]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/AliMUONv3.cxx
Geometry framework classes were made independent from the rest of MUON and linked...
[u/mrichter/AliRoot.git] / MUON / AliMUONv3.cxx
CommitLineData
d1cd2474 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * SigmaEffect_thetadegrees *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpeateose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/* $Id$ */
17
18/////////////////////////////////////////////////////////
19// Manager and hits classes for set:MUON version 3 //
20/////////////////////////////////////////////////////////
21
22// Old MUONv1 class
23// (AliMUONv1.h 1.11, AliMUONv1.cxx 1.60)
24// - now replaced with a new one where geometry and materials
25// are created using new geometry builders
26// (See ALIMUON*GeometryBuilder classes)
27// To be removed later
28
29#include <TRandom.h>
30#include <TF1.h>
31#include <TClonesArray.h>
30178c30 32#include <TRandom.h>
d1cd2474 33#include <TVirtualMC.h>
d1cd2474 34
30178c30 35#include "AliMUONv3.h"
d1cd2474 36#include "AliConst.h"
37#include "AliMUONChamber.h"
38#include "AliMUONConstants.h"
39#include "AliMUONFactory.h"
40#include "AliMUONHit.h"
41#include "AliMUONTriggerCircuit.h"
e118b27e 42#include "AliMUONGeometryModule.h"
d1cd2474 43#include "AliMagF.h"
44#include "AliRun.h"
45#include "AliMC.h"
8c343c7c 46#include "AliLog.h"
d1cd2474 47
48ClassImp(AliMUONv3)
49
50//___________________________________________
30178c30 51AliMUONv3::AliMUONv3()
52 : AliMUON(),
53 fTrackMomentum(), fTrackPosition()
d1cd2474 54{
55// Constructor
56 fChambers = 0;
57 fStations = 0;
58 fStepManagerVersionOld = kFALSE;
59 fAngleEffect = kTRUE;
60 fStepMaxInActiveGas = 0.6;
61 fStepSum = 0x0;
62 fDestepSum = 0x0;
63 fElossRatio = 0x0;
64 fAngleEffect10 = 0x0;
65 fAngleEffectNorma= 0x0;
66}
67//___________________________________________
68AliMUONv3::AliMUONv3(const char *name, const char *title)
30178c30 69 : AliMUON(name,title),
70 fTrackMomentum(), fTrackPosition()
d1cd2474 71{
72// Constructor
73 // By default include all stations
74 fStations = new Int_t[5];
75 for (Int_t i=0; i<5; i++) fStations[i] = 1;
76
77 AliMUONFactory factory;
78 factory.Build(this, title);
79
80 fStepManagerVersionOld = kFALSE;
81 fAngleEffect = kTRUE;
82 fStepMaxInActiveGas = 0.6;
83
84 fStepSum = new Float_t [AliMUONConstants::NCh()];
85 fDestepSum = new Float_t [AliMUONConstants::NCh()];
86 for (Int_t i=0; i<AliMUONConstants::NCh(); i++) {
87 fStepSum[i] =0.0;
88 fDestepSum[i]=0.0;
89 }
90 // Ratio of particle mean eloss with respect MIP's Khalil Boudjemline, sep 2003, PhD.Thesis and Particle Data Book
91 fElossRatio = new TF1("ElossRatio","[0]+[1]*x+[2]*x*x+[3]*x*x*x+[4]*x*x*x*x",0.5,5.);
92 fElossRatio->SetParameter(0,1.02138);
93 fElossRatio->SetParameter(1,-9.54149e-02);
94 fElossRatio->SetParameter(2,+7.83433e-02);
95 fElossRatio->SetParameter(3,-9.98208e-03);
96 fElossRatio->SetParameter(4,+3.83279e-04);
97
98 // Angle effect in tracking chambers at theta =10 degres as a function of ElossRatio (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis) (in micrometers)
99 fAngleEffect10 = new TF1("AngleEffect10","[0]+[1]*x+[2]*x*x",0.5,3.0);
100 fAngleEffect10->SetParameter(0, 1.90691e+02);
101 fAngleEffect10->SetParameter(1,-6.62258e+01);
102 fAngleEffect10->SetParameter(2,+1.28247e+01);
103 // Angle effect: Normalisation form theta=10 degres to theta between 0 and 10 (Khalil BOUDJEMLINE sep 2003 Ph.D Thesis)
104 // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
105 fAngleEffectNorma = new TF1("AngleEffectNorma","[0]+[1]*x+[2]*x*x+[3]*x*x*x",0.0,10.0);
106 fAngleEffectNorma->SetParameter(0,4.148);
107 fAngleEffectNorma->SetParameter(1,-6.809e-01);
108 fAngleEffectNorma->SetParameter(2,5.151e-02);
109 fAngleEffectNorma->SetParameter(3,-1.490e-03);
110}
111
fb1bf5c0 112//_____________________________________________________________________________
113AliMUONv3::AliMUONv3(const AliMUONv3& right)
114 : AliMUON(right)
115{
116 // copy constructor (not implemented)
117
8c343c7c 118 AliFatal("Copy constructor not provided.");
fb1bf5c0 119}
120
121//_____________________________________________________________________________
122AliMUONv3& AliMUONv3::operator=(const AliMUONv3& right)
123{
124 // assignement operator (not implemented)
125
126 // check assignement to self
127 if (this == &right) return *this;
128
8c343c7c 129 AliFatal("Assignement operator not provided.");
fb1bf5c0 130
131 return *this;
132}
133
d1cd2474 134//___________________________________________
135void AliMUONv3::CreateGeometry()
136{
137//
138// Note: all chambers have the same structure, which could be
139// easily parameterised. This was intentionally not done in order
140// to give a starting point for the implementation of the actual
141// design of each station.
142 Int_t *idtmed = fIdtmed->GetArray()-1099;
143
144// Distance between Stations
145//
146 Float_t bpar[3];
147 Float_t tpar[3];
148// Float_t pgpar[10];
149 Float_t zpos1, zpos2, zfpos;
150 // Outer excess and inner recess for mother volume radius
151 // with respect to ROuter and RInner
152 Float_t dframep=.001; // Value for station 3 should be 6 ...
153 // Width (RdPhi) of the frame crosses for stations 1 and 2 (cm)
154// Float_t dframep1=.001;
155 Float_t dframep1 = 11.0;
156// Bool_t frameCrosses=kFALSE;
157 Bool_t frameCrosses=kTRUE;
158 Float_t *dum=0;
159
160// Float_t dframez=0.9;
161 // Half of the total thickness of frame crosses (including DAlu)
162 // for each chamber in stations 1 and 2:
163 // 3% of X0 of composite material,
164 // but taken as Aluminium here, with same thickness in number of X0
165 Float_t dframez = 3. * 8.9 / 100;
166// Float_t dr;
167 Float_t dstation;
168
169//
170// Rotation matrices in the x-y plane
171 Int_t idrotm[1199];
172// phi= 0 deg
173 AliMatrix(idrotm[1100], 90., 0., 90., 90., 0., 0.);
174// phi= 90 deg
175 AliMatrix(idrotm[1101], 90., 90., 90., 180., 0., 0.);
176// phi= 180 deg
177 AliMatrix(idrotm[1102], 90., 180., 90., 270., 0., 0.);
178// phi= 270 deg
179 AliMatrix(idrotm[1103], 90., 270., 90., 0., 0., 0.);
180//
181 Float_t phi=2*TMath::Pi()/12/2;
182
183//
184// pointer to the current chamber
185// pointer to the current chamber
186 Int_t idAlu1=idtmed[1103]; // medium 4
187 Int_t idAlu2=idtmed[1104]; // medium 5
188// Int_t idAlu1=idtmed[1100];
189// Int_t idAlu2=idtmed[1100];
190 Int_t idAir=idtmed[1100]; // medium 1
191// Int_t idGas=idtmed[1105]; // medium 6 = Ar-isoC4H10 gas
192 Int_t idGas=idtmed[1108]; // medium 9 = Ar-CO2 gas (80%+20%)
193
194
195 AliMUONChamber *iChamber, *iChamber1, *iChamber2;
196
197 if (fStations[0]) {
198
199//********************************************************************
200// Station 1 **
201//********************************************************************
202// CONCENTRIC
203 // indices 1 and 2 for first and second chambers in the station
204 // iChamber (first chamber) kept for other quanties than Z,
205 // assumed to be the same in both chambers
206 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[0];
207 iChamber2 =(AliMUONChamber*) (*fChambers)[1];
208 zpos1=iChamber1->Z();
209 zpos2=iChamber2->Z();
210 dstation = TMath::Abs(zpos2 - zpos1);
211 // DGas decreased from standard one (0.5)
212 iChamber->SetDGas(0.4); iChamber2->SetDGas(0.4);
213 // DAlu increased from standard one (3% of X0),
214 // because more electronics with smaller pads
215 iChamber->SetDAlu(3.5 * 8.9 / 100.); iChamber2->SetDAlu(3.5 * 8.9 / 100.);
216 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
217
218//
219// Mother volume
220 tpar[0] = iChamber->RInner()-dframep;
221 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
222 tpar[2] = dstation/5;
223
224 gMC->Gsvolu("S01M", "TUBE", idAir, tpar, 3);
225 gMC->Gsvolu("S02M", "TUBE", idAir, tpar, 3);
226 gMC->Gspos("S01M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
227 gMC->Gspos("S02M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
228// // Aluminium frames
229// // Outer frames
230// pgpar[0] = 360/12/2;
231// pgpar[1] = 360.;
232// pgpar[2] = 12.;
233// pgpar[3] = 2;
234// pgpar[4] = -dframez/2;
235// pgpar[5] = iChamber->ROuter();
236// pgpar[6] = pgpar[5]+dframep1;
237// pgpar[7] = +dframez/2;
238// pgpar[8] = pgpar[5];
239// pgpar[9] = pgpar[6];
240// gMC->Gsvolu("S01O", "PGON", idAlu1, pgpar, 10);
241// gMC->Gsvolu("S02O", "PGON", idAlu1, pgpar, 10);
242// gMC->Gspos("S01O",1,"S01M", 0.,0.,-zfpos, 0,"ONLY");
243// gMC->Gspos("S01O",2,"S01M", 0.,0.,+zfpos, 0,"ONLY");
244// gMC->Gspos("S02O",1,"S02M", 0.,0.,-zfpos, 0,"ONLY");
245// gMC->Gspos("S02O",2,"S02M", 0.,0.,+zfpos, 0,"ONLY");
246// //
247// // Inner frame
248// tpar[0]= iChamber->RInner()-dframep1;
249// tpar[1]= iChamber->RInner();
250// tpar[2]= dframez/2;
251// gMC->Gsvolu("S01I", "TUBE", idAlu1, tpar, 3);
252// gMC->Gsvolu("S02I", "TUBE", idAlu1, tpar, 3);
253
254// gMC->Gspos("S01I",1,"S01M", 0.,0.,-zfpos, 0,"ONLY");
255// gMC->Gspos("S01I",2,"S01M", 0.,0.,+zfpos, 0,"ONLY");
256// gMC->Gspos("S02I",1,"S02M", 0.,0.,-zfpos, 0,"ONLY");
257// gMC->Gspos("S02I",2,"S02M", 0.,0.,+zfpos, 0,"ONLY");
258//
259// Frame Crosses
260 if (frameCrosses) {
261 // outside gas
262 // security for inside mother volume
263 bpar[0] = (iChamber->ROuter() - iChamber->RInner())
264 * TMath::Cos(TMath::ASin(dframep1 /
265 (iChamber->ROuter() - iChamber->RInner())))
266 / 2.0;
267 bpar[1] = dframep1/2;
