]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PHOS/AliPHOSv1.cxx
fEntries initialized to 0 in constructor and new TList() for first call of
[u/mrichter/AliRoot.git] / PHOS / AliPHOSv1.cxx
CommitLineData
7587f5a5 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b2a60966 16/* $Id$ */
5f20d3fb 17
7587f5a5 18//_________________________________________________________________________
5f20d3fb 19// Implementation version v1 of PHOS Manager class
a3dfe79c 20//---
a3dfe79c 21//---
22// Layout EMC + CPV has name IHEP:
ed4205d8 23// Produces hits for CPV, cumulated hits
24//---
ed4205d8 25//---
5f20d3fb 26//*-- Author: Yves Schutz (SUBATECH)
b2a60966 27
7587f5a5 28
29// --- ROOT system ---
88cb7938 30
31#include <TBRIK.h>
32#include <TNode.h>
33#include <TParticle.h>
34#include <TRandom.h>
35#include <TTree.h>
36#include <TVirtualMC.h>
7587f5a5 37
38// --- Standard library ---
39
88cb7938 40#include <string.h>
41#include <stdlib.h>
42
7587f5a5 43// --- AliRoot header files ---
44
88cb7938 45#include "AliConst.h"
97cee223 46#include "AliPHOSCPVDigit.h"
97cee223 47#include "AliPHOSGeometry.h"
88cb7938 48#include "AliPHOSHit.h"
7b326aac 49#include "AliPHOSQAFloatCheckable.h"
88cb7938 50#include "AliPHOSQAIntCheckable.h"
7b326aac 51#include "AliPHOSQAMeanChecker.h"
88cb7938 52#include "AliPHOSv1.h"
53#include "AliRun.h"
7587f5a5 54
55ClassImp(AliPHOSv1)
56
bea63bea 57//____________________________________________________________________________
02ab1add 58AliPHOSv1::AliPHOSv1():
59AliPHOSv0()
bea63bea 60{
735e58f1 61 // default ctor: initialze data memebers
62 fQAHitsMul = 0 ;
63 fQAHitsMulB = 0 ;
64 fQATotEner = 0 ;
65 fQATotEnerB = 0 ;
9688c1dd 66
67 fLightYieldMean = 0. ;
68 fIntrinsicPINEfficiency = 0. ;
69 fLightYieldAttenuation = 0. ;
70 fRecalibrationFactor = 0. ;
71 fElectronsPerGeV = 0. ;
27f33ee5 72 fAPDGain = 0. ;
73 fLightFactor = 0. ;
74 fAPDFactor = 0. ;
9688c1dd 75
bea63bea 76}
77
7587f5a5 78//____________________________________________________________________________
79AliPHOSv1::AliPHOSv1(const char *name, const char *title):
7b326aac 80 AliPHOSv0(name,title)
7587f5a5 81{
5f20d3fb 82 //
ed4205d8 83 // We store hits :
5f20d3fb 84 // - fHits (the "normal" one), which retains the hits associated with
85 // the current primary particle being tracked
86 // (this array is reset after each primary has been tracked).
87 //
fa412d9b 88
037cc66d 89
5f20d3fb 90
91 // We do not want to save in TreeH the raw hits
92 // But save the cumulated hits instead (need to create the branch myself)
93 // It is put in the Digit Tree because the TreeH is filled after each primary
7b326aac 94 // and the TreeD at the end of the event (branch is set in FinishEvent() ).
