]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PHOS/AliPHOSv1.cxx
more debug output and bugfix for sub event number
[u/mrichter/AliRoot.git] / PHOS / AliPHOSv1.cxx
CommitLineData
7587f5a5 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b2a60966 16/* $Id$ */
5f20d3fb 17
7587f5a5 18//_________________________________________________________________________
5f20d3fb 19// Implementation version v1 of PHOS Manager class
a3dfe79c 20//---
a3dfe79c 21//---
22// Layout EMC + CPV has name IHEP:
ed4205d8 23// Produces hits for CPV, cumulated hits
24//---
ed4205d8 25//---
5f20d3fb 26//*-- Author: Yves Schutz (SUBATECH)
b2a60966 27
7587f5a5 28
29// --- ROOT system ---
88cb7938 30#include <TParticle.h>
88cb7938 31#include <TVirtualMC.h>
7587f5a5 32
33// --- Standard library ---
34
88cb7938 35
7587f5a5 36// --- AliRoot header files ---
97cee223 37#include "AliPHOSCPVDigit.h"
97cee223 38#include "AliPHOSGeometry.h"
88cb7938 39#include "AliPHOSHit.h"
7b326aac 40#include "AliPHOSQAFloatCheckable.h"
88cb7938 41#include "AliPHOSQAIntCheckable.h"
7b326aac 42#include "AliPHOSQAMeanChecker.h"
88cb7938 43#include "AliPHOSv1.h"
44#include "AliRun.h"
5d12ce38 45#include "AliMC.h"
7587f5a5 46
47ClassImp(AliPHOSv1)
48
bea63bea 49//____________________________________________________________________________
02ab1add 50AliPHOSv1::AliPHOSv1():
51AliPHOSv0()
bea63bea 52{
735e58f1 53 // default ctor: initialze data memebers
54 fQAHitsMul = 0 ;
55 fQAHitsMulB = 0 ;
56 fQATotEner = 0 ;
57 fQATotEnerB = 0 ;
9688c1dd 58
59 fLightYieldMean = 0. ;
60 fIntrinsicPINEfficiency = 0. ;
61 fLightYieldAttenuation = 0. ;
62 fRecalibrationFactor = 0. ;
63 fElectronsPerGeV = 0. ;
27f33ee5 64 fAPDGain = 0. ;
65 fLightFactor = 0. ;
66 fAPDFactor = 0. ;
9688c1dd 67
bea63bea 68}
69
7587f5a5 70//____________________________________________________________________________
71AliPHOSv1::AliPHOSv1(const char *name, const char *title):
7b326aac 72 AliPHOSv0(name,title)
7587f5a5 73{
5f20d3fb 74 //
ed4205d8 75 // We store hits :
5f20d3fb 76 // - fHits (the "normal" one), which retains the hits associated with
77 // the current primary particle being tracked
78 // (this array is reset after each primary has been tracked).
79 //
fa412d9b 80
037cc66d 81
5f20d3fb 82
83 // We do not want to save in TreeH the raw hits
84 // But save the cumulated hits instead (need to create the branch myself)
85 // It is put in the Digit Tree because the TreeH is filled after each primary
7b326aac 86 // and the TreeD at the end of the event (branch is set in FinishEvent() ).
