]> git.uio.no Git - u/mrichter/AliRoot.git/blame - MUON/MUONmassPlot_NewIO.C
Copy contructor and operator = (Christian)
[u/mrichter/AliRoot.git] / MUON / MUONmassPlot_NewIO.C
CommitLineData
61adb9bd 1// ROOT includes
2#include "TBranch.h"
3#include "TClonesArray.h"
4#include "TLorentzVector.h"
5#include "TFile.h"
6#include "TH1.h"
7#include "TParticle.h"
8#include "TTree.h"
9
10// STEER includes
11#include "AliRun.h"
12#include "AliRunLoader.h"
13#include "AliHeader.h"
14#include "AliLoader.h"
15#include "AliStack.h"
16
17// MUON includes
18#include "AliMUON.h"
19#include "AliMUONData.h"
20#include "AliMUONHit.h"
21#include "AliMUONConstants.h"
22#include "AliMUONDigit.h"
23#include "AliMUONRawCluster.h"
24#include "AliMUONGlobalTrigger.h"
25#include "AliMUONLocalTrigger.h"
26#include "AliMUONTrack.h"
27#include "AliMUONTrackParam.h"
28#include "AliESDMuonTrack.h"
29
30//
31// Macro MUONmassPlot.C for new I/O
32// Ch. Finck, Subatech, Jan. 2004
33//
34
35// macro to make invariant mass plots
36// for combinations of 2 muons with opposite charges,
37// from root file "MUON.tracks.root" containing the result of track reconstruction.
38// Histograms are stored on the "MUONmassPlot.root" file.
39// introducing TLorentzVector for parameter calculations (Pt, P,rap,etc...)
40// using Invariant Mass for rapidity.
41
42// Arguments:
43// FirstEvent (default 0)
44// LastEvent (default 0)
45// ResType (default 553)
46// 553 for Upsilon, anything else for J/Psi
47// Chi2Cut (default 100)
48// to keep only tracks with chi2 per d.o.f. < Chi2Cut
49// PtCutMin (default 1)
50// to keep only tracks with transverse momentum > PtCutMin
51// PtCutMax (default 10000)
52// to keep only tracks with transverse momentum < PtCutMax
53// massMin (default 9.17 for Upsilon)
54// & massMax (default 9.77 for Upsilon)
55// to calculate the reconstruction efficiency for resonances with invariant mass
56// massMin < mass < massMax.
57
58// Add parameters and histograms for analysis
59
60void MUONmassPlot(char* filename="galice.root", Int_t FirstEvent = 0, Int_t LastEvent = 0, Int_t ResType = 553,
61 Float_t Chi2Cut = 100., Float_t PtCutMin = 1., Float_t PtCutMax = 10000.,
62 Float_t massMin = 9.17,Float_t massMax = 9.77)
63{
64 cout << "MUONmassPlot " << endl;
65 cout << "FirstEvent " << FirstEvent << endl;
66 cout << "LastEvent " << LastEvent << endl;
67 cout << "ResType " << ResType << endl;
68 cout << "Chi2Cut " << Chi2Cut << endl;
69 cout << "PtCutMin " << PtCutMin << endl;
70 cout << "PtCutMax " << PtCutMax << endl;
71 cout << "massMin " << massMin << endl;
72 cout << "massMax " << massMax << endl;
73
74
75 //Reset ROOT and connect tree file
76 gROOT->Reset();
77
78
79 // File for histograms and histogram booking
80 TFile *histoFile = new TFile("MUONmassPlot.root", "RECREATE");
81 TH1F *hPtMuon = new TH1F("hPtMuon", "Muon Pt (GeV/c)", 100, 0., 20.);
82 TH1F *hPMuon = new TH1F("hPMuon", "Muon P (GeV/c)", 100, 0., 200.);
83 TH1F *hChi2PerDof = new TH1F("hChi2PerDof", "Muon track chi2/d.o.f.", 100, 0., 20.);
84 TH1F *hInvMassAll = new TH1F("hInvMassAll", "Mu+Mu- invariant mass (GeV/c2)", 480, 0., 12.);
85 TH1F *hInvMassRes;
86
87 if (ResType == 553) {