5f20d3fb 95
ed4205d8 96 fHits= new TClonesArray("AliPHOSHit",1000) ;
f6d1e5e1 97 gAlice->AddHitList(fHits) ;
5f20d3fb 98
ed4205d8 99 fNhits = 0 ;
5f20d3fb 100
f6d1e5e1 101 fIshunt = 2 ; // All hits are associated with primary particles
7b326aac 102
9688c1dd 103 //Photoelectron statistics:
104 // The light yield is a poissonian distribution of the number of
105 // photons created in the PbWo4 crystal, calculated using following formula
106 // NumberOfPhotons = EnergyLost * LightYieldMean* APDEfficiency *
107 // exp (-LightYieldAttenuation * DistanceToPINdiodeFromTheHit);
108 // LightYieldMean is parameter calculated to be over 47000 photons per GeV
109 // APDEfficiency is 0.02655
110 // k_0 is 0.0045 from Valery Antonenko
111 // The number of electrons created in the APD is
112 // NumberOfElectrons = APDGain * LightYield
113 // The APD Gain is 300
114 fLightYieldMean = 47000;
115 fIntrinsicPINEfficiency = 0.02655 ; //APD= 0.1875/0.1271 * 0.018 (PIN)
27f33ee5 116 fLightYieldAttenuation = 0.0045 ;
117 fRecalibrationFactor = 13.418/ fLightYieldMean ;
118 fElectronsPerGeV = 2.77e+8 ;
119 fAPDGain = 300. ;
120 fLightFactor = fLightYieldMean * fIntrinsicPINEfficiency ;
121 fAPDFactor = (fRecalibrationFactor/100.) * fAPDGain ;
122
9688c1dd 123
fa7cce36 124 Int_t nb = GetGeometry()->GetNModules() ;
fa412d9b 125
7b326aac 126 // create checkables
127 fQAHitsMul = new AliPHOSQAIntCheckable("HitsM") ;
128 fQATotEner = new AliPHOSQAFloatCheckable("TotEn") ;
9bc230c0 129 fQAHitsMulB = new TClonesArray("AliPHOSQAIntCheckable",nb) ;
130 fQAHitsMulB->SetOwner() ;
7b326aac 131 fQATotEnerB = new TClonesArray("AliPHOSQAFloatCheckable", nb);
9bc230c0 132 fQATotEnerB->SetOwner() ;
7b326aac 133 char tempo[20] ;
134 Int_t i ;
135 for ( i = 0 ; i < nb ; i++ ) {
136 sprintf(tempo, "HitsMB%d", i+1) ;
137 new( (*fQAHitsMulB)[i]) AliPHOSQAIntCheckable(tempo) ;
138 sprintf(tempo, "TotEnB%d", i+1) ;
139 new( (*fQATotEnerB)[i] ) AliPHOSQAFloatCheckable(tempo) ;
140 }
141
7b326aac 142 AliPHOSQAMeanChecker * hmc = new AliPHOSQAMeanChecker("HitsMul", 100. ,25.) ;
143 AliPHOSQAMeanChecker * emc = new AliPHOSQAMeanChecker("TotEner", 10. ,5.) ;
144 AliPHOSQAMeanChecker * bhmc = new AliPHOSQAMeanChecker("HitsMulB", 100. ,5.) ;
145 AliPHOSQAMeanChecker * bemc = new AliPHOSQAMeanChecker("TotEnerB", 2. ,.5) ;
146
147 // associate checkables and checkers
148 fQAHitsMul->AddChecker(hmc) ;
149 fQATotEner->AddChecker(emc) ;
150 for ( i = 0 ; i < nb ; i++ ) {
29b077b5 151 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]))->AddChecker(bhmc) ;
152 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]))->AddChecker(bemc) ;
7b326aac 153 }
7b7c1533 154
5f20d3fb 155}
156
7587f5a5 157//____________________________________________________________________________
bea63bea 158AliPHOSv1::~AliPHOSv1()
b2a60966 159{
bea63bea 160 // dtor
88cb7938 161 if ( fHits) {
ed4205d8 162 fHits->Delete() ;
163 delete fHits ;
164 fHits = 0 ;
8dfa469d 165 }
9bc230c0 166
9bc230c0 167 if ( fQAHitsMulB ) {
168 fQAHitsMulB->Delete() ;
169 delete fQAHitsMulB ;
170 }
171
172 if ( fQATotEnerB ) {
173 fQATotEnerB->Delete() ;
174 delete fQATotEnerB ;
175 }
176
7587f5a5 177}
178
7587f5a5 179//____________________________________________________________________________
b37750a6 180void AliPHOSv1::AddHit(Int_t shunt, Int_t primary, Int_t tracknumber, Int_t Id, Float_t * hits)
bea63bea 181{
182 // Add a hit to the hit list.