268 // total thickness will be (4 * bpar[2]) for each chamber,
269 // which has to be equal to (2 * dframez) - DAlu
270 bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
271 gMC->Gsvolu("S01B", "BOX", idAlu1, bpar, 3);
272 gMC->Gsvolu("S02B", "BOX", idAlu1, bpar, 3);
273
274 gMC->Gspos("S01B",1,"S01M", -iChamber->RInner()-bpar[0] , 0, zfpos,
275 idrotm[1100],"ONLY");
276 gMC->Gspos("S01B",2,"S01M", iChamber->RInner()+bpar[0] , 0, zfpos,
277 idrotm[1100],"ONLY");
278 gMC->Gspos("S01B",3,"S01M", 0, -iChamber->RInner()-bpar[0] , zfpos,
279 idrotm[1101],"ONLY");
280 gMC->Gspos("S01B",4,"S01M", 0, iChamber->RInner()+bpar[0] , zfpos,
281 idrotm[1101],"ONLY");
282 gMC->Gspos("S01B",5,"S01M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
283 idrotm[1100],"ONLY");
284 gMC->Gspos("S01B",6,"S01M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
285 idrotm[1100],"ONLY");
286 gMC->Gspos("S01B",7,"S01M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
287 idrotm[1101],"ONLY");
288 gMC->Gspos("S01B",8,"S01M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
289 idrotm[1101],"ONLY");
290
291 gMC->Gspos("S02B",1,"S02M", -iChamber->RInner()-bpar[0] , 0, zfpos,
292 idrotm[1100],"ONLY");
293 gMC->Gspos("S02B",2,"S02M", iChamber->RInner()+bpar[0] , 0, zfpos,
294 idrotm[1100],"ONLY");
295 gMC->Gspos("S02B",3,"S02M", 0, -iChamber->RInner()-bpar[0] , zfpos,
296 idrotm[1101],"ONLY");
297 gMC->Gspos("S02B",4,"S02M", 0, iChamber->RInner()+bpar[0] , zfpos,
298 idrotm[1101],"ONLY");
299 gMC->Gspos("S02B",5,"S02M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
300 idrotm[1100],"ONLY");
301 gMC->Gspos("S02B",6,"S02M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
302 idrotm[1100],"ONLY");
303 gMC->Gspos("S02B",7,"S02M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
304 idrotm[1101],"ONLY");
305 gMC->Gspos("S02B",8,"S02M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
306 idrotm[1101],"ONLY");
307 }
308//
309// Chamber Material represented by Alu sheet
310 tpar[0]= iChamber->RInner();
311 tpar[1]= iChamber->ROuter();
312 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
313 gMC->Gsvolu("S01A", "TUBE", idAlu2, tpar, 3);
314 gMC->Gsvolu("S02A", "TUBE",idAlu2, tpar, 3);
315 gMC->Gspos("S01A", 1, "S01M", 0., 0., 0., 0, "ONLY");
316 gMC->Gspos("S02A", 1, "S02M", 0., 0., 0., 0, "ONLY");
317//
318// Sensitive volumes
319 // tpar[2] = iChamber->DGas();
320 tpar[2] = iChamber->DGas()/2;
321 gMC->Gsvolu("S01G", "TUBE", idGas, tpar, 3);
322 gMC->Gsvolu("S02G", "TUBE", idGas, tpar, 3);
323 gMC->Gspos("S01G", 1, "S01A", 0., 0., 0., 0, "ONLY");
324 gMC->Gspos("S02G", 1, "S02A", 0., 0., 0., 0, "ONLY");
325//
326// Frame Crosses to be placed inside gas
327 // NONE: chambers are sensitive everywhere
328// if (frameCrosses) {
329
330// dr = (iChamber->ROuter() - iChamber->RInner());
331// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
332// bpar[1] = dframep1/2;
333// bpar[2] = iChamber->DGas()/2;
334// gMC->Gsvolu("S01F", "BOX", idAlu1, bpar, 3);
335// gMC->Gsvolu("S02F", "BOX", idAlu1, bpar, 3);
336
337// gMC->Gspos("S01F",1,"S01G", +iChamber->RInner()+bpar[0] , 0, 0,
338// idrotm[1100],"ONLY");
339// gMC->Gspos("S01F",2,"S01G", -iChamber->RInner()-bpar[0] , 0, 0,
340// idrotm[1100],"ONLY");
341// gMC->Gspos("S01F",3,"S01G", 0, +iChamber->RInner()+bpar[0] , 0,
342// idrotm[1101],"ONLY");
343// gMC->Gspos("S01F",4,"S01G", 0, -iChamber->RInner()-bpar[0] , 0,
344// idrotm[1101],"ONLY");
345
346// gMC->Gspos("S02F",1,"S02G", +iChamber->RInner()+bpar[0] , 0, 0,
347// idrotm[1100],"ONLY");
348// gMC->Gspos("S02F",2,"S02G", -iChamber->RInner()-bpar[0] , 0, 0,
349// idrotm[1100],"ONLY");
350// gMC->Gspos("S02F",3,"S02G", 0, +iChamber->RInner()+bpar[0] , 0,
351// idrotm[1101],"ONLY");
352// gMC->Gspos("S02F",4,"S02G", 0, -iChamber->RInner()-bpar[0] , 0,
353// idrotm[1101],"ONLY");
354// }
355 }
356 if (fStations[1]) {
357
358//********************************************************************
359// Station 2 **
360//********************************************************************
361 // indices 1 and 2 for first and second chambers in the station
362 // iChamber (first chamber) kept for other quanties than Z,
363 // assumed to be the same in both chambers
364 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[2];
365 iChamber2 =(AliMUONChamber*) (*fChambers)[3];
366 zpos1=iChamber1->Z();
367 zpos2=iChamber2->Z();
368 dstation = TMath::Abs(zpos2 - zpos1);
369 // DGas and DAlu not changed from standard values
370 zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2;
371
372//
373// Mother volume
374 tpar[0] = iChamber->RInner()-dframep;
375 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
376 tpar[2] = dstation/5;
377
378 gMC->Gsvolu("S03M", "TUBE", idAir, tpar, 3);
379 gMC->Gsvolu("S04M", "TUBE", idAir, tpar, 3);
380 gMC->Gspos("S03M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
381 gMC->Gspos("S04M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
382 gMC->Gsbool("S03M", "L3DO");
383 gMC->Gsbool("S03M", "L3O1");
384 gMC->Gsbool("S03M", "L3O2");
385 gMC->Gsbool("S04M", "L3DO");
386 gMC->Gsbool("S04M", "L3O1");
387 gMC->Gsbool("S04M", "L3O2");
388
389// // Aluminium frames
390// // Outer frames
391// pgpar[0] = 360/12/2;
392// pgpar[1] = 360.;
393// pgpar[2] = 12.;
394// pgpar[3] = 2;
395// pgpar[4] = -dframez/2;
396// pgpar[5] = iChamber->ROuter();
397// pgpar[6] = pgpar[5]+dframep;
398// pgpar[7] = +dframez/2;
399// pgpar[8] = pgpar[5];
400// pgpar[9] = pgpar[6];
401// gMC->Gsvolu("S03O", "PGON", idAlu1, pgpar, 10);
402// gMC->Gsvolu("S04O", "PGON", idAlu1, pgpar, 10);
403// gMC->Gspos("S03O",1,"S03M", 0.,0.,-zfpos, 0,"ONLY");
404// gMC->Gspos("S03O",2,"S03M", 0.,0.,+zfpos, 0,"ONLY");
405// gMC->Gspos("S04O",1,"S04M", 0.,0.,-zfpos, 0,"ONLY");
406// gMC->Gspos("S04O",2,"S04M", 0.,0.,+zfpos, 0,"ONLY");
407// //
408// // Inner frame
409// tpar[0]= iChamber->RInner()-dframep;
410// tpar[1]= iChamber->RInner();
411// tpar[2]= dframez/2;
412// gMC->Gsvolu("S03I", "TUBE", idAlu1, tpar, 3);
413// gMC->Gsvolu("S04I", "TUBE", idAlu1, tpar, 3);
414
415// gMC->Gspos("S03I",1,"S03M", 0.,0.,-zfpos, 0,"ONLY");
416// gMC->Gspos("S03I",2,"S03M", 0.,0.,+zfpos, 0,"ONLY");
417// gMC->Gspos("S04I",1,"S04M", 0.,0.,-zfpos, 0,"ONLY");
418// gMC->Gspos("S04I",2,"S04M", 0.,0.,+zfpos, 0,"ONLY");
419//
420// Frame Crosses
421 if (frameCrosses) {
422 // outside gas
423 // security for inside mother volume
424 bpar[0] = (iChamber->ROuter() - iChamber->RInner())
425 * TMath::Cos(TMath::ASin(dframep1 /
426 (iChamber->ROuter() - iChamber->RInner())))
427 / 2.0;
428 bpar[1] = dframep1/2;
429 // total thickness will be (4 * bpar[2]) for each chamber,
430 // which has to be equal to (2 * dframez) - DAlu
431 bpar[2] = (2.0 * dframez - iChamber->DAlu()) / 4.0;
432 gMC->Gsvolu("S03B", "BOX", idAlu1, bpar, 3);
433 gMC->Gsvolu("S04B", "BOX", idAlu1, bpar, 3);
434
435 gMC->Gspos("S03B",1,"S03M", -iChamber->RInner()-bpar[0] , 0, zfpos,
436 idrotm[1100],"ONLY");
437 gMC->Gspos("S03B",2,"S03M", +iChamber->RInner()+bpar[0] , 0, zfpos,
438 idrotm[1100],"ONLY");
439 gMC->Gspos("S03B",3,"S03M", 0, -iChamber->RInner()-bpar[0] , zfpos,
440 idrotm[1101],"ONLY");
441 gMC->Gspos("S03B",4,"S03M", 0, +iChamber->RInner()+bpar[0] , zfpos,
442 idrotm[1101],"ONLY");
443 gMC->Gspos("S03B",5,"S03M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
444 idrotm[1100],"ONLY");
445 gMC->Gspos("S03B",6,"S03M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
446 idrotm[1100],"ONLY");
447 gMC->Gspos("S03B",7,"S03M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
448 idrotm[1101],"ONLY");
449 gMC->Gspos("S03B",8,"S03M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
450 idrotm[1101],"ONLY");
451
452 gMC->Gspos("S04B",1,"S04M", -iChamber->RInner()-bpar[0] , 0, zfpos,
453 idrotm[1100],"ONLY");
454 gMC->Gspos("S04B",2,"S04M", +iChamber->RInner()+bpar[0] , 0, zfpos,
455 idrotm[1100],"ONLY");
456 gMC->Gspos("S04B",3,"S04M", 0, -iChamber->RInner()-bpar[0] , zfpos,
457 idrotm[1101],"ONLY");
458 gMC->Gspos("S04B",4,"S04M", 0, +iChamber->RInner()+bpar[0] , zfpos,
459 idrotm[1101],"ONLY");
460 gMC->Gspos("S04B",5,"S04M", -iChamber->RInner()-bpar[0] , 0,-zfpos,
461 idrotm[1100],"ONLY");
462 gMC->Gspos("S04B",6,"S04M", +iChamber->RInner()+bpar[0] , 0,-zfpos,
463 idrotm[1100],"ONLY");
464 gMC->Gspos("S04B",7,"S04M", 0, -iChamber->RInner()-bpar[0] ,-zfpos,
465 idrotm[1101],"ONLY");
466 gMC->Gspos("S04B",8,"S04M", 0, +iChamber->RInner()+bpar[0] ,-zfpos,
467 idrotm[1101],"ONLY");
468 }
469//
470// Chamber Material represented by Alu sheet
471 tpar[0]= iChamber->RInner();
472 tpar[1]= iChamber->ROuter();
473 tpar[2] = (iChamber->DGas()+iChamber->DAlu())/2;
474 gMC->Gsvolu("S03A", "TUBE", idAlu2, tpar, 3);
475 gMC->Gsvolu("S04A", "TUBE", idAlu2, tpar, 3);
476 gMC->Gspos("S03A", 1, "S03M", 0., 0., 0., 0, "ONLY");
477 gMC->Gspos("S04A", 1, "S04M", 0., 0., 0., 0, "ONLY");
478//
479// Sensitive volumes
480 // tpar[2] = iChamber->DGas();
481 tpar[2] = iChamber->DGas()/2;
482 gMC->Gsvolu("S03G", "TUBE", idGas, tpar, 3);
483 gMC->Gsvolu("S04G", "TUBE", idGas, tpar, 3);
484 gMC->Gspos("S03G", 1, "S03A", 0., 0., 0., 0, "ONLY");
485 gMC->Gspos("S04G", 1, "S04A", 0., 0., 0., 0, "ONLY");
486//
487// Frame Crosses to be placed inside gas
488 // NONE: chambers are sensitive everywhere
489// if (frameCrosses) {
490
491// dr = (iChamber->ROuter() - iChamber->RInner());