5f20d3fb 87
ed4205d8 88 fHits= new TClonesArray("AliPHOSHit",1000) ;
5d12ce38 89 gAlice->GetMCApp()->AddHitList(fHits) ;
5f20d3fb 90
ed4205d8 91 fNhits = 0 ;
5f20d3fb 92
f6d1e5e1 93 fIshunt = 2 ; // All hits are associated with primary particles
7b326aac 94
9688c1dd 95 //Photoelectron statistics:
96 // The light yield is a poissonian distribution of the number of
97 // photons created in the PbWo4 crystal, calculated using following formula
98 // NumberOfPhotons = EnergyLost * LightYieldMean* APDEfficiency *
99 // exp (-LightYieldAttenuation * DistanceToPINdiodeFromTheHit);
100 // LightYieldMean is parameter calculated to be over 47000 photons per GeV
101 // APDEfficiency is 0.02655
102 // k_0 is 0.0045 from Valery Antonenko
103 // The number of electrons created in the APD is
104 // NumberOfElectrons = APDGain * LightYield
105 // The APD Gain is 300
106 fLightYieldMean = 47000;
107 fIntrinsicPINEfficiency = 0.02655 ; //APD= 0.1875/0.1271 * 0.018 (PIN)
27f33ee5 108 fLightYieldAttenuation = 0.0045 ;
109 fRecalibrationFactor = 13.418/ fLightYieldMean ;
110 fElectronsPerGeV = 2.77e+8 ;
111 fAPDGain = 300. ;
112 fLightFactor = fLightYieldMean * fIntrinsicPINEfficiency ;
113 fAPDFactor = (fRecalibrationFactor/100.) * fAPDGain ;
114
9688c1dd 115
fa7cce36 116 Int_t nb = GetGeometry()->GetNModules() ;
fa412d9b 117
7b326aac 118 // create checkables
119 fQAHitsMul = new AliPHOSQAIntCheckable("HitsM") ;
120 fQATotEner = new AliPHOSQAFloatCheckable("TotEn") ;
9bc230c0 121 fQAHitsMulB = new TClonesArray("AliPHOSQAIntCheckable",nb) ;
122 fQAHitsMulB->SetOwner() ;
7b326aac 123 fQATotEnerB = new TClonesArray("AliPHOSQAFloatCheckable", nb);
9bc230c0 124 fQATotEnerB->SetOwner() ;
7b326aac 125 char tempo[20] ;
126 Int_t i ;
127 for ( i = 0 ; i < nb ; i++ ) {
128 sprintf(tempo, "HitsMB%d", i+1) ;
129 new( (*fQAHitsMulB)[i]) AliPHOSQAIntCheckable(tempo) ;
130 sprintf(tempo, "TotEnB%d", i+1) ;
131 new( (*fQATotEnerB)[i] ) AliPHOSQAFloatCheckable(tempo) ;
132 }
133
7b326aac 134 AliPHOSQAMeanChecker * hmc = new AliPHOSQAMeanChecker("HitsMul", 100. ,25.) ;
135 AliPHOSQAMeanChecker * emc = new AliPHOSQAMeanChecker("TotEner", 10. ,5.) ;
136 AliPHOSQAMeanChecker * bhmc = new AliPHOSQAMeanChecker("HitsMulB", 100. ,5.) ;
137 AliPHOSQAMeanChecker * bemc = new AliPHOSQAMeanChecker("TotEnerB", 2. ,.5) ;
138
139 // associate checkables and checkers
140 fQAHitsMul->AddChecker(hmc) ;
141 fQATotEner->AddChecker(emc) ;
142 for ( i = 0 ; i < nb ; i++ ) {
29b077b5 143 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]))->AddChecker(bhmc) ;
144 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]))->AddChecker(bemc) ;
7b326aac 145 }
7b7c1533 146
5f20d3fb 147}
148
7587f5a5 149//____________________________________________________________________________
bea63bea 150AliPHOSv1::~AliPHOSv1()
b2a60966 151{
bea63bea 152 // dtor
88cb7938 153 if ( fHits) {
ed4205d8 154 fHits->Delete() ;
155 delete fHits ;
156 fHits = 0 ;
8dfa469d 157 }
9bc230c0 158
9bc230c0 159 if ( fQAHitsMulB ) {
160 fQAHitsMulB->Delete() ;
161 delete fQAHitsMulB ;
162 }
163
164 if ( fQATotEnerB ) {
165 fQATotEnerB->Delete() ;
166 delete fQATotEnerB ;
167 }
168
7587f5a5 169}
170
7587f5a5 171//____________________________________________________________________________
b37750a6 172void AliPHOSv1::AddHit(Int_t shunt, Int_t primary, Int_t tracknumber, Int_t Id, Float_t * hits)
bea63bea 173{
174 // Add a hit to the hit list.
