]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PHOS/AliPHOSv1.cxx
Coding rule violations corrected.
[u/mrichter/AliRoot.git] / PHOS / AliPHOSv1.cxx
CommitLineData
7587f5a5 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b2a60966 16/* $Id$ */
5f20d3fb 17
7587f5a5 18//_________________________________________________________________________
5f20d3fb 19// Implementation version v1 of PHOS Manager class
a3dfe79c 20//---
a3dfe79c 21//---
22// Layout EMC + CPV has name IHEP:
ed4205d8 23// Produces hits for CPV, cumulated hits
24//---
ed4205d8 25//---
5f20d3fb 26//*-- Author: Yves Schutz (SUBATECH)
b2a60966 27
7587f5a5 28
29// --- ROOT system ---
88cb7938 30
31#include <TBRIK.h>
32#include <TNode.h>
33#include <TParticle.h>
34#include <TRandom.h>
35#include <TTree.h>
36#include <TVirtualMC.h>
7587f5a5 37
38// --- Standard library ---
39
88cb7938 40#include <string.h>
41#include <stdlib.h>
42
7587f5a5 43// --- AliRoot header files ---
44
88cb7938 45#include "AliConst.h"
97cee223 46#include "AliPHOSCPVDigit.h"
97cee223 47#include "AliPHOSGeometry.h"
88cb7938 48#include "AliPHOSHit.h"
7b326aac 49#include "AliPHOSQAFloatCheckable.h"
88cb7938 50#include "AliPHOSQAIntCheckable.h"
7b326aac 51#include "AliPHOSQAMeanChecker.h"
88cb7938 52#include "AliPHOSv1.h"
53#include "AliRun.h"
5d12ce38 54#include "AliMC.h"
7587f5a5 55
56ClassImp(AliPHOSv1)
57
bea63bea 58//____________________________________________________________________________
02ab1add 59AliPHOSv1::AliPHOSv1():
60AliPHOSv0()
bea63bea 61{
735e58f1 62 // default ctor: initialze data memebers
63 fQAHitsMul = 0 ;
64 fQAHitsMulB = 0 ;
65 fQATotEner = 0 ;
66 fQATotEnerB = 0 ;
9688c1dd 67
68 fLightYieldMean = 0. ;
69 fIntrinsicPINEfficiency = 0. ;
70 fLightYieldAttenuation = 0. ;
71 fRecalibrationFactor = 0. ;
72 fElectronsPerGeV = 0. ;
27f33ee5 73 fAPDGain = 0. ;
74 fLightFactor = 0. ;
75 fAPDFactor = 0. ;
9688c1dd 76
bea63bea 77}
78
7587f5a5 79//____________________________________________________________________________
80AliPHOSv1::AliPHOSv1(const char *name, const char *title):
7b326aac 81 AliPHOSv0(name,title)
7587f5a5 82{
5f20d3fb 83 //
ed4205d8 84 // We store hits :
5f20d3fb 85 // - fHits (the "normal" one), which retains the hits associated with
86 // the current primary particle being tracked
87 // (this array is reset after each primary has been tracked).
88 //
fa412d9b 89
037cc66d 90
5f20d3fb 91
92 // We do not want to save in TreeH the raw hits
93 // But save the cumulated hits instead (need to create the branch myself)
94 // It is put in the Digit Tree because the TreeH is filled after each primary
7b326aac 95 // and the TreeD at the end of the event (branch is set in FinishEvent() ).