492// bpar[0] = TMath::Sqrt(dr*dr-dframep1*dframep1/4)/2;
493// bpar[1] = dframep1/2;
494// bpar[2] = iChamber->DGas()/2;
495// gMC->Gsvolu("S03F", "BOX", idAlu1, bpar, 3);
496// gMC->Gsvolu("S04F", "BOX", idAlu1, bpar, 3);
497
498// gMC->Gspos("S03F",1,"S03G", +iChamber->RInner()+bpar[0] , 0, 0,
499// idrotm[1100],"ONLY");
500// gMC->Gspos("S03F",2,"S03G", -iChamber->RInner()-bpar[0] , 0, 0,
501// idrotm[1100],"ONLY");
502// gMC->Gspos("S03F",3,"S03G", 0, +iChamber->RInner()+bpar[0] , 0,
503// idrotm[1101],"ONLY");
504// gMC->Gspos("S03F",4,"S03G", 0, -iChamber->RInner()-bpar[0] , 0,
505// idrotm[1101],"ONLY");
506
507// gMC->Gspos("S04F",1,"S04G", +iChamber->RInner()+bpar[0] , 0, 0,
508// idrotm[1100],"ONLY");
509// gMC->Gspos("S04F",2,"S04G", -iChamber->RInner()-bpar[0] , 0, 0,
510// idrotm[1100],"ONLY");
511// gMC->Gspos("S04F",3,"S04G", 0, +iChamber->RInner()+bpar[0] , 0,
512// idrotm[1101],"ONLY");
513// gMC->Gspos("S04F",4,"S04G", 0, -iChamber->RInner()-bpar[0] , 0,
514// idrotm[1101],"ONLY");
515// }
516 }
517 // define the id of tracking media:
518 Int_t idCopper = idtmed[1110];
519 Int_t idGlass = idtmed[1111];
520 Int_t idCarbon = idtmed[1112];
521 Int_t idRoha = idtmed[1113];
522
523 // sensitive area: 40*40 cm**2
524 const Float_t ksensLength = 40.;
525 const Float_t ksensHeight = 40.;
526 const Float_t ksensWidth = 0.5; // according to TDR fig 2.120
527 const Int_t ksensMaterial = idGas;
528 const Float_t kyOverlap = 1.5;
529
530 // PCB dimensions in cm; width: 30 mum copper
531 const Float_t kpcbLength = ksensLength;
532 const Float_t kpcbHeight = 60.;
533 const Float_t kpcbWidth = 0.003;
534 const Int_t kpcbMaterial= idCopper;
535
536 // Insulating material: 200 mum glass fiber glued to pcb
537 const Float_t kinsuLength = kpcbLength;
538 const Float_t kinsuHeight = kpcbHeight;
539 const Float_t kinsuWidth = 0.020;
540 const Int_t kinsuMaterial = idGlass;
541
542 // Carbon fiber panels: 200mum carbon/epoxy skin
543 const Float_t kpanelLength = ksensLength;
544 const Float_t kpanelHeight = ksensHeight;
545 const Float_t kpanelWidth = 0.020;
546 const Int_t kpanelMaterial = idCarbon;
547
548 // rohacell between the two carbon panels
549 const Float_t krohaLength = ksensLength;
550 const Float_t krohaHeight = ksensHeight;
551 const Float_t krohaWidth = 0.5;
552 const Int_t krohaMaterial = idRoha;
553
554 // Frame around the slat: 2 sticks along length,2 along height
555 // H: the horizontal ones
556 const Float_t khFrameLength = kpcbLength;
557 const Float_t khFrameHeight = 1.5;
558 const Float_t khFrameWidth = ksensWidth;
559 const Int_t khFrameMaterial = idGlass;
560
561 // V: the vertical ones
562 const Float_t kvFrameLength = 4.0;
563 const Float_t kvFrameHeight = ksensHeight + khFrameHeight;
564 const Float_t kvFrameWidth = ksensWidth;
565 const Int_t kvFrameMaterial = idGlass;
566
567 // B: the horizontal border filled with rohacell
568 const Float_t kbFrameLength = khFrameLength;
569 const Float_t kbFrameHeight = (kpcbHeight - ksensHeight)/2. - khFrameHeight;
570 const Float_t kbFrameWidth = khFrameWidth;
571 const Int_t kbFrameMaterial = idRoha;
572
573 // NULOC: 30 mum copper + 200 mum vetronite (same radiation length as 14mum copper)
574 const Float_t knulocLength = 2.5;
575 const Float_t knulocHeight = 7.5;
576 const Float_t knulocWidth = 0.0030 + 0.0014; // equivalent copper width of vetronite;
577 const Int_t knulocMaterial = idCopper;
578
579 const Float_t kslatHeight = kpcbHeight;
580 const Float_t kslatWidth = ksensWidth + 2.*(kpcbWidth + kinsuWidth +
581 2.* kpanelWidth + krohaWidth);
582 const Int_t kslatMaterial = idAir;
583 const Float_t kdSlatLength = kvFrameLength; // border on left and right
584
585 Float_t spar[3];
586 Int_t i, j;
587
588 // the panel volume contains the rohacell
589
590 Float_t twidth = 2 * kpanelWidth + krohaWidth;
591 Float_t panelpar[3] = { kpanelLength/2., kpanelHeight/2., twidth/2. };
592 Float_t rohapar[3] = { krohaLength/2., krohaHeight/2., krohaWidth/2. };
593
594 // insulating material contains PCB-> gas-> 2 borders filled with rohacell
595
596 twidth = 2*(kinsuWidth + kpcbWidth) + ksensWidth;
597 Float_t insupar[3] = { kinsuLength/2., kinsuHeight/2., twidth/2. };
598 twidth -= 2 * kinsuWidth;
599 Float_t pcbpar[3] = { kpcbLength/2., kpcbHeight/2., twidth/2. };
600 Float_t senspar[3] = { ksensLength/2., ksensHeight/2., ksensWidth/2. };
601 Float_t theight = 2*khFrameHeight + ksensHeight;
602 Float_t hFramepar[3]={khFrameLength/2., theight/2., khFrameWidth/2.};
603 Float_t bFramepar[3]={kbFrameLength/2., kbFrameHeight/2., kbFrameWidth/2.};
604 Float_t vFramepar[3]={kvFrameLength/2., kvFrameHeight/2., kvFrameWidth/2.};
605 Float_t nulocpar[3]={knulocLength/2., knulocHeight/2., knulocWidth/2.};
606 Float_t xx;
607 Float_t xxmax = (kbFrameLength - knulocLength)/2.;
608 Int_t index=0;
609
610 if (fStations[2]) {
611
612//********************************************************************
613// Station 3 **
614//********************************************************************
615 // indices 1 and 2 for first and second chambers in the station
616 // iChamber (first chamber) kept for other quanties than Z,
617 // assumed to be the same in both chambers
618 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[4];
619 iChamber2 =(AliMUONChamber*) (*fChambers)[5];
620 zpos1=iChamber1->Z();
621 zpos2=iChamber2->Z();
622 dstation = TMath::Abs(zpos2 - zpos1);
623
624//
625// Mother volume
626 tpar[0] = iChamber->RInner()-dframep;
627 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
628 tpar[2] = dstation/5;
629
8e8eae84 630 const char *slats5Mother = "S05M";
631 const char *slats6Mother = "S06M";
d1cd2474 632 Float_t zoffs5 = 0;
633 Float_t zoffs6 = 0;
634
635 if (gAlice->GetModule("DIPO")) {
636 slats5Mother="DDIP";
637 slats6Mother="DDIP";
638
639 zoffs5 = TMath::Abs(zpos1);
640 zoffs6 = TMath::Abs(zpos2);
641 }
642
643 else {
644 gMC->Gsvolu("S05M", "TUBE", idAir, tpar, 3);
645 gMC->Gsvolu("S06M", "TUBE", idAir, tpar, 3);
646 gMC->Gspos("S05M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
647 gMC->Gspos("S06M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
648 }
649
650 // volumes for slat geometry (xx=5,..,10 chamber id):
651 // Sxx0 Sxx1 Sxx2 Sxx3 --> Slat Mother volumes
652 // SxxG --> Sensitive volume (gas)
653 // SxxP --> PCB (copper)
654 // SxxI --> Insulator (vetronite)
655 // SxxC --> Carbon panel
656 // SxxR --> Rohacell
657 // SxxH, SxxV --> Horizontal and Vertical frames (vetronite)
658 // SB5x --> Volumes for the 35 cm long PCB
659 // slat dimensions: slat is a MOTHER volume!!! made of air
660
661 // only for chamber 5: slat 1 has a PCB shorter by 5cm!
662
663 Float_t tlength = 35.;
664 Float_t panelpar2[3] = { tlength/2., panelpar[1], panelpar[2]};
665 Float_t rohapar2[3] = { tlength/2., rohapar[1], rohapar[2]};
666 Float_t insupar2[3] = { tlength/2., insupar[1], insupar[2]};
667 Float_t pcbpar2[3] = { tlength/2., pcbpar[1], pcbpar[2]};
668 Float_t senspar2[3] = { tlength/2., senspar[1], senspar[2]};
669 Float_t hFramepar2[3] = { tlength/2., hFramepar[1], hFramepar[2]};
670 Float_t bFramepar2[3] = { tlength/2., bFramepar[1], bFramepar[2]};
671
672 const Int_t knSlats3 = 5; // number of slats per quadrant
673 const Int_t knPCB3[knSlats3] = {3,3,4,3,2}; // n PCB per slat
674 const Float_t kxpos3[knSlats3] = {31., 40., 0., 0., 0.};
675 Float_t slatLength3[knSlats3];
676
677 // create and position the slat (mother) volumes
678
679 char volNam5[5];
680 char volNam6[5];
681 Float_t xSlat3;
682
683 Float_t spar2[3];
684 for (i = 0; i<knSlats3; i++){
685 slatLength3[i] = kpcbLength * knPCB3[i] + 2. * kdSlatLength;
686 xSlat3 = slatLength3[i]/2. - kvFrameLength/2. + kxpos3[i];
687 if (i==1 || i==0) slatLength3[i] -= 2. *kdSlatLength; // frame out in PCB with circular border
688 Float_t ySlat31 = ksensHeight * i - kyOverlap * i;
689 Float_t ySlat32 = -ksensHeight * i + kyOverlap * i;
690 spar[0] = slatLength3[i]/2.;
691 spar[1] = kslatHeight/2.;
692 spar[2] = kslatWidth/2. * 1.01;
693 // take away 5 cm from the first slat in chamber 5
694 Float_t xSlat32 = 0;
695 if (i==1 || i==2) { // 1 pcb is shortened by 5cm
696 spar2[0] = spar[0]-5./2.;
697 xSlat32 = xSlat3 - 5/2.;
698 }
699 else {
700 spar2[0] = spar[0];
701 xSlat32 = xSlat3;
702 }
703 spar2[1] = spar[1];
704 spar2[2] = spar[2];
705 Float_t dzCh3=spar[2] * 1.01;
706 // zSlat to be checked (odd downstream or upstream?)
707 Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2];
708
709 if (gAlice->GetModule("DIPO")) {zSlat*=-1.;}
710
711 sprintf(volNam5,"S05%d",i);
712 gMC->Gsvolu(volNam5,"BOX",kslatMaterial,spar2,3);
713 gMC->Gspos(volNam5, i*4+1,slats5Mother, -xSlat32, ySlat31, zoffs5-zSlat-2.*dzCh3, 0, "ONLY");
714 gMC->Gspos(volNam5, i*4+2,slats5Mother, +xSlat32, ySlat31, zoffs5-zSlat+2.*dzCh3, 0, "ONLY");
715
716 if (i>0) {
717 gMC->Gspos(volNam5, i*4+3,slats5Mother,-xSlat32, ySlat32, zoffs5-zSlat-2.*dzCh3, 0, "ONLY");
718 gMC->Gspos(volNam5, i*4+4,slats5Mother,+xSlat32, ySlat32, zoffs5-zSlat+2.*dzCh3, 0, "ONLY");
719 }
720 sprintf(volNam6,"S06%d",i);
721 gMC->Gsvolu(volNam6,"BOX",kslatMaterial,spar,3);
722 gMC->Gspos(volNam6, i*4+1,slats6Mother,-xSlat3, ySlat31, zoffs6-zSlat-2.*dzCh3, 0, "ONLY");
723 gMC->Gspos(volNam6, i*4+2,slats6Mother,+xSlat3, ySlat31, zoffs6-zSlat+2.*dzCh3, 0, "ONLY");
724 if (i>0) {
725 gMC->Gspos(volNam6, i*4+3,slats6Mother,-xSlat3, ySlat32, zoffs6-zSlat-2.*dzCh3, 0, "ONLY");