f6d1e5e1 175 // A PHOS hit is the sum of all hits in a single crystal from one primary and within some time gate
bea63bea 176
5f20d3fb 177 Int_t hitCounter ;
bea63bea 178 AliPHOSHit *newHit ;
5f20d3fb 179 AliPHOSHit *curHit ;
180 Bool_t deja = kFALSE ;
fa7cce36 181 AliPHOSGeometry * geom = GetGeometry() ;
bea63bea 182
b37750a6 183 newHit = new AliPHOSHit(shunt, primary, tracknumber, Id, hits) ;
bea63bea 184
7854a24a 185 for ( hitCounter = fNhits-1 ; hitCounter >= 0 && !deja ; hitCounter-- ) {
29b077b5 186 curHit = dynamic_cast<AliPHOSHit*>((*fHits)[hitCounter]) ;
9688c1dd 187 if(curHit->GetPrimary() != primary) break ;
188 // We add hits with the same primary, while GEANT treats primaries succesively
ed4205d8 189 if( *curHit == *newHit ) {
f15a01eb 190 *curHit + *newHit ;
ed4205d8 191 deja = kTRUE ;
5f20d3fb 192 }
193 }
194
195 if ( !deja ) {
ed4205d8 196 new((*fHits)[fNhits]) AliPHOSHit(*newHit) ;
7b326aac 197 // get the block Id number
9688c1dd 198 Int_t relid[4] ;
fa7cce36 199 geom->AbsToRelNumbering(Id, relid) ;
7b326aac 200 // and fill the relevant QA checkable (only if in PbW04)
201 if ( relid[1] == 0 ) {
202 fQAHitsMul->Update(1) ;
29b077b5 203 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[relid[0]-1]))->Update(1) ;
7b326aac 204 }
ed4205d8 205 fNhits++ ;
5f20d3fb 206 }
207
bea63bea 208 delete newHit;
bea63bea 209}
210
7b326aac 211//____________________________________________________________________________
212void AliPHOSv1::FinishPrimary()
213{
214 // called at the end of each track (primary) by AliRun
215 // hits are reset for each new track
216 // accumulate the total hit-multiplicity
217// if ( fQAHitsMul )
218// fQAHitsMul->Update( fHits->GetEntriesFast() ) ;
219
220}
221
222//____________________________________________________________________________
223void AliPHOSv1::FinishEvent()
224{
225 // called at the end of each event by AliRun
226 // accumulate the hit-multiplicity and total energy per block
227 // if the values have been updated check it
88cb7938 228
7b326aac 229
230 if ( fQATotEner ) {
231 if ( fQATotEner->HasChanged() ) {
232 fQATotEner->CheckMe() ;
233 fQATotEner->Reset() ;
234 }
235 }
236
237 Int_t i ;
238 if ( fQAHitsMulB && fQATotEnerB ) {
fa7cce36 239 for (i = 0 ; i < GetGeometry()->GetNModules() ; i++) {
29b077b5 240 AliPHOSQAIntCheckable * ci = static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]) ;
241 AliPHOSQAFloatCheckable* cf = static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]) ;
7b326aac 242 if ( ci->HasChanged() ) {
243 ci->CheckMe() ;
244 ci->Reset() ;
245 }
246 if ( cf->HasChanged() ) {
247 cf->CheckMe() ;
248 cf->Reset() ;
249 }
250 }
251 }
252
253 // check the total multiplicity
254
255 if ( fQAHitsMul ) {
256 if ( fQAHitsMul->HasChanged() ) {
257 fQAHitsMul->CheckMe() ;
258 fQAHitsMul->Reset() ;
259 }
260 }
88cb7938 261
262 AliDetector::FinishEvent();
7b326aac 263}
5f20d3fb 264//____________________________________________________________________________
7587f5a5 265void AliPHOSv1::StepManager(void)
266{
9688c1dd 267 // Accumulates hits as long as the track stays in a single crystal or CPV gas Cell
b2a60966 268
4f5bbbd4 269 Int_t relid[4] ; // (box, layer, row, column) indices
270 Int_t absid ; // absolute cell ID number
471193a8 271 Float_t xyzte[5]={-1000.,-1000.,-1000.,0.,0.} ; // position wrt MRS, time and energy deposited