5f20d3fb 96
ed4205d8 97 fHits= new TClonesArray("AliPHOSHit",1000) ;
5d12ce38 98 gAlice->GetMCApp()->AddHitList(fHits) ;
5f20d3fb 99
ed4205d8 100 fNhits = 0 ;
5f20d3fb 101
f6d1e5e1 102 fIshunt = 2 ; // All hits are associated with primary particles
7b326aac 103
9688c1dd 104 //Photoelectron statistics:
105 // The light yield is a poissonian distribution of the number of
106 // photons created in the PbWo4 crystal, calculated using following formula
107 // NumberOfPhotons = EnergyLost * LightYieldMean* APDEfficiency *
108 // exp (-LightYieldAttenuation * DistanceToPINdiodeFromTheHit);
109 // LightYieldMean is parameter calculated to be over 47000 photons per GeV
110 // APDEfficiency is 0.02655
111 // k_0 is 0.0045 from Valery Antonenko
112 // The number of electrons created in the APD is
113 // NumberOfElectrons = APDGain * LightYield
114 // The APD Gain is 300
115 fLightYieldMean = 47000;
116 fIntrinsicPINEfficiency = 0.02655 ; //APD= 0.1875/0.1271 * 0.018 (PIN)
27f33ee5 117 fLightYieldAttenuation = 0.0045 ;
118 fRecalibrationFactor = 13.418/ fLightYieldMean ;
119 fElectronsPerGeV = 2.77e+8 ;
120 fAPDGain = 300. ;
121 fLightFactor = fLightYieldMean * fIntrinsicPINEfficiency ;
122 fAPDFactor = (fRecalibrationFactor/100.) * fAPDGain ;
123
9688c1dd 124
fa7cce36 125 Int_t nb = GetGeometry()->GetNModules() ;
fa412d9b 126
7b326aac 127 // create checkables
128 fQAHitsMul = new AliPHOSQAIntCheckable("HitsM") ;
129 fQATotEner = new AliPHOSQAFloatCheckable("TotEn") ;
9bc230c0 130 fQAHitsMulB = new TClonesArray("AliPHOSQAIntCheckable",nb) ;
131 fQAHitsMulB->SetOwner() ;
7b326aac 132 fQATotEnerB = new TClonesArray("AliPHOSQAFloatCheckable", nb);
9bc230c0 133 fQATotEnerB->SetOwner() ;
7b326aac 134 char tempo[20] ;
135 Int_t i ;
136 for ( i = 0 ; i < nb ; i++ ) {
137 sprintf(tempo, "HitsMB%d", i+1) ;
138 new( (*fQAHitsMulB)[i]) AliPHOSQAIntCheckable(tempo) ;
139 sprintf(tempo, "TotEnB%d", i+1) ;
140 new( (*fQATotEnerB)[i] ) AliPHOSQAFloatCheckable(tempo) ;
141 }
142
7b326aac 143 AliPHOSQAMeanChecker * hmc = new AliPHOSQAMeanChecker("HitsMul", 100. ,25.) ;
144 AliPHOSQAMeanChecker * emc = new AliPHOSQAMeanChecker("TotEner", 10. ,5.) ;
145 AliPHOSQAMeanChecker * bhmc = new AliPHOSQAMeanChecker("HitsMulB", 100. ,5.) ;
146 AliPHOSQAMeanChecker * bemc = new AliPHOSQAMeanChecker("TotEnerB", 2. ,.5) ;
147
148 // associate checkables and checkers
149 fQAHitsMul->AddChecker(hmc) ;
150 fQATotEner->AddChecker(emc) ;
151 for ( i = 0 ; i < nb ; i++ ) {
29b077b5 152 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]))->AddChecker(bhmc) ;
153 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]))->AddChecker(bemc) ;
7b326aac 154 }
7b7c1533 155
5f20d3fb 156}
157
7587f5a5 158//____________________________________________________________________________
bea63bea 159AliPHOSv1::~AliPHOSv1()
b2a60966 160{
bea63bea 161 // dtor
88cb7938 162 if ( fHits) {
ed4205d8 163 fHits->Delete() ;
164 delete fHits ;
165 fHits = 0 ;
8dfa469d 166 }
9bc230c0 167
9bc230c0 168 if ( fQAHitsMulB ) {
169 fQAHitsMulB->Delete() ;
170 delete fQAHitsMulB ;
171 }
172
173 if ( fQATotEnerB ) {
174 fQATotEnerB->Delete() ;
175 delete fQATotEnerB ;
176 }
177
7587f5a5 178}
179
7587f5a5 180//____________________________________________________________________________
b37750a6 181void AliPHOSv1::AddHit(Int_t shunt, Int_t primary, Int_t tracknumber, Int_t Id, Float_t * hits)
bea63bea 182{
183 // Add a hit to the hit list.
