.0003*bZ*Z/pZ;
531
532 // Rotate momentum around Z axis.
533 pXNew = pX*TMath::Cos(phiShift) - pY*TMath::Sin(phiShift);
534 pYNew = pX*TMath::Sin(phiShift) + pY*TMath::Cos(phiShift);
535
536 fBendingSlope = pYNew / pZ;
537 fNonBendingSlope = pXNew / pZ;
538
539 fInverseBendingMomentum = c / TMath::Sqrt(pYNew*pYNew+pZ*pZ);
540
541}