4f5bbbd4 272 TLorentzVector pos ; // Lorentz vector of the track current position
fa412d9b 273 Int_t copy ;
7587f5a5 274
5d12ce38 275 Int_t tracknumber = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
fa7cce36 276 TString name = GetGeometry()->GetName() ;
037cc66d 277
9688c1dd 278 Int_t moduleNumber ;
279
280 if( gMC->CurrentVolID(copy) == gMC->VolId("PCPQ") &&
281 (gMC->IsTrackEntering() ) &&
282 gMC->TrackCharge() != 0) {
f6d1e5e1 283
9688c1dd 284 gMC -> TrackPosition(pos);
f6d1e5e1 285
9688c1dd 286 Float_t xyzm[3], xyzd[3] ;
287 Int_t i;
288 for (i=0; i<3; i++) xyzm[i] = pos[i];
289 gMC -> Gmtod (xyzm, xyzd, 1); // transform coordinate from master to daughter system
290
e3daf02c 291 Float_t xyd[3]={0,0,0} ; //local position of the entering
9688c1dd 292 xyd[0] = xyzd[0];
53e03a1e 293 xyd[1] =-xyzd[2];
294 xyd[2] =-xyzd[1];
f6d1e5e1 295
9688c1dd 296 // Current momentum of the hit's track in the local ref. system
297 TLorentzVector pmom ; //momentum of the particle initiated hit
298 gMC -> TrackMomentum(pmom);
299 Float_t pm[3], pd[3];
300 for (i=0; i<3; i++)
301 pm[i] = pmom[i];
f6d1e5e1 302
9688c1dd 303 gMC -> Gmtod (pm, pd, 2); // transform 3-momentum from master to daughter system
304 pmom[0] = pd[0];
cf75bc19 305 pmom[1] =-pd[1];
306 pmom[2] =-pd[2];
f6d1e5e1 307
9688c1dd 308 // Digitize the current CPV hit:
309
310 // 1. find pad response and
311 gMC->CurrentVolOffID(3,moduleNumber);
312 moduleNumber--;
313
314 TClonesArray *cpvDigits = new TClonesArray("AliPHOSCPVDigit",0); // array of digits for current hit
90cceaf6 315 CPVDigitize(pmom,xyd,cpvDigits);
fa412d9b 316
9688c1dd 317 Float_t xmean = 0;
318 Float_t zmean = 0;
319 Float_t qsum = 0;
320 Int_t idigit,ndigits;
321
322 // 2. go through the current digit list and sum digits in pads
323
324 ndigits = cpvDigits->GetEntriesFast();
325 for (idigit=0; idigit<ndigits-1; idigit++) {
29b077b5 326 AliPHOSCPVDigit *cpvDigit1 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 327 Float_t x1 = cpvDigit1->GetXpad() ;
328 Float_t z1 = cpvDigit1->GetYpad() ;
329 for (Int_t jdigit=idigit+1; jdigit<ndigits; jdigit++) {
29b077b5 330 AliPHOSCPVDigit *cpvDigit2 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(jdigit));
9688c1dd 331 Float_t x2 = cpvDigit2->GetXpad() ;
332 Float_t z2 = cpvDigit2->GetYpad() ;
333 if (x1==x2 && z1==z2) {
334 Float_t qsum = cpvDigit1->GetQpad() + cpvDigit2->GetQpad() ;
335 cpvDigit2->SetQpad(qsum) ;
336 cpvDigits->RemoveAt(idigit) ;
fa412d9b 337 }
338 }
9688c1dd 339 }
340 cpvDigits->Compress() ;
341
342 // 3. add digits to temporary hit list fTmpHits
343
344 ndigits = cpvDigits->GetEntriesFast();
345 for (idigit=0; idigit<ndigits; idigit++) {
29b077b5 346 AliPHOSCPVDigit *cpvDigit = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 347 relid[0] = moduleNumber + 1 ; // CPV (or PHOS) module number
348 relid[1] =-1 ; // means CPV
349 relid[2] = cpvDigit->GetXpad() ; // column number of a pad
350 relid[3] = cpvDigit->GetYpad() ; // row number of a pad
351
352 // get the absolute Id number
353 GetGeometry()->RelToAbsNumbering(relid, absid) ;
354
355 // add current digit to the temporary hit list
356
471193a8 357 xyzte[3] = gMC->TrackTime() ;
358 xyzte[4] = cpvDigit->GetQpad() ; // amplitude in a pad