f6d1e5e1 184 // A PHOS hit is the sum of all hits in a single crystal from one primary and within some time gate
bea63bea 185
5f20d3fb 186 Int_t hitCounter ;
bea63bea 187 AliPHOSHit *newHit ;
5f20d3fb 188 AliPHOSHit *curHit ;
189 Bool_t deja = kFALSE ;
fa7cce36 190 AliPHOSGeometry * geom = GetGeometry() ;
bea63bea 191
b37750a6 192 newHit = new AliPHOSHit(shunt, primary, tracknumber, Id, hits) ;
bea63bea 193
7854a24a 194 for ( hitCounter = fNhits-1 ; hitCounter >= 0 && !deja ; hitCounter-- ) {
29b077b5 195 curHit = dynamic_cast<AliPHOSHit*>((*fHits)[hitCounter]) ;
9688c1dd 196 if(curHit->GetPrimary() != primary) break ;
197 // We add hits with the same primary, while GEANT treats primaries succesively
ed4205d8 198 if( *curHit == *newHit ) {
f15a01eb 199 *curHit + *newHit ;
ed4205d8 200 deja = kTRUE ;
5f20d3fb 201 }
202 }
203
204 if ( !deja ) {
ed4205d8 205 new((*fHits)[fNhits]) AliPHOSHit(*newHit) ;
7b326aac 206 // get the block Id number
9688c1dd 207 Int_t relid[4] ;
fa7cce36 208 geom->AbsToRelNumbering(Id, relid) ;
7b326aac 209 // and fill the relevant QA checkable (only if in PbW04)
210 if ( relid[1] == 0 ) {
211 fQAHitsMul->Update(1) ;
29b077b5 212 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[relid[0]-1]))->Update(1) ;
7b326aac 213 }
ed4205d8 214 fNhits++ ;
5f20d3fb 215 }
216
bea63bea 217 delete newHit;
bea63bea 218}
219
7b326aac 220//____________________________________________________________________________
221void AliPHOSv1::FinishPrimary()
222{
223 // called at the end of each track (primary) by AliRun
224 // hits are reset for each new track
225 // accumulate the total hit-multiplicity
226// if ( fQAHitsMul )
227// fQAHitsMul->Update( fHits->GetEntriesFast() ) ;
228
229}
230
231//____________________________________________________________________________
232void AliPHOSv1::FinishEvent()
233{
234 // called at the end of each event by AliRun
235 // accumulate the hit-multiplicity and total energy per block
236 // if the values have been updated check it
88cb7938 237
7b326aac 238
239 if ( fQATotEner ) {
240 if ( fQATotEner->HasChanged() ) {
241 fQATotEner->CheckMe() ;
242 fQATotEner->Reset() ;
243 }
244 }
245
246 Int_t i ;
247 if ( fQAHitsMulB && fQATotEnerB ) {
fa7cce36 248 for (i = 0 ; i < GetGeometry()->GetNModules() ; i++) {
29b077b5 249 AliPHOSQAIntCheckable * ci = static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]) ;
250 AliPHOSQAFloatCheckable* cf = static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]) ;
7b326aac 251 if ( ci->HasChanged() ) {
252 ci->CheckMe() ;
253 ci->Reset() ;
254 }
255 if ( cf->HasChanged() ) {
256 cf->CheckMe() ;
257 cf->Reset() ;
258 }
259 }
260 }
261
262 // check the total multiplicity
263
264 if ( fQAHitsMul ) {
265 if ( fQAHitsMul->HasChanged() ) {
266 fQAHitsMul->CheckMe() ;
267 fQAHitsMul->Reset() ;
268 }
269 }
88cb7938 270
271 AliDetector::FinishEvent();
7b326aac 272}
5f20d3fb 273//____________________________________________________________________________
7587f5a5 274void AliPHOSv1::StepManager(void)
275{
9688c1dd 276 // Accumulates hits as long as the track stays in a single crystal or CPV gas Cell
b2a60966 277
4f5bbbd4 278 Int_t relid[4] ; // (box, layer, row, column) indices
279 Int_t absid ; // absolute cell ID number
471193a8 280 Float_t xyzte[5]={-1000.,-1000.,-1000.,0.,0.} ; // position wrt MRS, time and energy deposited