726 gMC->Gspos(volNam6, i*4+4,slats6Mother,+xSlat3, ySlat32, zoffs6-zSlat+2.*dzCh3, 0, "ONLY");
727 }
728 }
729
730 // create the panel volume
731
732 gMC->Gsvolu("S05C","BOX",kpanelMaterial,panelpar,3);
733 gMC->Gsvolu("SB5C","BOX",kpanelMaterial,panelpar2,3);
734 gMC->Gsvolu("S06C","BOX",kpanelMaterial,panelpar,3);
735
736 // create the rohacell volume
737
738 gMC->Gsvolu("S05R","BOX",krohaMaterial,rohapar,3);
739 gMC->Gsvolu("SB5R","BOX",krohaMaterial,rohapar2,3);
740 gMC->Gsvolu("S06R","BOX",krohaMaterial,rohapar,3);
741
742 // create the insulating material volume
743
744 gMC->Gsvolu("S05I","BOX",kinsuMaterial,insupar,3);
745 gMC->Gsvolu("SB5I","BOX",kinsuMaterial,insupar2,3);
746 gMC->Gsvolu("S06I","BOX",kinsuMaterial,insupar,3);
747
748 // create the PCB volume
749
750 gMC->Gsvolu("S05P","BOX",kpcbMaterial,pcbpar,3);
751 gMC->Gsvolu("SB5P","BOX",kpcbMaterial,pcbpar2,3);
752 gMC->Gsvolu("S06P","BOX",kpcbMaterial,pcbpar,3);
753
754 // create the sensitive volumes,
755 gMC->Gsvolu("S05G","BOX",ksensMaterial,dum,0);
756 gMC->Gsvolu("S06G","BOX",ksensMaterial,dum,0);
757
758
759 // create the vertical frame volume
760
761 gMC->Gsvolu("S05V","BOX",kvFrameMaterial,vFramepar,3);
762 gMC->Gsvolu("S06V","BOX",kvFrameMaterial,vFramepar,3);
763
764 // create the horizontal frame volume
765
766 gMC->Gsvolu("S05H","BOX",khFrameMaterial,hFramepar,3);
767 gMC->Gsvolu("SB5H","BOX",khFrameMaterial,hFramepar2,3);
768 gMC->Gsvolu("S06H","BOX",khFrameMaterial,hFramepar,3);
769
770 // create the horizontal border volume
771
772 gMC->Gsvolu("S05B","BOX",kbFrameMaterial,bFramepar,3);
773 gMC->Gsvolu("SB5B","BOX",kbFrameMaterial,bFramepar2,3);
774 gMC->Gsvolu("S06B","BOX",kbFrameMaterial,bFramepar,3);
775
776 index=0;
777 for (i = 0; i<knSlats3; i++){
778 sprintf(volNam5,"S05%d",i);
779 sprintf(volNam6,"S06%d",i);
780 Float_t xvFrame = (slatLength3[i] - kvFrameLength)/2.;
781 Float_t xvFrame2 = xvFrame;
782 if ( i==1 || i ==2 ) xvFrame2 -= 5./2.;
783 // position the vertical frames
784 if (i!=1 && i!=0) {
785 gMC->Gspos("S05V",2*i-1,volNam5, xvFrame2, 0., 0. , 0, "ONLY");
786 gMC->Gspos("S05V",2*i ,volNam5,-xvFrame2, 0., 0. , 0, "ONLY");
787 gMC->Gspos("S06V",2*i-1,volNam6, xvFrame, 0., 0. , 0, "ONLY");
788 gMC->Gspos("S06V",2*i ,volNam6,-xvFrame, 0., 0. , 0, "ONLY");
789 }
790 // position the panels and the insulating material
791 for (j=0; j<knPCB3[i]; j++){
792 index++;
793 Float_t xx = ksensLength * (-knPCB3[i]/2.+j+.5);
794 Float_t xx2 = xx + 5/2.;
795
796 Float_t zPanel = spar[2] - panelpar[2];
797 if ( (i==1 || i==2) && j == knPCB3[i]-1) { // 1 pcb is shortened by 5cm
798 gMC->Gspos("SB5C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
799 gMC->Gspos("SB5C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
800 gMC->Gspos("SB5I",index ,volNam5, xx, 0., 0 , 0, "ONLY");
801 }
802 else if ( (i==1 || i==2) && j < knPCB3[i]-1) {
803 gMC->Gspos("S05C",2*index-1,volNam5, xx2, 0., zPanel , 0, "ONLY");
804 gMC->Gspos("S05C",2*index ,volNam5, xx2, 0.,-zPanel , 0, "ONLY");
805 gMC->Gspos("S05I",index ,volNam5, xx2, 0., 0 , 0, "ONLY");
806 }
807 else {
808 gMC->Gspos("S05C",2*index-1,volNam5, xx, 0., zPanel , 0, "ONLY");
809 gMC->Gspos("S05C",2*index ,volNam5, xx, 0.,-zPanel , 0, "ONLY");
810 gMC->Gspos("S05I",index ,volNam5, xx, 0., 0 , 0, "ONLY");
811 }
812 gMC->Gspos("S06C",2*index-1,volNam6, xx, 0., zPanel , 0, "ONLY");
813 gMC->Gspos("S06C",2*index ,volNam6, xx, 0.,-zPanel , 0, "ONLY");
814 gMC->Gspos("S06I",index,volNam6, xx, 0., 0 , 0, "ONLY");
815 }
816 }
817
818 // position the rohacell volume inside the panel volume
819 gMC->Gspos("S05R",1,"S05C",0.,0.,0.,0,"ONLY");
820 gMC->Gspos("SB5R",1,"SB5C",0.,0.,0.,0,"ONLY");
821 gMC->Gspos("S06R",1,"S06C",0.,0.,0.,0,"ONLY");
822
823 // position the PCB volume inside the insulating material volume
824 gMC->Gspos("S05P",1,"S05I",0.,0.,0.,0,"ONLY");
825 gMC->Gspos("SB5P",1,"SB5I",0.,0.,0.,0,"ONLY");
826 gMC->Gspos("S06P",1,"S06I",0.,0.,0.,0,"ONLY");
827 // position the horizontal frame volume inside the PCB volume
828 gMC->Gspos("S05H",1,"S05P",0.,0.,0.,0,"ONLY");
829 gMC->Gspos("SB5H",1,"SB5P",0.,0.,0.,0,"ONLY");
830 gMC->Gspos("S06H",1,"S06P",0.,0.,0.,0,"ONLY");
831 // position the sensitive volume inside the horizontal frame volume
832 gMC->Gsposp("S05G",1,"S05H",0.,0.,0.,0,"ONLY",senspar,3);
833 gMC->Gsposp("S05G",1,"SB5H",0.,0.,0.,0,"ONLY",senspar2,3);
834 gMC->Gsposp("S06G",1,"S06H",0.,0.,0.,0,"ONLY",senspar,3);
835 // position the border volumes inside the PCB volume
836 Float_t yborder = ( kpcbHeight - kbFrameHeight ) / 2.;
837 gMC->Gspos("S05B",1,"S05P",0., yborder,0.,0,"ONLY");
838 gMC->Gspos("S05B",2,"S05P",0.,-yborder,0.,0,"ONLY");
839 gMC->Gspos("SB5B",1,"SB5P",0., yborder,0.,0,"ONLY");
840 gMC->Gspos("SB5B",2,"SB5P",0.,-yborder,0.,0,"ONLY");
841 gMC->Gspos("S06B",1,"S06P",0., yborder,0.,0,"ONLY");
842 gMC->Gspos("S06B",2,"S06P",0.,-yborder,0.,0,"ONLY");
843
844 // create the NULOC volume and position it in the horizontal frame
845
846 gMC->Gsvolu("S05N","BOX",knulocMaterial,nulocpar,3);
847 gMC->Gsvolu("S06N","BOX",knulocMaterial,nulocpar,3);
848 index = 0;
849 Float_t xxmax2 = xxmax - 5./2.;
850 for (xx = -xxmax; xx<=xxmax; xx+=2*knulocLength) {
851 index++;
852 gMC->Gspos("S05N",2*index-1,"S05B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
853 gMC->Gspos("S05N",2*index ,"S05B", xx, 0., kbFrameWidth/4., 0, "ONLY");
854 if (xx > -xxmax2 && xx< xxmax2) {
855 gMC->Gspos("S05N",2*index-1,"SB5B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
856 gMC->Gspos("S05N",2*index ,"SB5B", xx, 0., kbFrameWidth/4., 0, "ONLY");
857 }
858 gMC->Gspos("S06N",2*index-1,"S06B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
859 gMC->Gspos("S06N",2*index ,"S06B", xx, 0., kbFrameWidth/4., 0, "ONLY");
860 }
861
862 // position the volumes approximating the circular section of the pipe
863 Float_t yoffs = ksensHeight/2. - kyOverlap;
864 Float_t epsilon = 0.001;
865 Int_t ndiv=6;
866 Float_t divpar[3];
867 Double_t dydiv= ksensHeight/ndiv;
868 Double_t ydiv = yoffs -dydiv;
869 Int_t imax=0;
870 imax = 1;
871 Float_t rmin = 33.;
872 Float_t z1 = spar[2], z2=2*spar[2]*1.01;
873 if (gAlice->GetModule("DIPO")) {z1*=-1.;}
874 for (Int_t idiv=0;idiv<ndiv; idiv++){
875 ydiv+= dydiv;
876 Float_t xdiv = 0.;
877 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
878 divpar[0] = (kpcbLength-xdiv)/2.;
879 divpar[1] = dydiv/2. - epsilon;
880 divpar[2] = ksensWidth/2.;
881 Float_t xvol=(kpcbLength+xdiv)/2.+1.999;
882 Float_t yvol=ydiv + dydiv/2.;
883 //printf ("y ll = %f y ur = %f \n",yvol - divpar[1], yvol + divpar[1]);
884 gMC->Gsposp("S05G",imax+4*idiv+1,slats5Mother,-xvol, yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3);
885 gMC->Gsposp("S06G",imax+4*idiv+1,slats6Mother,-xvol, yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3);
886 gMC->Gsposp("S05G",imax+4*idiv+2,slats5Mother,-xvol,-yvol, zoffs5-z1-z2, 0, "ONLY",divpar,3);
887 gMC->Gsposp("S06G",imax+4*idiv+2,slats6Mother,-xvol,-yvol, zoffs6-z1-z2, 0, "ONLY",divpar,3);
888 gMC->Gsposp("S05G",imax+4*idiv+3,slats5Mother,+xvol, yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3);
889 gMC->Gsposp("S06G",imax+4*idiv+3,slats6Mother,+xvol, yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3);
890 gMC->Gsposp("S05G",imax+4*idiv+4,slats5Mother,+xvol,-yvol, zoffs5-z1+z2, 0, "ONLY",divpar,3);
891 gMC->Gsposp("S06G",imax+4*idiv+4,slats6Mother,+xvol,-yvol, zoffs6-z1+z2, 0, "ONLY",divpar,3);
892 }
893 }
894
895 if (fStations[3]) {
896
897//********************************************************************
898// Station 4 **
899//********************************************************************
900 // indices 1 and 2 for first and second chambers in the station
901 // iChamber (first chamber) kept for other quanties than Z,
902 // assumed to be the same in both chambers
903 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[6];
904 iChamber2 =(AliMUONChamber*) (*fChambers)[7];
905 zpos1=iChamber1->Z();
906 zpos2=iChamber2->Z();
907 dstation = TMath::Abs(zpos2 - zpos1);
908// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
909
910//
911// Mother volume
912 tpar[0] = iChamber->RInner()-dframep;
913 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
914 tpar[2] = dstation/4;
915
916 gMC->Gsvolu("S07M", "TUBE", idAir, tpar, 3);
917 gMC->Gsvolu("S08M", "TUBE", idAir, tpar, 3);
918 gMC->Gspos("S07M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
919 gMC->Gspos("S08M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
920
921
922 const Int_t knSlats4 = 6; // number of slats per quadrant
923 const Int_t knPCB4[knSlats4] = {4,4,5,5,4,3}; // n PCB per slat
924 const Float_t kxpos4[knSlats4] = {38.5, 40., 0., 0., 0., 0.};
925 Float_t slatLength4[knSlats4];
926
927 // create and position the slat (mother) volumes
928
929 char volNam7[5];
930 char volNam8[5];
931 Float_t xSlat4;
932 Float_t ySlat4;
933
934 for (i = 0; i<knSlats4; i++){
935 slatLength4[i] = kpcbLength * knPCB4[i] + 2. * kdSlatLength;
936 xSlat4 = slatLength4[i]/2. - kvFrameLength/2. + kxpos4[i];
937 if (i==1) slatLength4[i] -= 2. *kdSlatLength; // frame out in PCB with circular border
938 ySlat4 = ksensHeight * i - kyOverlap *i;
939
940 spar[0] = slatLength4[i]/2.;
941 spar[1] = kslatHeight/2.;
942 spar[2] = kslatWidth/2.*1.01;
943 Float_t dzCh4=spar[2]*1.01;
944 // zSlat to be checked (odd downstream or upstream?)