5a49626b 359 AddHit(fIshunt, -1, tracknumber, absid, xyzte); // -1: No need in primary for CPV
9688c1dd 360
361 if (cpvDigit->GetQpad() > 0.02) {
362 xmean += cpvDigit->GetQpad() * (cpvDigit->GetXpad() + 0.5);
363 zmean += cpvDigit->GetQpad() * (cpvDigit->GetYpad() + 0.5);
364 qsum += cpvDigit->GetQpad();
fa412d9b 365 }
fa412d9b 366 }
e534a69d 367 if (cpvDigits) {
368 cpvDigits->Delete();
369 delete cpvDigits;
370 cpvDigits=0;
371 }
9688c1dd 372 }
037cc66d 373
9688c1dd 374
375
fa412d9b 376 if(gMC->CurrentVolID(copy) == gMC->VolId("PXTL") ) { // We are inside a PBWO crystal
9688c1dd 377
fa412d9b 378 gMC->TrackPosition(pos) ;
471193a8 379 xyzte[0] = pos[0] ;
380 xyzte[1] = pos[1] ;
381 xyzte[2] = pos[2] ;
597e6309 382
9688c1dd 383 Float_t global[3], local[3] ;
384 global[0] = pos[0] ;
385 global[1] = pos[1] ;
386 global[2] = pos[2] ;
387 Float_t lostenergy = gMC->Edep();
f6d1e5e1 388
389 //Put in the TreeK particle entering PHOS and all its parents
390 if ( gMC->IsTrackEntering() ){
391 Float_t xyzd[3] ;
471193a8 392 gMC -> Gmtod (xyzte, xyzd, 1); // transform coordinate from master to daughter system
5a49626b 393 if (xyzd[1] < -GetGeometry()->GetCrystalSize(1)/2.+0.001){ //Entered close to forward surface
f6d1e5e1 394 TParticle * part = 0 ;
5d12ce38 395 Int_t parent = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
f6d1e5e1 396 while ( parent != -1 ) {
5d12ce38 397 part = gAlice->GetMCApp()->Particle(parent) ;
f6d1e5e1 398 part->SetBit(kKeepBit);
399 parent = part->GetFirstMother() ;
400 }
401 }
402 }
9688c1dd 403 if ( lostenergy != 0 ) { // Track is inside the crystal and deposits some energy
471193a8 404 xyzte[3] = gMC->TrackTime() ;
f6d1e5e1 405
9688c1dd 406 gMC->CurrentVolOffID(10, moduleNumber) ; // get the PHOS module number ;
7b326aac 407
9688c1dd 408 Int_t strip ;
409 gMC->CurrentVolOffID(3, strip);
410 Int_t cell ;
411 gMC->CurrentVolOffID(2, cell);
f6d1e5e1 412
9688c1dd 413 Int_t row = 1 + GetGeometry()->GetNZ() - strip % GetGeometry()->GetNZ() ;
414 Int_t col = (Int_t) TMath::Ceil((Double_t) strip/GetGeometry()->GetNZ()) -1 ;
f6d1e5e1 415
9688c1dd 416 absid = (moduleNumber-1)*GetGeometry()->GetNCristalsInModule() +
417 row + (col*GetGeometry()->GetEMCAGeometry()->GetNCellsInStrip() + cell-1)*GetGeometry()->GetNZ() ;
f6d1e5e1 418
9688c1dd 419 gMC->Gmtod(global, local, 1) ;
420
471193a8 421 //Calculates the light yield, the number of photons produced in the
9688c1dd 422 //crystal
27f33ee5 423 Float_t lightYield = gRandom->Poisson(fLightFactor * lostenergy *
9688c1dd 424 exp(-fLightYieldAttenuation *
425 (local[1]+GetGeometry()->GetCrystalSize(1)/2.0 ))
426 ) ;
471193a8 427
9688c1dd 428 //Calculates de energy deposited in the crystal
471193a8 429 xyzte[4] = fAPDFactor * lightYield ;
9688c1dd 430
5a49626b 431 Int_t primary =-1 ;
432 if(fIshunt == 1)
5d12ce38 433 primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
5a49626b 434 else if(fIshunt == 2){
5d12ce38 435 primary = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
436 TParticle * part = gAlice->GetMCApp()->Particle(primary) ;
5a49626b 437 while ( !part->TestBit(kKeepBit) ) {
438 primary = part->GetFirstMother() ;
439 if(primary == -1) break ; //there is a possibility that particle passed e.g. thermal isulator and hits a side
440 //surface of the crystal. In this case it may have no primary at all.