4f5bbbd4 281 TLorentzVector pos ; // Lorentz vector of the track current position
fa412d9b 282 Int_t copy ;
7587f5a5 283
5d12ce38 284 Int_t tracknumber = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
fa7cce36 285 TString name = GetGeometry()->GetName() ;
037cc66d 286
9688c1dd 287 Int_t moduleNumber ;
288
289 if( gMC->CurrentVolID(copy) == gMC->VolId("PCPQ") &&
290 (gMC->IsTrackEntering() ) &&
291 gMC->TrackCharge() != 0) {
f6d1e5e1 292
9688c1dd 293 gMC -> TrackPosition(pos);
f6d1e5e1 294
9688c1dd 295 Float_t xyzm[3], xyzd[3] ;
296 Int_t i;
297 for (i=0; i<3; i++) xyzm[i] = pos[i];
298 gMC -> Gmtod (xyzm, xyzd, 1); // transform coordinate from master to daughter system
299
e3daf02c 300 Float_t xyd[3]={0,0,0} ; //local position of the entering
9688c1dd 301 xyd[0] = xyzd[0];
53e03a1e 302 xyd[1] =-xyzd[2];
303 xyd[2] =-xyzd[1];
f6d1e5e1 304
9688c1dd 305 // Current momentum of the hit's track in the local ref. system
306 TLorentzVector pmom ; //momentum of the particle initiated hit
307 gMC -> TrackMomentum(pmom);
308 Float_t pm[3], pd[3];
309 for (i=0; i<3; i++)
310 pm[i] = pmom[i];
f6d1e5e1 311
9688c1dd 312 gMC -> Gmtod (pm, pd, 2); // transform 3-momentum from master to daughter system
313 pmom[0] = pd[0];
cf75bc19 314 pmom[1] =-pd[1];
315 pmom[2] =-pd[2];
f6d1e5e1 316
9688c1dd 317 // Digitize the current CPV hit:
318
319 // 1. find pad response and
320 gMC->CurrentVolOffID(3,moduleNumber);
321 moduleNumber--;
322
323 TClonesArray *cpvDigits = new TClonesArray("AliPHOSCPVDigit",0); // array of digits for current hit
90cceaf6 324 CPVDigitize(pmom,xyd,cpvDigits);
fa412d9b 325
9688c1dd 326 Float_t xmean = 0;
327 Float_t zmean = 0;
328 Float_t qsum = 0;
329 Int_t idigit,ndigits;
330
331 // 2. go through the current digit list and sum digits in pads
332
333 ndigits = cpvDigits->GetEntriesFast();
334 for (idigit=0; idigit<ndigits-1; idigit++) {
29b077b5 335 AliPHOSCPVDigit *cpvDigit1 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 336 Float_t x1 = cpvDigit1->GetXpad() ;
337 Float_t z1 = cpvDigit1->GetYpad() ;
338 for (Int_t jdigit=idigit+1; jdigit<ndigits; jdigit++) {
29b077b5 339 AliPHOSCPVDigit *cpvDigit2 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(jdigit));
9688c1dd 340 Float_t x2 = cpvDigit2->GetXpad() ;
341 Float_t z2 = cpvDigit2->GetYpad() ;
342 if (x1==x2 && z1==z2) {
343 Float_t qsum = cpvDigit1->GetQpad() + cpvDigit2->GetQpad() ;
344 cpvDigit2->SetQpad(qsum) ;
345 cpvDigits->RemoveAt(idigit) ;
fa412d9b 346 }
347 }
9688c1dd 348 }
349 cpvDigits->Compress() ;
350
351 // 3. add digits to temporary hit list fTmpHits
352
353 ndigits = cpvDigits->GetEntriesFast();
354 for (idigit=0; idigit<ndigits; idigit++) {
29b077b5 355 AliPHOSCPVDigit *cpvDigit = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 356 relid[0] = moduleNumber + 1 ; // CPV (or PHOS) module number
357 relid[1] =-1 ; // means CPV
358 relid[2] = cpvDigit->GetXpad() ; // column number of a pad
359 relid[3] = cpvDigit->GetYpad() ; // row number of a pad
360
361 // get the absolute Id number
362 GetGeometry()->RelToAbsNumbering(relid, absid) ;
363
364 // add current digit to the temporary hit list
365
471193a8 366 xyzte[3] = gMC->TrackTime() ;
367 xyzte[4] = cpvDigit->GetQpad() ; // amplitude in a pad