945 Float_t zSlat = (i%2 ==0)? spar[2] : -spar[2];
946 sprintf(volNam7,"S07%d",i);
947 gMC->Gsvolu(volNam7,"BOX",kslatMaterial,spar,3);
948 gMC->Gspos(volNam7, i*4+1,"S07M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
949 gMC->Gspos(volNam7, i*4+2,"S07M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
950 if (i>0) {
951 gMC->Gspos(volNam7, i*4+3,"S07M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
952 gMC->Gspos(volNam7, i*4+4,"S07M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
953 }
954 sprintf(volNam8,"S08%d",i);
955 gMC->Gsvolu(volNam8,"BOX",kslatMaterial,spar,3);
956 gMC->Gspos(volNam8, i*4+1,"S08M",-xSlat4, ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
957 gMC->Gspos(volNam8, i*4+2,"S08M",+xSlat4, ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
958 if (i>0) {
959 gMC->Gspos(volNam8, i*4+3,"S08M",-xSlat4,-ySlat4, -zSlat-2.*dzCh4, 0, "ONLY");
960 gMC->Gspos(volNam8, i*4+4,"S08M",+xSlat4,-ySlat4, -zSlat+2.*dzCh4, 0, "ONLY");
961 }
962 }
963
964
965 // create the panel volume
966
967 gMC->Gsvolu("S07C","BOX",kpanelMaterial,panelpar,3);
968 gMC->Gsvolu("S08C","BOX",kpanelMaterial,panelpar,3);
969
970 // create the rohacell volume
971
972 gMC->Gsvolu("S07R","BOX",krohaMaterial,rohapar,3);
973 gMC->Gsvolu("S08R","BOX",krohaMaterial,rohapar,3);
974
975 // create the insulating material volume
976
977 gMC->Gsvolu("S07I","BOX",kinsuMaterial,insupar,3);
978 gMC->Gsvolu("S08I","BOX",kinsuMaterial,insupar,3);
979
980 // create the PCB volume
981
982 gMC->Gsvolu("S07P","BOX",kpcbMaterial,pcbpar,3);
983 gMC->Gsvolu("S08P","BOX",kpcbMaterial,pcbpar,3);
984
985 // create the sensitive volumes,
986
987 gMC->Gsvolu("S07G","BOX",ksensMaterial,dum,0);
988 gMC->Gsvolu("S08G","BOX",ksensMaterial,dum,0);
989
990 // create the vertical frame volume
991
992 gMC->Gsvolu("S07V","BOX",kvFrameMaterial,vFramepar,3);
993 gMC->Gsvolu("S08V","BOX",kvFrameMaterial,vFramepar,3);
994
995 // create the horizontal frame volume
996
997 gMC->Gsvolu("S07H","BOX",khFrameMaterial,hFramepar,3);
998 gMC->Gsvolu("S08H","BOX",khFrameMaterial,hFramepar,3);
999
1000 // create the horizontal border volume
1001
1002 gMC->Gsvolu("S07B","BOX",kbFrameMaterial,bFramepar,3);
1003 gMC->Gsvolu("S08B","BOX",kbFrameMaterial,bFramepar,3);
1004
1005 index=0;
1006 for (i = 0; i<knSlats4; i++){
1007 sprintf(volNam7,"S07%d",i);
1008 sprintf(volNam8,"S08%d",i);
1009 Float_t xvFrame = (slatLength4[i] - kvFrameLength)/2.;
1010 // position the vertical frames
1011 if (i!=1 && i!=0) {
1012 gMC->Gspos("S07V",2*i-1,volNam7, xvFrame, 0., 0. , 0, "ONLY");
1013 gMC->Gspos("S07V",2*i ,volNam7,-xvFrame, 0., 0. , 0, "ONLY");
1014 gMC->Gspos("S08V",2*i-1,volNam8, xvFrame, 0., 0. , 0, "ONLY");
1015 gMC->Gspos("S08V",2*i ,volNam8,-xvFrame, 0., 0. , 0, "ONLY");
1016 }
1017 // position the panels and the insulating material
1018 for (j=0; j<knPCB4[i]; j++){
1019 index++;
1020 Float_t xx = ksensLength * (-knPCB4[i]/2.+j+.5);
1021
1022 Float_t zPanel = spar[2] - panelpar[2];
1023 gMC->Gspos("S07C",2*index-1,volNam7, xx, 0., zPanel , 0, "ONLY");
1024 gMC->Gspos("S07C",2*index ,volNam7, xx, 0.,-zPanel , 0, "ONLY");
1025 gMC->Gspos("S08C",2*index-1,volNam8, xx, 0., zPanel , 0, "ONLY");
1026 gMC->Gspos("S08C",2*index ,volNam8, xx, 0.,-zPanel , 0, "ONLY");
1027
1028 gMC->Gspos("S07I",index,volNam7, xx, 0., 0 , 0, "ONLY");
1029 gMC->Gspos("S08I",index,volNam8, xx, 0., 0 , 0, "ONLY");
1030 }
1031 }
1032
1033 // position the rohacell volume inside the panel volume
1034 gMC->Gspos("S07R",1,"S07C",0.,0.,0.,0,"ONLY");
1035 gMC->Gspos("S08R",1,"S08C",0.,0.,0.,0,"ONLY");
1036
1037 // position the PCB volume inside the insulating material volume
1038 gMC->Gspos("S07P",1,"S07I",0.,0.,0.,0,"ONLY");
1039 gMC->Gspos("S08P",1,"S08I",0.,0.,0.,0,"ONLY");
1040 // position the horizontal frame volume inside the PCB volume
1041 gMC->Gspos("S07H",1,"S07P",0.,0.,0.,0,"ONLY");
1042 gMC->Gspos("S08H",1,"S08P",0.,0.,0.,0,"ONLY");
1043 // position the sensitive volume inside the horizontal frame volume
1044 gMC->Gsposp("S07G",1,"S07H",0.,0.,0.,0,"ONLY",senspar,3);
1045 gMC->Gsposp("S08G",1,"S08H",0.,0.,0.,0,"ONLY",senspar,3);
1046 // position the border volumes inside the PCB volume
1047 Float_t yborder = ( kpcbHeight - kbFrameHeight ) / 2.;
1048 gMC->Gspos("S07B",1,"S07P",0., yborder,0.,0,"ONLY");
1049 gMC->Gspos("S07B",2,"S07P",0.,-yborder,0.,0,"ONLY");
1050 gMC->Gspos("S08B",1,"S08P",0., yborder,0.,0,"ONLY");
1051 gMC->Gspos("S08B",2,"S08P",0.,-yborder,0.,0,"ONLY");
1052
1053 // create the NULOC volume and position it in the horizontal frame
1054
1055 gMC->Gsvolu("S07N","BOX",knulocMaterial,nulocpar,3);
1056 gMC->Gsvolu("S08N","BOX",knulocMaterial,nulocpar,3);
1057 index = 0;
1058 for (xx = -xxmax; xx<=xxmax; xx+=2*knulocLength) {
1059 index++;
1060 gMC->Gspos("S07N",2*index-1,"S07B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1061 gMC->Gspos("S07N",2*index ,"S07B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1062 gMC->Gspos("S08N",2*index-1,"S08B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1063 gMC->Gspos("S08N",2*index ,"S08B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1064 }
1065
1066 // position the volumes approximating the circular section of the pipe
1067 Float_t yoffs = ksensHeight/2. - kyOverlap;
1068 Float_t epsilon = 0.001;
1069 Int_t ndiv=6;
1070 Float_t divpar[3];
1071 Double_t dydiv= ksensHeight/ndiv;
1072 Double_t ydiv = yoffs -dydiv;
1073 Int_t imax=0;
1074 imax = 1;
1075 Float_t rmin = 40.;
1076 Float_t z1 = -spar[2], z2=2*spar[2]*1.01;
1077 for (Int_t idiv=0;idiv<ndiv; idiv++){
1078 ydiv+= dydiv;
1079 Float_t xdiv = 0.;
1080 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1081 divpar[0] = (kpcbLength-xdiv)/2.;
1082 divpar[1] = dydiv/2. - epsilon;
1083 divpar[2] = ksensWidth/2.;
1084 Float_t xvol=(kpcbLength+xdiv)/2.+1.999;
1085 Float_t yvol=ydiv + dydiv/2.;
1086 gMC->Gsposp("S07G",imax+4*idiv+1,"S07M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1087 gMC->Gsposp("S08G",imax+4*idiv+1,"S08M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1088 gMC->Gsposp("S07G",imax+4*idiv+2,"S07M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1089 gMC->Gsposp("S08G",imax+4*idiv+2,"S08M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1090 gMC->Gsposp("S07G",imax+4*idiv+3,"S07M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1091 gMC->Gsposp("S08G",imax+4*idiv+3,"S08M", xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1092 gMC->Gsposp("S07G",imax+4*idiv+4,"S07M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1093 gMC->Gsposp("S08G",imax+4*idiv+4,"S08M", xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1094 }
1095
1096
1097
1098
1099
1100 }
1101
1102 if (fStations[4]) {
1103
1104
1105//********************************************************************
1106// Station 5 **
1107//********************************************************************
1108 // indices 1 and 2 for first and second chambers in the station
1109 // iChamber (first chamber) kept for other quanties than Z,
1110 // assumed to be the same in both chambers
1111 iChamber1 = iChamber = (AliMUONChamber*) (*fChambers)[8];
1112 iChamber2 =(AliMUONChamber*) (*fChambers)[9];
1113 zpos1=iChamber1->Z();
1114 zpos2=iChamber2->Z();
1115 dstation = TMath::Abs(zpos2 - zpos1);
1116// zfpos=-(iChamber->DGas()+dframez+iChamber->DAlu())/2; // not used any more
1117
1118//
1119// Mother volume
1120 tpar[0] = iChamber->RInner()-dframep;
1121 tpar[1] = (iChamber->ROuter()+dframep)/TMath::Cos(phi);
1122 tpar[2] = dstation/5.;
1123
1124 gMC->Gsvolu("S09M", "TUBE", idAir, tpar, 3);
1125 gMC->Gsvolu("S10M", "TUBE", idAir, tpar, 3);
1126 gMC->Gspos("S09M", 1, "ALIC", 0., 0., zpos1 , 0, "ONLY");
1127 gMC->Gspos("S10M", 1, "ALIC", 0., 0., zpos2 , 0, "ONLY");
1128
1129
1130 const Int_t knSlats5 = 7; // number of slats per quadrant
1131 const Int_t knPCB5[knSlats5] = {5,5,6,6,5,4,3}; // n PCB per slat
1132 const Float_t kxpos5[knSlats5] = {38.5, 40., 0., 0., 0., 0., 0.};
1133 Float_t slatLength5[knSlats5];
1134 char volNam9[5];
1135 char volNam10[5];
1136 Float_t xSlat5;
1137 Float_t ySlat5;
1138
1139 for (i = 0; i<knSlats5; i++){
1140 slatLength5[i] = kpcbLength * knPCB5[i] + 2. * kdSlatLength;
1141 xSlat5 = slatLength5[i]/2. - kvFrameLength/2. +kxpos5[i];
1142 if (i==1 || i==0) slatLength5[i] -= 2. *kdSlatLength; // frame out in PCB with circular border
1143 ySlat5 = ksensHeight * i - kyOverlap * i;
1144 spar[0] = slatLength5[i]/2.;
1145 spar[1] = kslatHeight/2.;
1146 spar[2] = kslatWidth/2. * 1.01;
1147 Float_t dzCh5=spar[2]*1.01;
1148 // zSlat to be checked (odd downstream or upstream?)
1149 Float_t zSlat = (i%2 ==0)? -spar[2] : spar[2];
1150 sprintf(volNam9,"S09%d",i);
1151 gMC->Gsvolu(volNam9,"BOX",kslatMaterial,spar,3);
1152 gMC->Gspos(volNam9, i*4+1,"S09M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1153 gMC->Gspos(volNam9, i*4+2,"S09M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1154 if (i>0) {
1155 gMC->Gspos(volNam9, i*4+3,"S09M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1156 gMC->Gspos(volNam9, i*4+4,"S09M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1157 }
1158 sprintf(volNam10,"S10%d",i);
1159 gMC->Gsvolu(volNam10,"BOX",kslatMaterial,spar,3);
1160 gMC->Gspos(volNam10, i*4+1,"S10M",-xSlat5, ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1161 gMC->Gspos(volNam10, i*4+2,"S10M",+xSlat5, ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1162 if (i>0) {
1163 gMC->Gspos(volNam10, i*4+3,"S10M",-xSlat5,-ySlat5, -zSlat-2.*dzCh5, 0, "ONLY");
1164 gMC->Gspos(volNam10, i*4+4,"S10M",+xSlat5,-ySlat5, -zSlat+2.*dzCh5, 0, "ONLY");
1165 }
1166 }
1167
1168 // create the panel volume
1169
1170 gMC->Gsvolu("S09C","BOX",kpanelMaterial,panelpar,3);
1171 gMC->Gsvolu("S10C","BOX",kpanelMaterial,panelpar,3);
1172
1173 // create the rohacell volume
1174
1175 gMC->Gsvolu("S09R","BOX",krohaMaterial,rohapar,3);