f6d1e5e1 183 // A PHOS hit is the sum of all hits in a single crystal from one primary and within some time gate
bea63bea 184
5f20d3fb 185 Int_t hitCounter ;
bea63bea 186 AliPHOSHit *newHit ;
5f20d3fb 187 AliPHOSHit *curHit ;
188 Bool_t deja = kFALSE ;
fa7cce36 189 AliPHOSGeometry * geom = GetGeometry() ;
bea63bea 190
b37750a6 191 newHit = new AliPHOSHit(shunt, primary, tracknumber, Id, hits) ;
bea63bea 192
7854a24a 193 for ( hitCounter = fNhits-1 ; hitCounter >= 0 && !deja ; hitCounter-- ) {
29b077b5 194 curHit = dynamic_cast<AliPHOSHit*>((*fHits)[hitCounter]) ;
9688c1dd 195 if(curHit->GetPrimary() != primary) break ;
196 // We add hits with the same primary, while GEANT treats primaries succesively
ed4205d8 197 if( *curHit == *newHit ) {
f15a01eb 198 *curHit + *newHit ;
ed4205d8 199 deja = kTRUE ;
5f20d3fb 200 }
201 }
202
203 if ( !deja ) {
ed4205d8 204 new((*fHits)[fNhits]) AliPHOSHit(*newHit) ;
7b326aac 205 // get the block Id number
9688c1dd 206 Int_t relid[4] ;
fa7cce36 207 geom->AbsToRelNumbering(Id, relid) ;
7b326aac 208 // and fill the relevant QA checkable (only if in PbW04)
209 if ( relid[1] == 0 ) {
210 fQAHitsMul->Update(1) ;
29b077b5 211 (static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[relid[0]-1]))->Update(1) ;
7b326aac 212 }
ed4205d8 213 fNhits++ ;
5f20d3fb 214 }
215
bea63bea 216 delete newHit;
bea63bea 217}
218
7b326aac 219//____________________________________________________________________________
220void AliPHOSv1::FinishPrimary()
221{
222 // called at the end of each track (primary) by AliRun
223 // hits are reset for each new track
224 // accumulate the total hit-multiplicity
225// if ( fQAHitsMul )
226// fQAHitsMul->Update( fHits->GetEntriesFast() ) ;
227
228}
229
230//____________________________________________________________________________
231void AliPHOSv1::FinishEvent()
232{
233 // called at the end of each event by AliRun
234 // accumulate the hit-multiplicity and total energy per block
235 // if the values have been updated check it
88cb7938 236
7b326aac 237
238 if ( fQATotEner ) {
239 if ( fQATotEner->HasChanged() ) {
240 fQATotEner->CheckMe() ;
241 fQATotEner->Reset() ;
242 }
243 }
244
245 Int_t i ;
246 if ( fQAHitsMulB && fQATotEnerB ) {
fa7cce36 247 for (i = 0 ; i < GetGeometry()->GetNModules() ; i++) {
29b077b5 248 AliPHOSQAIntCheckable * ci = static_cast<AliPHOSQAIntCheckable*>((*fQAHitsMulB)[i]) ;
249 AliPHOSQAFloatCheckable* cf = static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[i]) ;
7b326aac 250 if ( ci->HasChanged() ) {
251 ci->CheckMe() ;
252 ci->Reset() ;
253 }
254 if ( cf->HasChanged() ) {
255 cf->CheckMe() ;
256 cf->Reset() ;
257 }
258 }
259 }
260
261 // check the total multiplicity
262
263 if ( fQAHitsMul ) {
264 if ( fQAHitsMul->HasChanged() ) {
265 fQAHitsMul->CheckMe() ;
266 fQAHitsMul->Reset() ;
267 }
268 }
88cb7938 269
270 AliDetector::FinishEvent();
7b326aac 271}
5f20d3fb 272//____________________________________________________________________________
7587f5a5 273void AliPHOSv1::StepManager(void)
274{
9688c1dd 275 // Accumulates hits as long as the track stays in a single crystal or CPV gas Cell
b2a60966 276
4f5bbbd4 277 Int_t relid[4] ; // (box, layer, row, column) indices
278 Int_t absid ; // absolute cell ID number
471193a8 279 Float_t xyzte[5]={-1000.,-1000.,-1000.,0.,0.} ; // position wrt MRS, time and energy deposited