5a49626b 368 AddHit(fIshunt, -1, tracknumber, absid, xyzte); // -1: No need in primary for CPV
9688c1dd 369
370 if (cpvDigit->GetQpad() > 0.02) {
371 xmean += cpvDigit->GetQpad() * (cpvDigit->GetXpad() + 0.5);
372 zmean += cpvDigit->GetQpad() * (cpvDigit->GetYpad() + 0.5);
373 qsum += cpvDigit->GetQpad();
fa412d9b 374 }
fa412d9b 375 }
e534a69d 376 if (cpvDigits) {
377 cpvDigits->Delete();
378 delete cpvDigits;
379 cpvDigits=0;
380 }
9688c1dd 381 }
037cc66d 382
9688c1dd 383
384
fa412d9b 385 if(gMC->CurrentVolID(copy) == gMC->VolId("PXTL") ) { // We are inside a PBWO crystal
9688c1dd 386
fa412d9b 387 gMC->TrackPosition(pos) ;
471193a8 388 xyzte[0] = pos[0] ;
389 xyzte[1] = pos[1] ;
390 xyzte[2] = pos[2] ;
597e6309 391
9688c1dd 392 Float_t global[3], local[3] ;
393 global[0] = pos[0] ;
394 global[1] = pos[1] ;
395 global[2] = pos[2] ;
396 Float_t lostenergy = gMC->Edep();
f6d1e5e1 397
398 //Put in the TreeK particle entering PHOS and all its parents
399 if ( gMC->IsTrackEntering() ){
400 Float_t xyzd[3] ;
471193a8 401 gMC -> Gmtod (xyzte, xyzd, 1); // transform coordinate from master to daughter system
5a49626b 402 if (xyzd[1] < -GetGeometry()->GetCrystalSize(1)/2.+0.001){ //Entered close to forward surface
f6d1e5e1 403 TParticle * part = 0 ;
5d12ce38 404 Int_t parent = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
f6d1e5e1 405 while ( parent != -1 ) {
5d12ce38 406 part = gAlice->GetMCApp()->Particle(parent) ;
f6d1e5e1 407 part->SetBit(kKeepBit);
408 parent = part->GetFirstMother() ;
409 }
410 }
411 }
9688c1dd 412 if ( lostenergy != 0 ) { // Track is inside the crystal and deposits some energy
471193a8 413 xyzte[3] = gMC->TrackTime() ;
f6d1e5e1 414
9688c1dd 415 gMC->CurrentVolOffID(10, moduleNumber) ; // get the PHOS module number ;
7b326aac 416
9688c1dd 417 Int_t strip ;
418 gMC->CurrentVolOffID(3, strip);
419 Int_t cell ;
420 gMC->CurrentVolOffID(2, cell);
f6d1e5e1 421
9688c1dd 422 Int_t row = 1 + GetGeometry()->GetNZ() - strip % GetGeometry()->GetNZ() ;
423 Int_t col = (Int_t) TMath::Ceil((Double_t) strip/GetGeometry()->GetNZ()) -1 ;
f6d1e5e1 424
9688c1dd 425 absid = (moduleNumber-1)*GetGeometry()->GetNCristalsInModule() +
426 row + (col*GetGeometry()->GetEMCAGeometry()->GetNCellsInStrip() + cell-1)*GetGeometry()->GetNZ() ;
f6d1e5e1 427
9688c1dd 428 gMC->Gmtod(global, local, 1) ;
429
471193a8 430 //Calculates the light yield, the number of photons produced in the
9688c1dd 431 //crystal
27f33ee5 432 Float_t lightYield = gRandom->Poisson(fLightFactor * lostenergy *
9688c1dd 433 exp(-fLightYieldAttenuation *
434 (local[1]+GetGeometry()->GetCrystalSize(1)/2.0 ))
435 ) ;
471193a8 436
9688c1dd 437 //Calculates de energy deposited in the crystal
471193a8 438 xyzte[4] = fAPDFactor * lightYield ;
9688c1dd 439
5a49626b 440 Int_t primary =-1 ;
441 if(fIshunt == 1)
5d12ce38 442 primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
5a49626b 443 else if(fIshunt == 2){
5d12ce38 444 primary = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
445 TParticle * part = gAlice->GetMCApp()->Particle(primary) ;
5a49626b 446 while ( !part->TestBit(kKeepBit) ) {
447 primary = part->GetFirstMother() ;
448 if(primary == -1) break ; //there is a possibility that particle passed e.g. thermal isulator and hits a side
449 //surface of the crystal. In this case it may have no primary at all.