1176 gMC->Gsvolu("S10R","BOX",krohaMaterial,rohapar,3);
1177
1178 // create the insulating material volume
1179
1180 gMC->Gsvolu("S09I","BOX",kinsuMaterial,insupar,3);
1181 gMC->Gsvolu("S10I","BOX",kinsuMaterial,insupar,3);
1182
1183 // create the PCB volume
1184
1185 gMC->Gsvolu("S09P","BOX",kpcbMaterial,pcbpar,3);
1186 gMC->Gsvolu("S10P","BOX",kpcbMaterial,pcbpar,3);
1187
1188 // create the sensitive volumes,
1189
1190 gMC->Gsvolu("S09G","BOX",ksensMaterial,dum,0);
1191 gMC->Gsvolu("S10G","BOX",ksensMaterial,dum,0);
1192
1193 // create the vertical frame volume
1194
1195 gMC->Gsvolu("S09V","BOX",kvFrameMaterial,vFramepar,3);
1196 gMC->Gsvolu("S10V","BOX",kvFrameMaterial,vFramepar,3);
1197
1198 // create the horizontal frame volume
1199
1200 gMC->Gsvolu("S09H","BOX",khFrameMaterial,hFramepar,3);
1201 gMC->Gsvolu("S10H","BOX",khFrameMaterial,hFramepar,3);
1202
1203 // create the horizontal border volume
1204
1205 gMC->Gsvolu("S09B","BOX",kbFrameMaterial,bFramepar,3);
1206 gMC->Gsvolu("S10B","BOX",kbFrameMaterial,bFramepar,3);
1207
1208 index=0;
1209 for (i = 0; i<knSlats5; i++){
1210 sprintf(volNam9,"S09%d",i);
1211 sprintf(volNam10,"S10%d",i);
1212 Float_t xvFrame = (slatLength5[i] - kvFrameLength)/2.;
1213 // position the vertical frames
1214 if (i!=1 && i!=0) {
1215 gMC->Gspos("S09V",2*i-1,volNam9, xvFrame, 0., 0. , 0, "ONLY");
1216 gMC->Gspos("S09V",2*i ,volNam9,-xvFrame, 0., 0. , 0, "ONLY");
1217 gMC->Gspos("S10V",2*i-1,volNam10, xvFrame, 0., 0. , 0, "ONLY");
1218 gMC->Gspos("S10V",2*i ,volNam10,-xvFrame, 0., 0. , 0, "ONLY");
1219 }
1220
1221 // position the panels and the insulating material
1222 for (j=0; j<knPCB5[i]; j++){
1223 index++;
1224 Float_t xx = ksensLength * (-knPCB5[i]/2.+j+.5);
1225
1226 Float_t zPanel = spar[2] - panelpar[2];
1227 gMC->Gspos("S09C",2*index-1,volNam9, xx, 0., zPanel , 0, "ONLY");
1228 gMC->Gspos("S09C",2*index ,volNam9, xx, 0.,-zPanel , 0, "ONLY");
1229 gMC->Gspos("S10C",2*index-1,volNam10, xx, 0., zPanel , 0, "ONLY");
1230 gMC->Gspos("S10C",2*index ,volNam10, xx, 0.,-zPanel , 0, "ONLY");
1231
1232 gMC->Gspos("S09I",index,volNam9, xx, 0., 0 , 0, "ONLY");
1233 gMC->Gspos("S10I",index,volNam10, xx, 0., 0 , 0, "ONLY");
1234 }
1235 }
1236
1237 // position the rohacell volume inside the panel volume
1238 gMC->Gspos("S09R",1,"S09C",0.,0.,0.,0,"ONLY");
1239 gMC->Gspos("S10R",1,"S10C",0.,0.,0.,0,"ONLY");
1240
1241 // position the PCB volume inside the insulating material volume
1242 gMC->Gspos("S09P",1,"S09I",0.,0.,0.,0,"ONLY");
1243 gMC->Gspos("S10P",1,"S10I",0.,0.,0.,0,"ONLY");
1244 // position the horizontal frame volume inside the PCB volume
1245 gMC->Gspos("S09H",1,"S09P",0.,0.,0.,0,"ONLY");
1246 gMC->Gspos("S10H",1,"S10P",0.,0.,0.,0,"ONLY");
1247 // position the sensitive volume inside the horizontal frame volume
1248 gMC->Gsposp("S09G",1,"S09H",0.,0.,0.,0,"ONLY",senspar,3);
1249 gMC->Gsposp("S10G",1,"S10H",0.,0.,0.,0,"ONLY",senspar,3);
1250 // position the border volumes inside the PCB volume
1251 Float_t yborder = ( kpcbHeight - kbFrameHeight ) / 2.;
1252 gMC->Gspos("S09B",1,"S09P",0., yborder,0.,0,"ONLY");
1253 gMC->Gspos("S09B",2,"S09P",0.,-yborder,0.,0,"ONLY");
1254 gMC->Gspos("S10B",1,"S10P",0., yborder,0.,0,"ONLY");
1255 gMC->Gspos("S10B",2,"S10P",0.,-yborder,0.,0,"ONLY");
1256
1257 // create the NULOC volume and position it in the horizontal frame
1258
1259 gMC->Gsvolu("S09N","BOX",knulocMaterial,nulocpar,3);
1260 gMC->Gsvolu("S10N","BOX",knulocMaterial,nulocpar,3);
1261 index = 0;
1262 for (xx = -xxmax; xx<=xxmax; xx+=2*knulocLength) {
1263 index++;
1264 gMC->Gspos("S09N",2*index-1,"S09B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1265 gMC->Gspos("S09N",2*index ,"S09B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1266 gMC->Gspos("S10N",2*index-1,"S10B", xx, 0.,-kbFrameWidth/4., 0, "ONLY");
1267 gMC->Gspos("S10N",2*index ,"S10B", xx, 0., kbFrameWidth/4., 0, "ONLY");
1268 }
1269 // position the volumes approximating the circular section of the pipe
1270 Float_t yoffs = ksensHeight/2. - kyOverlap;
1271 Float_t epsilon = 0.001;
1272 Int_t ndiv=6;
1273 Float_t divpar[3];
1274 Double_t dydiv= ksensHeight/ndiv;
1275 Double_t ydiv = yoffs -dydiv;
1276 Int_t imax=0;
1277 // for (Int_t islat=0; islat<knSlats3; islat++) imax += knPCB3[islat];
1278 imax = 1;
1279 Float_t rmin = 40.;
1280 Float_t z1 = spar[2], z2=2*spar[2]*1.01;
1281 for (Int_t idiv=0;idiv<ndiv; idiv++){
1282 ydiv+= dydiv;
1283 Float_t xdiv = 0.;
1284 if (ydiv<rmin) xdiv= rmin * TMath::Sin( TMath::ACos(ydiv/rmin) );
1285 divpar[0] = (kpcbLength-xdiv)/2.;
1286 divpar[1] = dydiv/2. - epsilon;
1287 divpar[2] = ksensWidth/2.;
1288 Float_t xvol=(kpcbLength+xdiv)/2. + 1.999;
1289 Float_t yvol=ydiv + dydiv/2.;
1290 gMC->Gsposp("S09G",imax+4*idiv+1,"S09M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1291 gMC->Gsposp("S10G",imax+4*idiv+1,"S10M", -xvol, yvol, -z1-z2, 0, "ONLY",divpar,3);
1292 gMC->Gsposp("S09G",imax+4*idiv+2,"S09M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1293 gMC->Gsposp("S10G",imax+4*idiv+2,"S10M", -xvol,-yvol, -z1-z2, 0, "ONLY",divpar,3);
1294 gMC->Gsposp("S09G",imax+4*idiv+3,"S09M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1295 gMC->Gsposp("S10G",imax+4*idiv+3,"S10M", +xvol, yvol, -z1+z2, 0, "ONLY",divpar,3);
1296 gMC->Gsposp("S09G",imax+4*idiv+4,"S09M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1297 gMC->Gsposp("S10G",imax+4*idiv+4,"S10M", +xvol,-yvol, -z1+z2, 0, "ONLY",divpar,3);
1298 }
1299
1300 }
1301
1302//********************************************************************
1303// Trigger **
1304//********************************************************************
1305 /*
1306 zpos1 and zpos2 are the middle of the first and second
1307 planes of station 1 (+1m for second station):
1308 zpos1=(zpos1m+zpos1p)/2=(15999+16071)/2=16035 mm, thick/2=40 mm
1309 zpos2=(zpos2m+zpos2p)/2=(16169+16241)/2=16205 mm, thick/2=40 mm
1310 zposxm and zposxp= middles of gaz gaps within a detection plane
1311 rem: the total thickness accounts for 1 mm of al on both
1312 side of the RPCs (see zpos1 and zpos2)
1313 */
1314
1315// vertical gap between right and left chambers (kDXZERO*2=4cm)
1316 const Float_t kDXZERO=2.;
1317// main distances for chamber definition in first plane/first station
1318 const Float_t kXMIN=34.;
1319 const Float_t kXMED=51.;
1320 const Float_t kXMAX=272.;
1321// kXMAX will become 255. in real life. segmentation to be updated accordingly
1322// (see fig.2-4 & 2-5 of Local Trigger Board PRR)
1323 const Float_t kYMIN=34.;
1324 const Float_t kYMAX=51.;
1325// inner/outer radius of flange between beam shield. and chambers (1/station)
1326 const Float_t kRMIN[2]={50.,50.};
1327 const Float_t kRMAX[2]={64.,68.};
1328// z position of the middle of the gas gap in mother vol
1329 const Float_t kZm=-3.6;
1330 const Float_t kZp=+3.6;
1331
1332 iChamber1 = (AliMUONChamber*) (*fChambers)[10];
1333 zpos1 = iChamber1->Z();
1334
1335// ratio of zpos1m/zpos1p and inverse for first plane
1336 Float_t zmp=(zpos1+3.6)/(zpos1-3.6);
1337 Float_t zpm=1./zmp;
1338
1339 Int_t icount=0; // chamber counter (0 1 2 3)
1340
1341 for (Int_t istation=0; istation<2; istation++) { // loop on stations
1342 for (Int_t iplane=0; iplane<2; iplane++) { // loop on detection planes
1343
1344 Int_t iVolNum=1; // counter Volume Number
1345 icount = Int_t(iplane*TMath::Power(2,0))+
1346 Int_t(istation*TMath::Power(2,1));
1347
1348 char volPlane[5];
1349 sprintf(volPlane,"SM%d%d",istation+1,iplane+1);
1350
1351 iChamber = (AliMUONChamber*) (*fChambers)[10+icount];
1352 Float_t zpos = iChamber->Z();
1353
1354// mother volume
1355 tpar[0] = iChamber->RInner();
1356 tpar[1] = iChamber->ROuter();
1357 tpar[2] = 4.0;
1358 gMC->Gsvolu(volPlane,"TUBE",idAir,tpar,3);
1359
1360// Flange between beam shielding and RPC
1361 tpar[0]= kRMIN[istation];
1362 tpar[1]= kRMAX[istation];
1363 tpar[2]= 4.0;
1364
1365 char volFlange[5];
1366 sprintf(volFlange,"SF%dA",icount+1);
1367 gMC->Gsvolu(volFlange,"TUBE",idAlu1,tpar,3); //Al
1368 gMC->Gspos(volFlange,1,volPlane,0.,0.,0.,0,"MANY");
1369
1370// scaling factor
1371 Float_t zRatio = zpos / zpos1;
1372
1373// chamber prototype
1374 tpar[0]= 0.;
1375 tpar[1]= 0.;
1376 tpar[2]= 0.;
1377
1378 char volAlu[5]; // Alu
1379 char volBak[5]; // Bakelite
1380 char volGaz[5]; // Gas streamer
1381
1382 sprintf(volAlu,"SC%dA",icount+1);
1383 sprintf(volBak,"SB%dA",icount+1);
1384 sprintf(volGaz,"SG%dA",icount+1);
1385
1386 gMC->Gsvolu(volAlu,"BOX",idAlu1,tpar,0); // Al
1387 gMC->Gsvolu(volBak,"BOX",idtmed[1107],tpar,0); // Bakelite
1388 gMC->Gsvolu(volGaz,"BOX",idtmed[1106],tpar,0); // Gas streamer
1389
1390// chamber type A
1391 tpar[0] = -1.;
1392 tpar[1] = -1.;
1393
1394 Float_t xA=(kDXZERO+kXMED+(kXMAX-kXMED)/2.)*zRatio;
1395 Float_t yAm=0.;
1396 Float_t yAp=0.;
1397
1398 tpar[2] = 0.1;
1399 gMC->Gsposp(volGaz,1,volBak,0.,0.,0.,0,"ONLY",tpar,3);
1400 tpar[2] = 0.3;
1401 gMC->Gsposp(volBak,1,volAlu,0.,0.,0.,0,"ONLY",tpar,3);
1402
1403 tpar[2] = 0.4;
1404 tpar[0] = ((kXMAX-kXMED)/2.)*zRatio;
1405 tpar[1] = kYMIN*zRatio;
1406
1407 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xA,yAm,-kZm,0,"ONLY",tpar,3);
1408 gMC->Gsposp(volAlu,iVolNum++,volPlane, xA,yAp,-kZp,0,"ONLY",tpar,3);
1409 gMC->Gsbool(volAlu,volFlange);
1410
1411// chamber type B
1412 Float_t tpar1save=tpar[1];
1413 Float_t y1msave=yAm;
1414 Float_t y1psave=yAp;
1415
1416 tpar[0] = ((kXMAX-kXMIN)/2.) * zRatio;
1417 tpar[1] = ((kYMAX-kYMIN)/2.) * zRatio;
1418
1419 Float_t xB=(kDXZERO+kXMIN)*zRatio+tpar[0];
1420 Float_t yBp=(y1msave+tpar1save)*zpm+tpar[1];
1421 Float_t yBm=(y1psave+tpar1save)*zmp+tpar[1];
1422
1423 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB, yBp,-kZp,0,"ONLY",tpar,3);
1424 gMC->Gsposp(volAlu,iVolNum++,volPlane, xB, yBm,-kZm,0,"ONLY",tpar,3);
1425 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xB,-yBp,-kZp,0,"ONLY",tpar,3);
1426 gMC->Gsposp(volAlu,iVolNum++,volPlane, xB,-yBm,-kZm,0,"ONLY",tpar,3);