4f5bbbd4 280 TLorentzVector pos ; // Lorentz vector of the track current position
fa412d9b 281 Int_t copy ;
7587f5a5 282
bcd8a61c 283 Int_t tracknumber = gAlice->GetCurrentTrackNumber() ;
fa7cce36 284 TString name = GetGeometry()->GetName() ;
037cc66d 285
9688c1dd 286 Int_t moduleNumber ;
287
288 if( gMC->CurrentVolID(copy) == gMC->VolId("PCPQ") &&
289 (gMC->IsTrackEntering() ) &&
290 gMC->TrackCharge() != 0) {
f6d1e5e1 291
9688c1dd 292 gMC -> TrackPosition(pos);
f6d1e5e1 293
9688c1dd 294 Float_t xyzm[3], xyzd[3] ;
295 Int_t i;
296 for (i=0; i<3; i++) xyzm[i] = pos[i];
297 gMC -> Gmtod (xyzm, xyzd, 1); // transform coordinate from master to daughter system
298
e3daf02c 299 Float_t xyd[3]={0,0,0} ; //local position of the entering
9688c1dd 300 xyd[0] = xyzd[0];
53e03a1e 301 xyd[1] =-xyzd[2];
302 xyd[2] =-xyzd[1];
f6d1e5e1 303
9688c1dd 304 // Current momentum of the hit's track in the local ref. system
305 TLorentzVector pmom ; //momentum of the particle initiated hit
306 gMC -> TrackMomentum(pmom);
307 Float_t pm[3], pd[3];
308 for (i=0; i<3; i++)
309 pm[i] = pmom[i];
f6d1e5e1 310
9688c1dd 311 gMC -> Gmtod (pm, pd, 2); // transform 3-momentum from master to daughter system
312 pmom[0] = pd[0];
cf75bc19 313 pmom[1] =-pd[1];
314 pmom[2] =-pd[2];
f6d1e5e1 315
9688c1dd 316 // Digitize the current CPV hit:
317
318 // 1. find pad response and
319 gMC->CurrentVolOffID(3,moduleNumber);
320 moduleNumber--;
321
322 TClonesArray *cpvDigits = new TClonesArray("AliPHOSCPVDigit",0); // array of digits for current hit
90cceaf6 323 CPVDigitize(pmom,xyd,cpvDigits);
fa412d9b 324
9688c1dd 325 Float_t xmean = 0;
326 Float_t zmean = 0;
327 Float_t qsum = 0;
328 Int_t idigit,ndigits;
329
330 // 2. go through the current digit list and sum digits in pads
331
332 ndigits = cpvDigits->GetEntriesFast();
333 for (idigit=0; idigit<ndigits-1; idigit++) {
29b077b5 334 AliPHOSCPVDigit *cpvDigit1 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 335 Float_t x1 = cpvDigit1->GetXpad() ;
336 Float_t z1 = cpvDigit1->GetYpad() ;
337 for (Int_t jdigit=idigit+1; jdigit<ndigits; jdigit++) {
29b077b5 338 AliPHOSCPVDigit *cpvDigit2 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(jdigit));
9688c1dd 339 Float_t x2 = cpvDigit2->GetXpad() ;
340 Float_t z2 = cpvDigit2->GetYpad() ;
341 if (x1==x2 && z1==z2) {
342 Float_t qsum = cpvDigit1->GetQpad() + cpvDigit2->GetQpad() ;
343 cpvDigit2->SetQpad(qsum) ;
344 cpvDigits->RemoveAt(idigit) ;
fa412d9b 345 }
346 }
9688c1dd 347 }
348 cpvDigits->Compress() ;
349
350 // 3. add digits to temporary hit list fTmpHits
351
352 ndigits = cpvDigits->GetEntriesFast();
353 for (idigit=0; idigit<ndigits; idigit++) {
29b077b5 354 AliPHOSCPVDigit *cpvDigit = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 355 relid[0] = moduleNumber + 1 ; // CPV (or PHOS) module number
356 relid[1] =-1 ; // means CPV
357 relid[2] = cpvDigit->GetXpad() ; // column number of a pad
358 relid[3] = cpvDigit->GetYpad() ; // row number of a pad
359
360 // get the absolute Id number
361 GetGeometry()->RelToAbsNumbering(relid, absid) ;
362
363 // add current digit to the temporary hit list
364
471193a8 365 xyzte[3] = gMC->TrackTime() ;
366 xyzte[4] = cpvDigit->GetQpad() ; // amplitude in a pad
5a49626b 367 AddHit(fIshunt, -1, tracknumber, absid, xyzte); // -1: No need in primary for CPV