450 //We can not easily separate this case from the case when this is part of the shower,
451 //developed in the neighboring crystal.
5d12ce38 452 part = gAlice->GetMCApp()->Particle(primary) ;
5a49626b 453 }
454 }
455
456
9688c1dd 457 // add current hit to the hit list
21cd0c07 458 // Info("StepManager","%d %d", primary, tracknumber) ;
471193a8 459 AddHit(fIshunt, primary,tracknumber, absid, xyzte);
9688c1dd 460
94de8339 461 // fill the relevant QA Checkables
471193a8 462 fQATotEner->Update( xyzte[4] ) ; // total energy in PHOS
463 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[moduleNumber-1]))->Update( xyzte[4] ) ; // energy in this block
f6d1e5e1 464
fa412d9b 465 } // there is deposited energy
466 } // we are inside a PHOS Xtal
f6d1e5e1 467
fa412d9b 468}
469
470//____________________________________________________________________________
90cceaf6 471void AliPHOSv1::CPVDigitize (TLorentzVector p, Float_t *zxhit, TClonesArray *cpvDigits)
fa412d9b 472{
473 // ------------------------------------------------------------------------
474 // Digitize one CPV hit:
475 // On input take exact 4-momentum p and position zxhit of the hit,
476 // find the pad response around this hit and
477 // put the amplitudes in the pads into array digits
478 //
479 // Author: Yuri Kharlov (after Serguei Sadovsky)
480 // 2 October 2000
481 // ------------------------------------------------------------------------
482
fa7cce36 483 const Float_t kCelWr = GetGeometry()->GetPadSizePhi()/2; // Distance between wires (2 wires above 1 pad)
a3dfe79c 484 const Float_t kDetR = 0.1; // Relative energy fluctuation in track for 100 e-
485 const Float_t kdEdx = 4.0; // Average energy loss in CPV;
486 const Int_t kNgamz = 5; // Ionization size in Z
487 const Int_t kNgamx = 9; // Ionization size in Phi
488 const Float_t kNoise = 0.03; // charge noise in one pad
fa412d9b 489
490 Float_t rnor1,rnor2;
491
492 // Just a reminder on axes notation in the CPV module:
493 // axis Z goes along the beam
494 // axis X goes across the beam in the module plane
495 // axis Y is a normal to the module plane showing from the IP
496
497 Float_t hitX = zxhit[0];
498 Float_t hitZ =-zxhit[1];
499 Float_t pX = p.Px();
500 Float_t pZ =-p.Pz();
501 Float_t pNorm = p.Py();
a3dfe79c 502 Float_t eloss = kdEdx;
3d402178 503
21cd0c07 504//Info("CPVDigitize", "YVK : %f %f | %f %f %d", hitX, hitZ, pX, pZ, pNorm) ;
7b326aac 505
fa7cce36 506 Float_t dZY = pZ/pNorm * GetGeometry()->GetCPVGasThickness();
507 Float_t dXY = pX/pNorm * GetGeometry()->GetCPVGasThickness();
fa412d9b 508 gRandom->Rannor(rnor1,rnor2);
a3dfe79c 509 eloss *= (1 + kDetR*rnor1) *
fa7cce36 510 TMath::Sqrt((1 + ( pow(dZY,2) + pow(dXY,2) ) / pow(GetGeometry()->GetCPVGasThickness(),2)));
511 Float_t zhit1 = hitZ + GetGeometry()->GetCPVActiveSize(1)/2 - dZY/2;
512 Float_t xhit1 = hitX + GetGeometry()->GetCPVActiveSize(0)/2 - dXY/2;
fa412d9b 513 Float_t zhit2 = zhit1 + dZY;
514 Float_t xhit2 = xhit1 + dXY;
515