441 //We can not easily separate this case from the case when this is part of the shower,
442 //developed in the neighboring crystal.
5d12ce38 443 part = gAlice->GetMCApp()->Particle(primary) ;
5a49626b 444 }
445 }
446
447
9688c1dd 448 // add current hit to the hit list
21cd0c07 449 // Info("StepManager","%d %d", primary, tracknumber) ;
471193a8 450 AddHit(fIshunt, primary,tracknumber, absid, xyzte);
9688c1dd 451
94de8339 452 // fill the relevant QA Checkables
471193a8 453 fQATotEner->Update( xyzte[4] ) ; // total energy in PHOS
454 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[moduleNumber-1]))->Update( xyzte[4] ) ; // energy in this block
f6d1e5e1 455
fa412d9b 456 } // there is deposited energy
457 } // we are inside a PHOS Xtal
f6d1e5e1 458
fa412d9b 459}
460
461//____________________________________________________________________________
90cceaf6 462void AliPHOSv1::CPVDigitize (TLorentzVector p, Float_t *zxhit, TClonesArray *cpvDigits)
fa412d9b 463{
464 // ------------------------------------------------------------------------
465 // Digitize one CPV hit:
466 // On input take exact 4-momentum p and position zxhit of the hit,
467 // find the pad response around this hit and
468 // put the amplitudes in the pads into array digits
469 //
470 // Author: Yuri Kharlov (after Serguei Sadovsky)
471 // 2 October 2000
472 // ------------------------------------------------------------------------
473
fa7cce36 474 const Float_t kCelWr = GetGeometry()->GetPadSizePhi()/2; // Distance between wires (2 wires above 1 pad)
a3dfe79c 475 const Float_t kDetR = 0.1; // Relative energy fluctuation in track for 100 e-
476 const Float_t kdEdx = 4.0; // Average energy loss in CPV;
477 const Int_t kNgamz = 5; // Ionization size in Z
478 const Int_t kNgamx = 9; // Ionization size in Phi
479 const Float_t kNoise = 0.03; // charge noise in one pad
fa412d9b 480
481 Float_t rnor1,rnor2;
482
483 // Just a reminder on axes notation in the CPV module:
484 // axis Z goes along the beam
485 // axis X goes across the beam in the module plane
486 // axis Y is a normal to the module plane showing from the IP
487
488 Float_t hitX = zxhit[0];
489 Float_t hitZ =-zxhit[1];
490 Float_t pX = p.Px();
491 Float_t pZ =-p.Pz();
492 Float_t pNorm = p.Py();
a3dfe79c 493 Float_t eloss = kdEdx;
3d402178 494
21cd0c07 495//Info("CPVDigitize", "YVK : %f %f | %f %f %d", hitX, hitZ, pX, pZ, pNorm) ;
7b326aac 496
fa7cce36 497 Float_t dZY = pZ/pNorm * GetGeometry()->GetCPVGasThickness();
498 Float_t dXY = pX/pNorm * GetGeometry()->GetCPVGasThickness();
fa412d9b 499 gRandom->Rannor(rnor1,rnor2);
a3dfe79c 500 eloss *= (1 + kDetR*rnor1) *
fa7cce36 501 TMath::Sqrt((1 + ( pow(dZY,2) + pow(dXY,2) ) / pow(GetGeometry()->GetCPVGasThickness(),2)));
502 Float_t zhit1 = hitZ + GetGeometry()->GetCPVActiveSize(1)/2 - dZY/2;
503 Float_t xhit1 = hitX + GetGeometry()->GetCPVActiveSize(0)/2 - dXY/2;
fa412d9b 504 Float_t zhit2 = zhit1 + dZY;
505 Float_t xhit2 = xhit1 + dXY;
506