1427
1428// chamber type C (note : same Z than type B)
1429 tpar1save=tpar[1];
1430 y1msave=yBm;
1431 y1psave=yBp;
1432
1433 tpar[0] = (kXMAX/2)*zRatio;
1434 tpar[1] = (kYMAX/2)*zRatio;
1435
1436 Float_t xC=kDXZERO*zRatio+tpar[0];
1437 Float_t yCp=(y1psave+tpar1save)*1.+tpar[1];
1438 Float_t yCm=(y1msave+tpar1save)*1.+tpar[1];
1439
1440 gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC, yCp,-kZp,0,"ONLY",tpar,3);
1441 gMC->Gsposp(volAlu,iVolNum++,volPlane, xC, yCm,-kZm,0,"ONLY",tpar,3);
1442 gMC->Gsposp(volAlu,iVolNum++,volPlane,-xC,-yCp,-kZp,0,"ONLY",tpar,3);
1443 gMC->Gsposp(volAlu,iVolNum++,volPlane, xC,-yCm,-kZm,0,"ONLY",tpar,3);
1444
1445// chamber type D, E and F (same size)
1446 tpar1save=tpar[1];
1447 y1msave=yCm;
1448 y1psave=yCp;
1449
1450 tpar[0] = (kXMAX/2.)*zRatio;
1451 tpar[1] = kYMIN*zRatio;
1452
1453 Float_t xD=kDXZERO*zRatio+tpar[0];
1454 Float_t yDp=(y1msave+tpar1save)*zpm+tpar[1];
1455 Float_t yDm=(y1psave+tpar1save)*zmp+tpar[1];
1456
1457 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yDm,-kZm,0,"ONLY",tpar,3);
1458 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yDp,-kZp,0,"ONLY",tpar,3);
1459 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yDm,-kZm,0,"ONLY",tpar,3);
1460 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yDp,-kZp,0,"ONLY",tpar,3);
1461
1462 tpar1save=tpar[1];
1463 y1msave=yDm;
1464 y1psave=yDp;
1465 Float_t yEp=(y1msave+tpar1save)*zpm+tpar[1];
1466 Float_t yEm=(y1psave+tpar1save)*zmp+tpar[1];
1467
1468 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yEp,-kZp,0,"ONLY",tpar,3);
1469 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yEm,-kZm,0,"ONLY",tpar,3);
1470 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yEp,-kZp,0,"ONLY",tpar,3);
1471 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yEm,-kZm,0,"ONLY",tpar,3);
1472
1473 tpar1save=tpar[1];
1474 y1msave=yEm;
1475 y1psave=yEp;
1476 Float_t yFp=(y1msave+tpar1save)*zpm+tpar[1];
1477 Float_t yFm=(y1psave+tpar1save)*zmp+tpar[1];
1478
1479 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD, yFm,-kZm,0,"ONLY",tpar,3);
1480 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD, yFp,-kZp,0,"ONLY",tpar,3);
1481 gMC->Gsposp(volAlu,iVolNum++,volPlane, -xD,-yFm,-kZm,0,"ONLY",tpar,3);
1482 gMC->Gsposp(volAlu,iVolNum++,volPlane, xD,-yFp,-kZp,0,"ONLY",tpar,3);
1483
1484// Positioning plane in ALICE
1485 gMC->Gspos(volPlane,1,"ALIC",0.,0.,zpos,0,"ONLY");
1486
1487 } // end loop on detection planes
1488 } // end loop on stations
1489
1490}
1491
1492
1493//___________________________________________
1494void AliMUONv3::CreateMaterials()
1495{
1496 // *** DEFINITION OF AVAILABLE MUON MATERIALS ***
1497 //
1498 // Ar-CO2 gas (80%+20%)
1499 Float_t ag1[3] = { 39.95,12.01,16. };
1500 Float_t zg1[3] = { 18.,6.,8. };
1501 Float_t wg1[3] = { .8,.0667,.13333 };
1502 Float_t dg1 = .001821;
1503 //
1504 // Ar-buthane-freon gas -- trigger chambers
1505 Float_t atr1[4] = { 39.95,12.01,1.01,19. };
1506 Float_t ztr1[4] = { 18.,6.,1.,9. };
1507 Float_t wtr1[4] = { .56,.1262857,.2857143,.028 };
1508 Float_t dtr1 = .002599;
1509 //
1510 // Ar-CO2 gas
1511 Float_t agas[3] = { 39.95,12.01,16. };
1512 Float_t zgas[3] = { 18.,6.,8. };
1513 Float_t wgas[3] = { .74,.086684,.173316 };
1514 Float_t dgas = .0018327;
1515 //
1516 // Ar-Isobutane gas (80%+20%) -- tracking
1517 Float_t ag[3] = { 39.95,12.01,1.01 };
1518 Float_t zg[3] = { 18.,6.,1. };
1519 Float_t wg[3] = { .8,.057,.143 };
1520 Float_t dg = .0019596;
1521 //
1522 // Ar-Isobutane-Forane-SF6 gas (49%+7%+40%+4%) -- trigger
1523 Float_t atrig[5] = { 39.95,12.01,1.01,19.,32.066 };
1524 Float_t ztrig[5] = { 18.,6.,1.,9.,16. };
1525 Float_t wtrig[5] = { .49,1.08,1.5,1.84,0.04 };
1526 Float_t dtrig = .0031463;
1527 //
1528 // bakelite
1529
1530 Float_t abak[3] = {12.01 , 1.01 , 16.};
1531 Float_t zbak[3] = {6. , 1. , 8.};
1532 Float_t wbak[3] = {6. , 6. , 1.};
1533 Float_t dbak = 1.4;
1534
1535 Float_t epsil, stmin, deemax, tmaxfd, stemax;
1536
1537 Int_t iSXFLD = gAlice->Field()->Integ();
1538 Float_t sXMGMX = gAlice->Field()->Max();
1539 //
1540 // --- Define the various materials for GEANT ---
1541 AliMaterial(9, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
1542 AliMaterial(10, "ALUMINIUM$", 26.98, 13., 2.7, 8.9, 37.2);
97ddb489 1543 // Air
1544 Float_t aAir[4]={12.0107,14.0067,15.9994,39.948};
1545 Float_t zAir[4]={6.,7.,8.,18.};
1546 Float_t wAir[4]={0.000124,0.755267,0.231781,0.012827};
1547 Float_t dAir = 1.20479E-3;
1548 AliMixture(15, "AIR$ ", aAir, zAir, dAir,4, wAir);
1549 // AliMaterial(15, "AIR$ ", 14.61, 7.3, .001205, 30423.24, 67500);
d1cd2474 1550 AliMixture(19, "Bakelite$", abak, zbak, dbak, -3, wbak);
1551 AliMixture(20, "ArC4H10 GAS$", ag, zg, dg, 3, wg);
1552 AliMixture(21, "TRIG GAS$", atrig, ztrig, dtrig, -5, wtrig);
1553 AliMixture(22, "ArCO2 80%$", ag1, zg1, dg1, 3, wg1);
1554 AliMixture(23, "Ar-freon $", atr1, ztr1, dtr1, 4, wtr1);
1555 AliMixture(24, "ArCO2 GAS$", agas, zgas, dgas, 3, wgas);
1556 // materials for slat:
1557 // Sensitive area: gas (already defined)
1558 // PCB: copper
1559 // insulating material and frame: vetronite
1560 // walls: carbon, rohacell, carbon
1561 Float_t aglass[5]={12.01, 28.09, 16., 10.8, 23.};
1562 Float_t zglass[5]={ 6., 14., 8., 5., 11.};
1563 Float_t wglass[5]={ 0.5, 0.105, 0.355, 0.03, 0.01};
1564 Float_t dglass=1.74;
1565
1566 // rohacell: C9 H13 N1 O2
1567 Float_t arohac[4] = {12.01, 1.01, 14.010, 16.};
1568 Float_t zrohac[4] = { 6., 1., 7., 8.};
1569 Float_t wrohac[4] = { 9., 13., 1., 2.};
1570 Float_t drohac = 0.03;
1571
1572 AliMaterial(31, "COPPER$", 63.54, 29., 8.96, 1.4, 0.);
1573 AliMixture(32, "Vetronite$",aglass, zglass, dglass, 5, wglass);
1574 AliMaterial(33, "Carbon$", 12.01, 6., 2.265, 18.8, 49.9);
1575 AliMixture(34, "Rohacell$", arohac, zrohac, drohac, -4, wrohac);
1576
1577
1578 epsil = .001; // Tracking precision,
1579 stemax = -1.; // Maximum displacement for multiple scat
1580 tmaxfd = -20.; // Maximum angle due to field deflection
1581 deemax = -.3; // Maximum fractional energy loss, DLS
1582 stmin = -.8;
1583 //
1584 // Air
1585 AliMedium(1, "AIR_CH_US ", 15, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1586 //
1587 // Aluminum
1588
1589 AliMedium(4, "ALU_CH_US ", 9, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1590 fMaxDestepAlu, epsil, stmin);
1591 AliMedium(5, "ALU_CH_US ", 10, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1592 fMaxDestepAlu, epsil, stmin);
1593 //
1594 // Ar-isoC4H10 gas
1595
1596 AliMedium(6, "AR_CH_US ", 20, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1597 fMaxDestepGas, epsil, stmin);
1598//
1599 // Ar-Isobuthane-Forane-SF6 gas
1600
1601 AliMedium(7, "GAS_CH_TRIGGER ", 21, 1, iSXFLD, sXMGMX, tmaxfd, stemax, deemax, epsil, stmin);
1602
1603 AliMedium(8, "BAKE_CH_TRIGGER ", 19, 0, iSXFLD, sXMGMX, tmaxfd, fMaxStepAlu,
1604 fMaxDestepAlu, epsil, stmin);
1605
1606 AliMedium(9, "ARG_CO2 ", 22, 1, iSXFLD, sXMGMX, tmaxfd, fMaxStepGas,
1607 fMaxDestepAlu, epsil, stmin);
1608 // tracking media for slats: check the parameters!!
1609 AliMedium(11, "PCB_COPPER ", 31, 0, iSXFLD, sXMGMX, tmaxfd,
1610 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1611 AliMedium(12, "VETRONITE ", 32, 0, iSXFLD, sXMGMX, tmaxfd,
1612 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1613 AliMedium(13, "CARBON ", 33, 0, iSXFLD, sXMGMX, tmaxfd,
1614 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1615 AliMedium(14, "Rohacell ", 34, 0, iSXFLD, sXMGMX, tmaxfd,
1616 fMaxStepAlu, fMaxDestepAlu, epsil, stmin);
1617}
1618
1619//___________________________________________
1620
1621void AliMUONv3::Init()
1622{
1623 //
1624 // Initialize Tracking Chambers
1625 //
1626
8c343c7c 1627 AliDebug(0,"Start Init for version 1 - CPC chamber type");
d1cd2474 1628 Int_t i;
1629 for (i=0; i<AliMUONConstants::NCh(); i++) {
1630 ( (AliMUONChamber*) (*fChambers)[i])->Init();
1631 }
1632
1633 //
1634 // Set the chamber (sensitive region) GEANT identifier
1635 ((AliMUONChamber*)(*fChambers)[0])->GetGeometry()->SetSensitiveVolume("S01G");
1636 ((AliMUONChamber*)(*fChambers)[1])->GetGeometry()->SetSensitiveVolume("S02G");
1637
1638 ((AliMUONChamber*)(*fChambers)[2])->GetGeometry()->SetSensitiveVolume("S03G");
1639 ((AliMUONChamber*)(*fChambers)[3])->GetGeometry()->SetSensitiveVolume("S04G");
1640
1641 ((AliMUONChamber*)(*fChambers)[4])->GetGeometry()->SetSensitiveVolume("S05G");
1642 ((AliMUONChamber*)(*fChambers)[5])->GetGeometry()->SetSensitiveVolume("S06G");
1643
1644 ((AliMUONChamber*)(*fChambers)[6])->GetGeometry()->SetSensitiveVolume("S07G");
1645 ((AliMUONChamber*)(*fChambers)[7])->GetGeometry()->SetSensitiveVolume("S08G");
1646
1647 ((AliMUONChamber*)(*fChambers)[8])->GetGeometry()->SetSensitiveVolume("S09G");
1648 ((AliMUONChamber*)(*fChambers)[9])->GetGeometry()->SetSensitiveVolume("S10G");
1649
1650 ((AliMUONChamber*)(*fChambers)[10])->GetGeometry()->SetSensitiveVolume("SG1A");
1651 ((AliMUONChamber*)(*fChambers)[11])->GetGeometry()->SetSensitiveVolume("SG2A");
1652 ((AliMUONChamber*)(*fChambers)[12])->GetGeometry()->SetSensitiveVolume("SG3A");
1653 ((AliMUONChamber*)(*fChambers)[13])->GetGeometry()->SetSensitiveVolume("SG4A");
1654
8c343c7c 1655 AliDebug(0,"Finished Init for version 1 - CPC chamber type");
d1cd2474 1656 //cp
8c343c7c 1657 AliDebug(0,"Start Init for Trigger Circuits");
d1cd2474 1658 for (i=0; i<AliMUONConstants::NTriggerCircuit(); i++) {
1659 ( (AliMUONTriggerCircuit*) (*fTriggerCircuits)[i])->Init(i);
1660 }
8c343c7c 1661 AliDebug(0,"Finished Init for Trigger Circuits");
d1cd2474 1662 //cp
1663
1664}
1665
1666//_______________________________________________________________________________
1667Int_t AliMUONv3::GetChamberId(Int_t volId) const
1668{
1669// Check if the volume with specified volId is a sensitive volume (gas)
1670// of some chamber and returns the chamber number;
1671// if not sensitive volume - return 0.