9688c1dd 368
369 if (cpvDigit->GetQpad() > 0.02) {
370 xmean += cpvDigit->GetQpad() * (cpvDigit->GetXpad() + 0.5);
371 zmean += cpvDigit->GetQpad() * (cpvDigit->GetYpad() + 0.5);
372 qsum += cpvDigit->GetQpad();
fa412d9b 373 }
fa412d9b 374 }
e534a69d 375 if (cpvDigits) {
376 cpvDigits->Delete();
377 delete cpvDigits;
378 cpvDigits=0;
379 }
9688c1dd 380 }
037cc66d 381
9688c1dd 382
383
fa412d9b 384 if(gMC->CurrentVolID(copy) == gMC->VolId("PXTL") ) { // We are inside a PBWO crystal
9688c1dd 385
fa412d9b 386 gMC->TrackPosition(pos) ;
471193a8 387 xyzte[0] = pos[0] ;
388 xyzte[1] = pos[1] ;
389 xyzte[2] = pos[2] ;
597e6309 390
9688c1dd 391 Float_t global[3], local[3] ;
392 global[0] = pos[0] ;
393 global[1] = pos[1] ;
394 global[2] = pos[2] ;
395 Float_t lostenergy = gMC->Edep();
f6d1e5e1 396
397 //Put in the TreeK particle entering PHOS and all its parents
398 if ( gMC->IsTrackEntering() ){
399 Float_t xyzd[3] ;
471193a8 400 gMC -> Gmtod (xyzte, xyzd, 1); // transform coordinate from master to daughter system
5a49626b 401 if (xyzd[1] < -GetGeometry()->GetCrystalSize(1)/2.+0.001){ //Entered close to forward surface
f6d1e5e1 402 TParticle * part = 0 ;
bcd8a61c 403 Int_t parent = gAlice->GetCurrentTrackNumber() ;
f6d1e5e1 404 while ( parent != -1 ) {
405 part = gAlice->Particle(parent) ;
406 part->SetBit(kKeepBit);
407 parent = part->GetFirstMother() ;
408 }
409 }
410 }
9688c1dd 411 if ( lostenergy != 0 ) { // Track is inside the crystal and deposits some energy
471193a8 412 xyzte[3] = gMC->TrackTime() ;
f6d1e5e1 413
9688c1dd 414 gMC->CurrentVolOffID(10, moduleNumber) ; // get the PHOS module number ;
7b326aac 415
9688c1dd 416 Int_t strip ;
417 gMC->CurrentVolOffID(3, strip);
418 Int_t cell ;
419 gMC->CurrentVolOffID(2, cell);
f6d1e5e1 420
9688c1dd 421 Int_t row = 1 + GetGeometry()->GetNZ() - strip % GetGeometry()->GetNZ() ;
422 Int_t col = (Int_t) TMath::Ceil((Double_t) strip/GetGeometry()->GetNZ()) -1 ;
f6d1e5e1 423
9688c1dd 424 absid = (moduleNumber-1)*GetGeometry()->GetNCristalsInModule() +
425 row + (col*GetGeometry()->GetEMCAGeometry()->GetNCellsInStrip() + cell-1)*GetGeometry()->GetNZ() ;
f6d1e5e1 426
9688c1dd 427 gMC->Gmtod(global, local, 1) ;
428
471193a8 429 //Calculates the light yield, the number of photons produced in the
9688c1dd 430 //crystal
27f33ee5 431 Float_t lightYield = gRandom->Poisson(fLightFactor * lostenergy *
9688c1dd 432 exp(-fLightYieldAttenuation *
433 (local[1]+GetGeometry()->GetCrystalSize(1)/2.0 ))
434 ) ;
471193a8 435
9688c1dd 436 //Calculates de energy deposited in the crystal
471193a8 437 xyzte[4] = fAPDFactor * lightYield ;
9688c1dd 438
5a49626b 439 Int_t primary =-1 ;
440 if(fIshunt == 1)
bcd8a61c 441 primary = gAlice->GetPrimary( gAlice->GetCurrentTrackNumber() );
5a49626b 442 else if(fIshunt == 2){
bcd8a61c 443 primary = gAlice->GetCurrentTrackNumber() ;
5a49626b 444 TParticle * part = gAlice->Particle(primary) ;
445 while ( !part->TestBit(kKeepBit) ) {
446 primary = part->GetFirstMother() ;
447 if(primary == -1) break ; //there is a possibility that particle passed e.g. thermal isulator and hits a side
448 //surface of the crystal. In this case it may have no primary at all.
449 //We can not easily separate this case from the case when this is part of the shower,
450 //developed in the neighboring crystal.