a3dfe79c 507 Int_t iwht1 = (Int_t) (xhit1 / kCelWr); // wire (x) coordinate "in"
508 Int_t iwht2 = (Int_t) (xhit2 / kCelWr); // wire (x) coordinate "out"
fa412d9b 509
510 Int_t nIter;
511 Float_t zxe[3][5];
512 if (iwht1==iwht2) { // incline 1-wire hit
513 nIter = 2;
514 zxe[0][0] = (zhit1 + zhit2 - dZY*0.57735) / 2;
a3dfe79c 515 zxe[1][0] = (iwht1 + 0.5) * kCelWr;
516 zxe[2][0] = eloss/2;
fa412d9b 517 zxe[0][1] = (zhit1 + zhit2 + dZY*0.57735) / 2;
a3dfe79c 518 zxe[1][1] = (iwht1 + 0.5) * kCelWr;
519 zxe[2][1] = eloss/2;
fa412d9b 520 }
521 else if (TMath::Abs(iwht1-iwht2) != 1) { // incline 3-wire hit
522 nIter = 3;
523 Int_t iwht3 = (iwht1 + iwht2) / 2;
a3dfe79c 524 Float_t xwht1 = (iwht1 + 0.5) * kCelWr; // wire 1
525 Float_t xwht2 = (iwht2 + 0.5) * kCelWr; // wire 2
526 Float_t xwht3 = (iwht3 + 0.5) * kCelWr; // wire 3
fa412d9b 527 Float_t xwr13 = (xwht1 + xwht3) / 2; // center 13
528 Float_t xwr23 = (xwht2 + xwht3) / 2; // center 23
529 Float_t dxw1 = xhit1 - xwr13;
530 Float_t dxw2 = xhit2 - xwr23;
a3dfe79c 531 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
532 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
533 Float_t egm3 = kCelWr / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
fa412d9b 534 zxe[0][0] = (dXY*(xwr13-xwht1)/dXY + zhit1 + zhit1) / 2;
535 zxe[1][0] = xwht1;
a3dfe79c 536 zxe[2][0] = eloss * egm1;
fa412d9b 537 zxe[0][1] = (dXY*(xwr23-xwht1)/dXY + zhit1 + zhit2) / 2;
538 zxe[1][1] = xwht2;
a3dfe79c 539 zxe[2][1] = eloss * egm2;
fa412d9b 540 zxe[0][2] = dXY*(xwht3-xwht1)/dXY + zhit1;
541 zxe[1][2] = xwht3;
a3dfe79c 542 zxe[2][2] = eloss * egm3;
fa412d9b 543 }
544 else { // incline 2-wire hit
545 nIter = 2;
a3dfe79c 546 Float_t xwht1 = (iwht1 + 0.5) * kCelWr;
547 Float_t xwht2 = (iwht2 + 0.5) * kCelWr;
fa412d9b 548 Float_t xwr12 = (xwht1 + xwht2) / 2;
549 Float_t dxw1 = xhit1 - xwr12;
550 Float_t dxw2 = xhit2 - xwr12;
551 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
552 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
553 zxe[0][0] = (zhit1 + zhit2 - dZY*egm1) / 2;
554 zxe[1][0] = xwht1;
a3dfe79c 555 zxe[2][0] = eloss * egm1;
fa412d9b 556 zxe[0][1] = (zhit1 + zhit2 + dZY*egm2) / 2;
557 zxe[1][1] = xwht2;
a3dfe79c 558 zxe[2][1] = eloss * egm2;
fa412d9b 559 }
bea63bea 560
fa412d9b 561 // Finite size of ionization region
562
fa7cce36 563 Int_t nCellZ = GetGeometry()->GetNumberOfCPVPadsZ();
564 Int_t nCellX = GetGeometry()->GetNumberOfCPVPadsPhi();
a3dfe79c 565 Int_t nz3 = (kNgamz+1)/2;
566 Int_t nx3 = (kNgamx+1)/2;
567 cpvDigits->Expand(nIter*kNgamx*kNgamz);
29b077b5 568 TClonesArray &ldigits = *(static_cast<TClonesArray *>(cpvDigits));
fa412d9b 569
570 for (Int_t iter=0; iter<nIter; iter++) {
571
572 Float_t zhit = zxe[0][iter];
573 Float_t xhit = zxe[1][iter];
574 Float_t qhit = zxe[2][iter];
fa7cce36 575 Float_t zcell = zhit / GetGeometry()->GetPadSizeZ();
576 Float_t xcell = xhit / GetGeometry()->GetPadSizePhi();
fa412d9b 577 if ( zcell<=0 || xcell<=0 ||