1672// ---
1673
1674 for (Int_t i = 1; i <= AliMUONConstants::NCh(); i++)
1675 if ( ((AliMUONChamber*)(*fChambers)[i-1])->IsSensId(volId) ) return i;
1676
1677 return 0;
1678}
1679//_______________________________________________________________________________
1680void AliMUONv3::StepManager()
1681{
1682 // Stepmanager for the chambers
1683
1684 if (fStepManagerVersionOld) {
1685 StepManagerOld();
1686 return;
1687 }
1688
1689 // Only charged tracks
1690 if( !(gMC->TrackCharge()) ) return;
1691 // Only charged tracks
1692
1693 // Only gas gap inside chamber
1694 // Tag chambers and record hits when track enters
1695 Int_t idvol=-1;
1696 Int_t iChamber=0;
1697 Int_t id=0;
1698 Int_t copy;
1699 const Float_t kBig = 1.e10;
1700
1701 id=gMC->CurrentVolID(copy);
1702 iChamber = GetChamberId(id);
1703 idvol=GetChamberId(id)-1;
1704
1705 if (idvol == -1) return;
1706
1707 if( gMC->IsTrackEntering() ) {
1708 Float_t theta = fTrackMomentum.Theta();
1709 if ((TMath::Pi()-theta)*kRaddeg>=15.) gMC->SetMaxStep(fStepMaxInActiveGas); // We use Pi-theta because z is negative
1710 }
1711
1712// if (GetDebug()) {
1713// Float_t z = ( (AliMUONChamber*)(*fChambers)[idvol])->Z() ;
1714// Info("StepManager Step","Active volume found %d chamber %d Z chamber is %f ",idvol,iChamber, z);
1715// }
1716 // Particule id and mass,
1717 Int_t ipart = gMC->TrackPid();
1718 Float_t mass = gMC->TrackMass();
1719
1720 fDestepSum[idvol]+=gMC->Edep();
1721 // Get current particle id (ipart), track position (pos) and momentum (mom)
1722 if ( fStepSum[idvol]==0.0 ) gMC->TrackMomentum(fTrackMomentum);
1723 fStepSum[idvol]+=gMC->TrackStep();
1724
1725// if (GetDebug()) {
1726// Info("StepManager Step","iChamber %d, Particle %d, theta %f phi %f mass %f StepSum %f eloss %g",
1727// iChamber,ipart, fTrackMomentum.Theta()*kRaddeg, fTrackMomentum.Phi()*kRaddeg, mass, fStepSum[idvol], gMC->Edep());
1728// Info("StepManager Step","Track Momentum %f %f %f", fTrackMomentum.X(), fTrackMomentum.Y(), fTrackMomentum.Z()) ;
1729// gMC->TrackPosition(fTrackPosition);
1730// Info("StepManager Step","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1731// }
1732
1733 // Track left chamber or StepSum larger than fStepMaxInActiveGas
1734 if ( gMC->IsTrackExiting() ||
1735 gMC->IsTrackStop() ||
1736 gMC->IsTrackDisappeared()||
1737 (fStepSum[idvol]>fStepMaxInActiveGas) ) {
1738
1739 if ( gMC->IsTrackExiting() ||
1740 gMC->IsTrackStop() ||
1741 gMC->IsTrackDisappeared() ) gMC->SetMaxStep(kBig);
1742
1743 gMC->TrackPosition(fTrackPosition);
1744 Float_t theta = fTrackMomentum.Theta();
1745 Float_t phi = fTrackMomentum.Phi();
1746
1747 TLorentzVector backToWire( fStepSum[idvol]/2.*sin(theta)*cos(phi),
1748 fStepSum[idvol]/2.*sin(theta)*sin(phi),
1749 fStepSum[idvol]/2.*cos(theta),0.0 );
1750 // if (GetDebug())
1751 // Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1752 // if (GetDebug())
1753 // Info("StepManager Exit ","Track backToWire %f %f %f",backToWire.X(),backToWire.Y(),backToWire.Z()) ;
1754 fTrackPosition-=backToWire;
1755
1756 //-------------- Angle effect
1757 // Ratio between energy loss of particle and Mip as a function of BetaGamma of particle (Energy/Mass)
1758
30178c30 1759 Float_t betaxGamma = fTrackMomentum.P()/mass;// pc/mc2
d1cd2474 1760 Float_t sigmaEffect10degrees;
1761 Float_t sigmaEffectThetadegrees;
1762 Float_t eLossParticleELossMip;
1763 Float_t yAngleEffect=0.;
1764 Float_t thetawires = TMath::Abs( TMath::ASin( TMath::Sin(TMath::Pi()-theta) * TMath::Sin(phi) ) );// We use Pi-theta because z is negative
1765
1766
1767 if (fAngleEffect){
30178c30 1768 if ( (betaxGamma >3.2) && (thetawires*kRaddeg<=15.) ) {
1769 betaxGamma=TMath::Log(betaxGamma);
1770 eLossParticleELossMip = fElossRatio->Eval(betaxGamma);
d1cd2474 1771 // 10 degrees is a reference for a model (arbitrary)
1772 sigmaEffect10degrees=fAngleEffect10->Eval(eLossParticleELossMip);// in micrometers
1773 // Angle with respect to the wires assuming that chambers are perpendicular to the z axis.
1774 sigmaEffectThetadegrees = sigmaEffect10degrees/fAngleEffectNorma->Eval(thetawires*kRaddeg); // For 5mm gap
1775 if ( (iChamber==1) || (iChamber==2) )
1776 sigmaEffectThetadegrees/=(1.09833e+00+1.70000e-02*(thetawires*kRaddeg)); // The gap is different (4mm)
1777 yAngleEffect=1.e-04*gRandom->Gaus(0,sigmaEffectThetadegrees); // Error due to the angle effect in cm
1778 }
1779 }
1780
1781 // One hit per chamber
1782 GetMUONData()->AddHit(fIshunt, gAlice->GetMCApp()->GetCurrentTrackNumber(), iChamber, ipart,
1783 fTrackPosition.X(), fTrackPosition.Y()+yAngleEffect, fTrackPosition.Z(), 0.0,
1784 fTrackMomentum.P(),theta, phi, fStepSum[idvol], fDestepSum[idvol],
1785 fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z());
1786// if (GetDebug()){
1787// Info("StepManager Exit","Particle exiting from chamber %d",iChamber);
1788// Info("StepManager Exit","StepSum %f eloss geant %g ",fStepSum[idvol],fDestepSum[idvol]);
1789// Info("StepManager Exit","Track Position %f %f %f",fTrackPosition.X(),fTrackPosition.Y(),fTrackPosition.Z()) ;
1790// }
1791 fStepSum[idvol] =0; // Reset for the next event
1792 fDestepSum[idvol]=0; // Reset for the next event
1793 }
1794}
1795
1796//__________________________________________
1797void AliMUONv3::StepManagerOld()
1798{
1799 // Old Stepmanager for the chambers
1800 Int_t copy, id;
1801 static Int_t idvol;
1802 static Int_t vol[2];
1803 Int_t ipart;
1804 TLorentzVector pos;
1805 TLorentzVector mom;
1806 Float_t theta,phi;
1807 Float_t destep, step;
1808
1809 static Float_t sstep;
1810 static Float_t eloss, eloss2, xhit, yhit, zhit, tof, tlength;
1811 const Float_t kBig = 1.e10;
1812 static Float_t hits[15];
1813
1814 TClonesArray &lhits = *fHits;
1815
1816 //
1817 //
1818 // Only charged tracks
1819 if( !(gMC->TrackCharge()) ) return;
1820 //
1821 // Only gas gap inside chamber
1822 // Tag chambers and record hits when track enters
1823 id=gMC->CurrentVolID(copy);
1824 vol[0] = GetChamberId(id);
1825 idvol = vol[0] -1;
1826
1827 if (idvol == -1) return;
1828
1829 //
1830 // Get current particle id (ipart), track position (pos) and momentum (mom)
1831 gMC->TrackPosition(pos);
1832 gMC->TrackMomentum(mom);
1833
1834 ipart = gMC->TrackPid();
1835
1836 //
1837 // momentum loss and steplength in last step
1838 destep = gMC->Edep();
1839 step = gMC->TrackStep();
1840 // cout<<"------------"<<step<<endl;
1841 //
1842 // record hits when track enters ...
1843 if( gMC->IsTrackEntering()) {
1844
1845 gMC->SetMaxStep(fMaxStepGas);
1846 Double_t tc = mom[0]*mom[0]+mom[1]*mom[1];
1847 Double_t rt = TMath::Sqrt(tc);
1848 Double_t pmom = TMath::Sqrt(tc+mom[2]*mom[2]);
1849 Double_t tx = mom[0]/pmom;
1850 Double_t ty = mom[1]/pmom;
1851 Double_t tz = mom[2]/pmom;
1852 Double_t s = ((AliMUONChamber*)(*fChambers)[idvol])
1853 ->ResponseModel()
1854 ->Pitch()/tz;
1855 theta = Float_t(TMath::ATan2(rt,Double_t(mom[2])))*kRaddeg;
1856 phi = Float_t(TMath::ATan2(Double_t(mom[1]),Double_t(mom[0])))*kRaddeg;
1857 hits[0] = Float_t(ipart); // Geant3 particle type
1858 hits[1] = pos[0]+s*tx; // X-position for hit
1859 hits[2] = pos[1]+s*ty; // Y-position for hit
1860 hits[3] = pos[2]+s*tz; // Z-position for hit
1861 hits[4] = theta; // theta angle of incidence
1862 hits[5] = phi; // phi angle of incidence
1863 hits[8] = 0;//PadHits does not exist anymore (Float_t) fNPadHits; // first padhit
1864 hits[9] = -1; // last pad hit
1865 hits[10] = mom[3]; // hit momentum P
1866 hits[11] = mom[0]; // Px
1867 hits[12] = mom[1]; // Py
1868 hits[13] = mom[2]; // Pz
1869 tof=gMC->TrackTime();
1870 hits[14] = tof; // Time of flight
1871 tlength = 0;
1872 eloss = 0;
1873 eloss2 = 0;
1874 sstep=0;
1875 xhit = pos[0];
1876 yhit = pos[1];
1877 zhit = pos[2];
1878 Chamber(idvol).ChargeCorrelationInit();
1879 // Only if not trigger chamber
1880
1881// printf("---------------------------\n");
1882// printf(">>>> Y = %f \n",hits[2]);
1883// printf("---------------------------\n");
1884
1885
1886
1887 // if(idvol < AliMUONConstants::NTrackingCh()) {
1888// //
1889// // Initialize hit position (cursor) in the segmentation model
1890// ((AliMUONChamber*) (*fChambers)[idvol])
1891// ->SigGenInit(pos[0], pos[1], pos[2]);
1892// } else {
1893// //geant3->Gpcxyz();
1894// //printf("In the Trigger Chamber #%d\n",idvol-9);
1895// }
1896 }
1897 eloss2+=destep;
1898 sstep+=step;
1899
1900 // cout<<sstep<<endl;
1901
1902 //
1903 // Calculate the charge induced on a pad (disintegration) in case
1904 //
1905 // Mip left chamber ...
1906 if( gMC->IsTrackExiting() || gMC->IsTrackStop() || gMC->IsTrackDisappeared()){
1907 gMC->SetMaxStep(kBig);
1908 eloss += destep;
1909 tlength += step;
1910
1911 Float_t x0,y0,z0;
1912 Float_t localPos[3];
1913 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1914 gMC->Gmtod(globalPos,localPos,1);
1915
1916 if(idvol < AliMUONConstants::NTrackingCh()) {
1917// tracking chambers
1918 x0 = 0.5*(xhit+pos[0]);
1919 y0 = 0.5*(yhit+pos[1]);
1920 z0 = 0.5*(zhit+pos[2]);
1921 } else {
1922// trigger chambers
1923 x0 = xhit;
1924 y0 = yhit;
1925 z0 = 0.;
1926 }
1927
1928
1929 // if (eloss >0) MakePadHits(x0,y0,z0,eloss,tof,idvol);
1930
1931
1932 hits[6] = tlength; // track length
1933 hits[7] = eloss2; // de/dx energy loss
1934
1935
1936 // if (fNPadHits > (Int_t)hits[8]) {
1937 // hits[8] = hits[8]+1;
1938 // hits[9] = 0: // PadHits does not exist anymore (Float_t) fNPadHits;
1939 //}
1940//
1941// new hit
1942
1943 new(lhits[fNhits++])
1944 AliMUONHit(fIshunt, gAlice->GetMCApp()->GetCurrentTrackNumber(), vol,hits);
1945 eloss = 0;
1946 //
1947 // Check additional signal generation conditions
1948 // defined by the segmentation
1949 // model (boundary crossing conditions)
1950 // only for tracking chambers
1951 } else if
1952 ((idvol < AliMUONConstants::NTrackingCh()) &&
1953 ((AliMUONChamber*) (*fChambers)[idvol])->SigGenCond(pos[0], pos[1], pos[2]))
1954 {
1955 ((AliMUONChamber*) (*fChambers)[idvol])
1956 ->SigGenInit(pos[0], pos[1], pos[2]);
1957
1958 Float_t localPos[3];
1959 Float_t globalPos[3] = {pos[0], pos[1], pos[2]};
1960 gMC->Gmtod(globalPos,localPos,1);
1961
1962 eloss += destep;
1963
1964 // if (eloss > 0 && idvol < AliMUONConstants::NTrackingCh())
1965 // MakePadHits(0.5*(xhit+pos[0]),0.5*(yhit+pos[1]),pos[2],eloss,tof,idvol);
1966 xhit = pos[0];
1967 yhit = pos[1];
1968 zhit = pos[2];
1969 eloss = 0;
1970 tlength += step ;
1971 //
1972 // nothing special happened, add up energy loss
1973 } else {
1974 eloss += destep;
1975 tlength += step ;
1976 }
1977}
1978
1979