88 hInvMassRes = new TH1F("hInvMassRes", "Mu+Mu- invariant mass (GeV/c2) around Upsilon", 60, 8., 11.);
89 } else {
90 hInvMassRes = new TH1F("hInvMassRes", "Mu+Mu- invariant mass (GeV/c2) around J/Psi", 80, 0., 5.);
91 }
92
93 TH1F *hNumberOfTrack = new TH1F("hNumberOfTrack","nb of track /evt ",20,-0.5,19.5);
94 TH1F *hRapMuon = new TH1F("hRapMuon"," Muon Rapidity",50,-4.5,-2);
95 TH1F *hRapResonance = new TH1F("hRapResonance"," Resonance Rapidity",50,-4.5,-2);
96 TH1F *hPtResonance = new TH1F("hPtResonance", "Resonance Pt (GeV/c)", 100, 0., 20.);
97
98
99 // settings
100 Int_t EventInMass = 0;
101 Float_t muonMass = 0.105658389;
102// Float_t UpsilonMass = 9.46037;
103// Float_t JPsiMass = 3.097;
104
105 Double_t bendingSlope, nonBendingSlope, pYZ;
106 Double_t fPxRec1, fPyRec1, fPzRec1, fZRec1, fE1;
107 Double_t fPxRec2, fPyRec2, fPzRec2, fZRec2, fE2;
108 Int_t fCharge, fCharge2;
109
110 Int_t ntrackhits, nevents;
111 Double_t fitfmin;
112
113 TClonesArray * recTracksArray;
114 TLorentzVector fV1, fV2, fVtot;
115
116 // Creating Run Loader and openning file containing Hits
117 AliRunLoader * RunLoader = AliRunLoader::Open(filename,"MUONFolder","READ");
118 if (RunLoader == 0x0) {
119 printf(">>> Error : Error Opening %s file \n",filename);
120 return;
121 }
122
123 AliLoader * MUONLoader = RunLoader->GetLoader("MUONLoader");
124 MUONLoader->LoadTracks("READ");
125
126 // Creating MUON data container
127 AliMUONData muondata(MUONLoader,"MUON","MUON");
128
129 nevents = RunLoader->GetNumberOfEvents();
130
131 AliMUONTrack * rectrack;
132 AliMUONTrackParam *trackParam;
133
134 // Loop over events
135 for (Int_t ievent = FirstEvent; ievent <= TMath::Min(LastEvent, nevents - 1); ievent++) {
136
137 // get current event
138 RunLoader->GetEvent(ievent);
139
140 muondata.SetTreeAddress("RT");
141 muondata.GetRecTracks();
142 recTracksArray = muondata.RecTracks();
143
144 Int_t nrectracks = (Int_t) recTracksArray->GetEntriesFast(); //
145
146 printf("\n Nb of events analysed: %d\r",ievent);
147 // cout << " number of tracks: " << nrectracks <<endl;
148
149 // loop over all reconstructed tracks (also first track of combination)
150 for (Int_t irectracks = 0; irectracks < nrectracks; irectracks++) {
151
152 rectrack = (AliMUONTrack*) recTracksArray->At(irectracks);
153
154 trackParam = rectrack->GetTrackParamAtVertex();
155 bendingSlope = trackParam->GetBendingSlope();
156 nonBendingSlope = trackParam->GetNonBendingSlope();
157
158 pYZ = 1/TMath::Abs(trackParam->GetInverseBendingMomentum());
159 fPzRec1 = - pYZ / TMath::Sqrt(1.0 + bendingSlope * bendingSlope); // spectro. (z<0)
160 fPxRec1 = fPzRec1 * nonBendingSlope;
161 fPyRec1 = fPzRec1 * bendingSlope;
162 fZRec1 = trackParam->GetZ();
163 fCharge = Int_t(TMath::Sign(1., trackParam->GetInverseBendingMomentum()));
164
165 fE1 = TMath::Sqrt(muonMass * muonMass + fPxRec1 * fPxRec1 + fPyRec1 * fPyRec1 + fPzRec1 * fPzRec1);
166 fV1.SetPxPyPzE(fPxRec1, fPyRec1, fPzRec1, fE1);
167
168 ntrackhits = rectrack->GetNTrackHits();
169 fitfmin = rectrack->GetFitFMin();
170
171 // transverse momentum
172 Float_t pt1 = fV1.Pt();
173
174 // total momentum
175 Float_t p1 = fV1.P();
176
177 // Rapidity
178 Float_t rapMuon1 = fV1.Rapidity();
179
180 // chi2 per d.o.f.