578 zcell>=nCellZ || xcell>=nCellX) return;
579 Int_t izcell = (Int_t) zcell;
580 Int_t ixcell = (Int_t) xcell;
581 Float_t zc = zcell - izcell - 0.5;
582 Float_t xc = xcell - ixcell - 0.5;
a3dfe79c 583 for (Int_t iz=1; iz<=kNgamz; iz++) {
fa412d9b 584 Int_t kzg = izcell + iz - nz3;
585 if (kzg<=0 || kzg>nCellZ) continue;
586 Float_t zg = (Float_t)(iz-nz3) - zc;
a3dfe79c 587 for (Int_t ix=1; ix<=kNgamx; ix++) {
fa412d9b 588 Int_t kxg = ixcell + ix - nx3;
589 if (kxg<=0 || kxg>nCellX) continue;
590 Float_t xg = (Float_t)(ix-nx3) - xc;
591
592 // Now calculate pad response
593 Float_t qpad = CPVPadResponseFunction(qhit,zg,xg);
a3dfe79c 594 qpad += kNoise*rnor2;
fa412d9b 595 if (qpad<0) continue;
596
597 // Fill the array with pad response ID and amplitude
3d402178 598 new(ldigits[cpvDigits->GetEntriesFast()]) AliPHOSCPVDigit(kxg,kzg,qpad);
fa412d9b 599 }
fa412d9b 600 }
fa412d9b 601 }
602}
603
604//____________________________________________________________________________
605Float_t AliPHOSv1::CPVPadResponseFunction(Float_t qhit, Float_t zhit, Float_t xhit) {
606 // ------------------------------------------------------------------------
607 // Calculate the amplitude in one CPV pad using the
608 // cumulative pad response function
609 // Author: Yuri Kharlov (after Serguei Sadovski)
610 // 3 October 2000
611 // ------------------------------------------------------------------------
612
fa7cce36 613 Double_t dz = GetGeometry()->GetPadSizeZ() / 2;
614 Double_t dx = GetGeometry()->GetPadSizePhi() / 2;
615 Double_t z = zhit * GetGeometry()->GetPadSizeZ();
616 Double_t x = xhit * GetGeometry()->GetPadSizePhi();
fa412d9b 617 Double_t amplitude = qhit *
618 (CPVCumulPadResponse(z+dz,x+dx) - CPVCumulPadResponse(z+dz,x-dx) -
619 CPVCumulPadResponse(z-dz,x+dx) + CPVCumulPadResponse(z-dz,x-dx));
620 return (Float_t)amplitude;
7587f5a5 621}
622
fa412d9b 623//____________________________________________________________________________
624Double_t AliPHOSv1::CPVCumulPadResponse(Double_t x, Double_t y) {
625 // ------------------------------------------------------------------------
626 // Cumulative pad response function
627 // It includes several terms from the CF decomposition in electrostatics
628 // Note: this cumulative function is wrong since omits some terms
629 // but the cell amplitude obtained with it is correct because
630 // these omitting terms cancel
631 // Author: Yuri Kharlov (after Serguei Sadovski)
632 // 3 October 2000
633 // ------------------------------------------------------------------------
634
a3dfe79c 635 const Double_t kA=1.0;
636 const Double_t kB=0.7;
fa412d9b 637
638 Double_t r2 = x*x + y*y;
639 Double_t xy = x*y;
640 Double_t cumulPRF = 0;
641 for (Int_t i=0; i<=4; i++) {
a3dfe79c 642 Double_t b1 = (2*i + 1) * kB;
fa412d9b 643 cumulPRF += TMath::Power(-1,i) * TMath::ATan( xy / (b1*TMath::Sqrt(b1*b1 + r2)) );
644 }
a3dfe79c 645 cumulPRF *= kA/(2*TMath::Pi());
fa412d9b 646 return cumulPRF;
647}
7eb9d12d 648