a3dfe79c 516 Int_t iwht1 = (Int_t) (xhit1 / kCelWr); // wire (x) coordinate "in"
517 Int_t iwht2 = (Int_t) (xhit2 / kCelWr); // wire (x) coordinate "out"
fa412d9b 518
519 Int_t nIter;
520 Float_t zxe[3][5];
521 if (iwht1==iwht2) { // incline 1-wire hit
522 nIter = 2;
523 zxe[0][0] = (zhit1 + zhit2 - dZY*0.57735) / 2;
a3dfe79c 524 zxe[1][0] = (iwht1 + 0.5) * kCelWr;
525 zxe[2][0] = eloss/2;
fa412d9b 526 zxe[0][1] = (zhit1 + zhit2 + dZY*0.57735) / 2;
a3dfe79c 527 zxe[1][1] = (iwht1 + 0.5) * kCelWr;
528 zxe[2][1] = eloss/2;
fa412d9b 529 }
530 else if (TMath::Abs(iwht1-iwht2) != 1) { // incline 3-wire hit
531 nIter = 3;
532 Int_t iwht3 = (iwht1 + iwht2) / 2;
a3dfe79c 533 Float_t xwht1 = (iwht1 + 0.5) * kCelWr; // wire 1
534 Float_t xwht2 = (iwht2 + 0.5) * kCelWr; // wire 2
535 Float_t xwht3 = (iwht3 + 0.5) * kCelWr; // wire 3
fa412d9b 536 Float_t xwr13 = (xwht1 + xwht3) / 2; // center 13
537 Float_t xwr23 = (xwht2 + xwht3) / 2; // center 23
538 Float_t dxw1 = xhit1 - xwr13;
539 Float_t dxw2 = xhit2 - xwr23;
a3dfe79c 540 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
541 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
542 Float_t egm3 = kCelWr / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
fa412d9b 543 zxe[0][0] = (dXY*(xwr13-xwht1)/dXY + zhit1 + zhit1) / 2;
544 zxe[1][0] = xwht1;
a3dfe79c 545 zxe[2][0] = eloss * egm1;
fa412d9b 546 zxe[0][1] = (dXY*(xwr23-xwht1)/dXY + zhit1 + zhit2) / 2;
547 zxe[1][1] = xwht2;
a3dfe79c 548 zxe[2][1] = eloss * egm2;
fa412d9b 549 zxe[0][2] = dXY*(xwht3-xwht1)/dXY + zhit1;
550 zxe[1][2] = xwht3;
a3dfe79c 551 zxe[2][2] = eloss * egm3;
fa412d9b 552 }
553 else { // incline 2-wire hit
554 nIter = 2;
a3dfe79c 555 Float_t xwht1 = (iwht1 + 0.5) * kCelWr;
556 Float_t xwht2 = (iwht2 + 0.5) * kCelWr;
fa412d9b 557 Float_t xwr12 = (xwht1 + xwht2) / 2;
558 Float_t dxw1 = xhit1 - xwr12;
559 Float_t dxw2 = xhit2 - xwr12;
560 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
561 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
562 zxe[0][0] = (zhit1 + zhit2 - dZY*egm1) / 2;
563 zxe[1][0] = xwht1;
a3dfe79c 564 zxe[2][0] = eloss * egm1;
fa412d9b 565 zxe[0][1] = (zhit1 + zhit2 + dZY*egm2) / 2;
566 zxe[1][1] = xwht2;
a3dfe79c 567 zxe[2][1] = eloss * egm2;
fa412d9b 568 }
bea63bea 569
fa412d9b 570 // Finite size of ionization region
571
fa7cce36 572 Int_t nCellZ = GetGeometry()->GetNumberOfCPVPadsZ();
573 Int_t nCellX = GetGeometry()->GetNumberOfCPVPadsPhi();
a3dfe79c 574 Int_t nz3 = (kNgamz+1)/2;
575 Int_t nx3 = (kNgamx+1)/2;
576 cpvDigits->Expand(nIter*kNgamx*kNgamz);
29b077b5 577 TClonesArray &ldigits = *(static_cast<TClonesArray *>(cpvDigits));
fa412d9b 578
579 for (Int_t iter=0; iter<nIter; iter++) {
580
581 Float_t zhit = zxe[0][iter];
582 Float_t xhit = zxe[1][iter];
583 Float_t qhit = zxe[2][iter];
fa7cce36 584 Float_t zcell = zhit / GetGeometry()->GetPadSizeZ();
585 Float_t xcell = xhit / GetGeometry()->GetPadSizePhi();
fa412d9b 586 if ( zcell<=0 || xcell<=0 ||