181 Float_t ch1 = fitfmin / (2.0 * ntrackhits - 5);
182// printf(" px %f py %f pz %f NHits %d Norm.chi2 %f charge %d\n",
183// fPxRec1, fPyRec1, fPzRec1, ntrackhits, ch1, fCharge);
184
185 // condition for good track (Chi2Cut and PtCut)
186
187 if ((ch1 < Chi2Cut) && (pt1 > PtCutMin) && (pt1 < PtCutMax)) {
188
189 // fill histos hPtMuon and hChi2PerDof
190 hPtMuon->Fill(pt1);
191 hPMuon->Fill(p1);
192 hChi2PerDof->Fill(ch1);
193 hRapMuon->Fill(rapMuon1);
194
195 // loop over second track of combination
196 for (Int_t irectracks2 = irectracks + 1; irectracks2 < nrectracks; irectracks2++) {
197
198 rectrack = (AliMUONTrack*) recTracksArray->At(irectracks2);
199
200 trackParam = rectrack->GetTrackParamAtVertex();
201 bendingSlope = trackParam->GetBendingSlope();
202 nonBendingSlope = trackParam->GetNonBendingSlope();
203
204 pYZ = 1/TMath::Abs(trackParam->GetInverseBendingMomentum());
205 fPzRec2 = - pYZ / TMath::Sqrt(1.0 + bendingSlope * bendingSlope); // spectro. (z<0)
206 fPxRec2 = fPzRec2 * nonBendingSlope;
207 fPyRec2 = fPzRec2 * bendingSlope;
208 fZRec2 = trackParam->GetZ();
209 fCharge2 = Int_t(TMath::Sign(1., trackParam->GetInverseBendingMomentum()));
210
211 fE2 = TMath::Sqrt(muonMass * muonMass + fPxRec2 * fPxRec2 + fPyRec2 * fPyRec2 + fPzRec2 * fPzRec2);
212 fV2.SetPxPyPzE(fPxRec2, fPyRec2, fPzRec2, fE2);
213
214 ntrackhits = rectrack->GetNTrackHits();
215 fitfmin = rectrack->GetFitFMin();
216
217 // transverse momentum
218 Float_t pt2 = fV2.Pt();
219
220 // chi2 per d.o.f.
221 Float_t ch2 = fitfmin / (2.0 * ntrackhits - 5);
222
223 // condition for good track (Chi2Cut and PtCut)
224 if ((ch2 < Chi2Cut) && (pt2 > PtCutMin) && (pt2 < PtCutMax)) {
225
226 // condition for opposite charges
227 if ((fCharge * fCharge2) == -1) {
228
229 // invariant mass
230 fVtot = fV1 + fV2;
231 Float_t invMass = fVtot.M();
232
233 // fill histos hInvMassAll and hInvMassRes
234 hInvMassAll->Fill(invMass);
235 hInvMassRes->Fill(invMass);
236
237 if (invMass > massMin && invMass < massMax) {
238 EventInMass++;
239 hRapResonance->Fill(fVtot.Rapidity());
240 hPtResonance->Fill(fVtot.Pt());
241 }
242
243 } // if (fCharge * fCharge2) == -1)
244 } // if ((ch2 < Chi2Cut) && (pt2 > PtCutMin) && (pt2 < PtCutMax))
245 } // for (Int_t irectracks2 = irectracks + 1; irectracks2 < irectracks; irectracks2++)
246 } // if (ch1 < Chi2Cut) && (pt1 > PtCutMin)&& (pt1 < PtCutMax) )
247 } // for (Int_t irectracks = 0; irectracks < nrectracks; irectracks++)
248
249 hNumberOfTrack->Fill(nrectracks);
250 } // for (Int_t ievent = FirstEvent;
251
252 histoFile->Write();
253 histoFile->Close();
254
255 cout << "MUONmassPlot " << endl;
256 cout << "FirstEvent " << FirstEvent << endl;
257 cout << "LastEvent " << LastEvent << endl;
258 cout << "ResType " << ResType << endl;
259 cout << "Chi2Cut " << Chi2Cut << endl;
260 cout << "PtCutMin " << PtCutMin << endl;
261 cout << "PtCutMax " << PtCutMax << endl;
262 cout << "massMin " << massMin << endl;
263 cout << "massMax " << massMax << endl;
264 cout << "EventInMass " << EventInMass << endl;
265}
266