587 zcell>=nCellZ || xcell>=nCellX) return;
588 Int_t izcell = (Int_t) zcell;
589 Int_t ixcell = (Int_t) xcell;
590 Float_t zc = zcell - izcell - 0.5;
591 Float_t xc = xcell - ixcell - 0.5;
a3dfe79c 592 for (Int_t iz=1; iz<=kNgamz; iz++) {
fa412d9b 593 Int_t kzg = izcell + iz - nz3;
594 if (kzg<=0 || kzg>nCellZ) continue;
595 Float_t zg = (Float_t)(iz-nz3) - zc;
a3dfe79c 596 for (Int_t ix=1; ix<=kNgamx; ix++) {
fa412d9b 597 Int_t kxg = ixcell + ix - nx3;
598 if (kxg<=0 || kxg>nCellX) continue;
599 Float_t xg = (Float_t)(ix-nx3) - xc;
600
601 // Now calculate pad response
602 Float_t qpad = CPVPadResponseFunction(qhit,zg,xg);
a3dfe79c 603 qpad += kNoise*rnor2;
fa412d9b 604 if (qpad<0) continue;
605
606 // Fill the array with pad response ID and amplitude
3d402178 607 new(ldigits[cpvDigits->GetEntriesFast()]) AliPHOSCPVDigit(kxg,kzg,qpad);
fa412d9b 608 }
fa412d9b 609 }
fa412d9b 610 }
611}
612
613//____________________________________________________________________________
614Float_t AliPHOSv1::CPVPadResponseFunction(Float_t qhit, Float_t zhit, Float_t xhit) {
615 // ------------------------------------------------------------------------
616 // Calculate the amplitude in one CPV pad using the
617 // cumulative pad response function
618 // Author: Yuri Kharlov (after Serguei Sadovski)
619 // 3 October 2000
620 // ------------------------------------------------------------------------
621
fa7cce36 622 Double_t dz = GetGeometry()->GetPadSizeZ() / 2;
623 Double_t dx = GetGeometry()->GetPadSizePhi() / 2;
624 Double_t z = zhit * GetGeometry()->GetPadSizeZ();
625 Double_t x = xhit * GetGeometry()->GetPadSizePhi();
fa412d9b 626 Double_t amplitude = qhit *
627 (CPVCumulPadResponse(z+dz,x+dx) - CPVCumulPadResponse(z+dz,x-dx) -
628 CPVCumulPadResponse(z-dz,x+dx) + CPVCumulPadResponse(z-dz,x-dx));
629 return (Float_t)amplitude;
7587f5a5 630}
631
fa412d9b 632//____________________________________________________________________________
633Double_t AliPHOSv1::CPVCumulPadResponse(Double_t x, Double_t y) {
634 // ------------------------------------------------------------------------
635 // Cumulative pad response function
636 // It includes several terms from the CF decomposition in electrostatics
637 // Note: this cumulative function is wrong since omits some terms
638 // but the cell amplitude obtained with it is correct because
639 // these omitting terms cancel
640 // Author: Yuri Kharlov (after Serguei Sadovski)
641 // 3 October 2000
642 // ------------------------------------------------------------------------
643
a3dfe79c 644 const Double_t kA=1.0;
645 const Double_t kB=0.7;
fa412d9b 646
647 Double_t r2 = x*x + y*y;
648 Double_t xy = x*y;
649 Double_t cumulPRF = 0;
650 for (Int_t i=0; i<=4; i++) {
a3dfe79c 651 Double_t b1 = (2*i + 1) * kB;
fa412d9b 652 cumulPRF += TMath::Power(-1,i) * TMath::ATan( xy / (b1*TMath::Sqrt(b1*b1 + r2)) );
653 }
a3dfe79c 654 cumulPRF *= kA/(2*TMath::Pi());
fa412d9b 655 return cumulPRF;
656}
7eb9d12d 657