451 part = gAlice->Particle(primary) ;
452 }
453 }
454
455
9688c1dd 456 // add current hit to the hit list
21cd0c07 457 // Info("StepManager","%d %d", primary, tracknumber) ;
471193a8 458 AddHit(fIshunt, primary,tracknumber, absid, xyzte);
9688c1dd 459
94de8339 460 // fill the relevant QA Checkables
471193a8 461 fQATotEner->Update( xyzte[4] ) ; // total energy in PHOS
462 (static_cast<AliPHOSQAFloatCheckable*>((*fQATotEnerB)[moduleNumber-1]))->Update( xyzte[4] ) ; // energy in this block
f6d1e5e1 463
fa412d9b 464 } // there is deposited energy
465 } // we are inside a PHOS Xtal
f6d1e5e1 466
fa412d9b 467}
468
469//____________________________________________________________________________
90cceaf6 470void AliPHOSv1::CPVDigitize (TLorentzVector p, Float_t *zxhit, TClonesArray *cpvDigits)
fa412d9b 471{
472 // ------------------------------------------------------------------------
473 // Digitize one CPV hit:
474 // On input take exact 4-momentum p and position zxhit of the hit,
475 // find the pad response around this hit and
476 // put the amplitudes in the pads into array digits
477 //
478 // Author: Yuri Kharlov (after Serguei Sadovsky)
479 // 2 October 2000
480 // ------------------------------------------------------------------------
481
fa7cce36 482 const Float_t kCelWr = GetGeometry()->GetPadSizePhi()/2; // Distance between wires (2 wires above 1 pad)
a3dfe79c 483 const Float_t kDetR = 0.1; // Relative energy fluctuation in track for 100 e-
484 const Float_t kdEdx = 4.0; // Average energy loss in CPV;
485 const Int_t kNgamz = 5; // Ionization size in Z
486 const Int_t kNgamx = 9; // Ionization size in Phi
487 const Float_t kNoise = 0.03; // charge noise in one pad
fa412d9b 488
489 Float_t rnor1,rnor2;
490
491 // Just a reminder on axes notation in the CPV module:
492 // axis Z goes along the beam
493 // axis X goes across the beam in the module plane
494 // axis Y is a normal to the module plane showing from the IP
495
496 Float_t hitX = zxhit[0];
497 Float_t hitZ =-zxhit[1];
498 Float_t pX = p.Px();
499 Float_t pZ =-p.Pz();
500 Float_t pNorm = p.Py();
a3dfe79c 501 Float_t eloss = kdEdx;
3d402178 502
21cd0c07 503//Info("CPVDigitize", "YVK : %f %f | %f %f %d", hitX, hitZ, pX, pZ, pNorm) ;
7b326aac 504
fa7cce36 505 Float_t dZY = pZ/pNorm * GetGeometry()->GetCPVGasThickness();
506 Float_t dXY = pX/pNorm * GetGeometry()->GetCPVGasThickness();
fa412d9b 507 gRandom->Rannor(rnor1,rnor2);
a3dfe79c 508 eloss *= (1 + kDetR*rnor1) *
fa7cce36 509 TMath::Sqrt((1 + ( pow(dZY,2) + pow(dXY,2) ) / pow(GetGeometry()->GetCPVGasThickness(),2)));
510 Float_t zhit1 = hitZ + GetGeometry()->GetCPVActiveSize(1)/2 - dZY/2;
511 Float_t xhit1 = hitX + GetGeometry()->GetCPVActiveSize(0)/2 - dXY/2;
fa412d9b 512 Float_t zhit2 = zhit1 + dZY;
513 Float_t xhit2 = xhit1 + dXY;
514
a3dfe79c 515 Int_t iwht1 = (Int_t) (xhit1 / kCelWr); // wire (x) coordinate "in"
516 Int_t iwht2 = (Int_t) (xhit2 / kCelWr); // wire (x) coordinate "out"
fa412d9b 517
518 Int_t nIter;
519 Float_t zxe[3][5];
520 if (iwht1==iwht2) { // incline 1-wire hit
521 nIter = 2;
522 zxe[0][0] = (zhit1 + zhit2 - dZY*0.57735) / 2;
a3dfe79c 523 zxe[1][0] = (iwht1 + 0.5) * kCelWr;
524 zxe[2][0] = eloss/2;
fa412d9b 525 zxe[0][1] = (zhit1 + zhit2 + dZY*0.57735) / 2;
a3dfe79c 526 zxe[1][1] = (iwht1 + 0.5) * kCelWr;
527 zxe[2][1] = eloss/2;
fa412d9b 528 }
529 else if (TMath::Abs(iwht1-iwht2) != 1) { // incline 3-wire hit
530 nIter = 3;
531 Int_t iwht3 = (iwht1 + iwht2) / 2;
a3dfe79c 532 Float_t xwht1 = (iwht1 + 0.5) * kCelWr; // wire 1
533 Float_t xwht2 = (iwht2 + 0.5) * kCelWr; // wire 2
534 Float_t xwht3 = (iwht3 + 0.5) * kCelWr; // wire 3
fa412d9b 535 Float_t xwr13 = (xwht1 + xwht3) / 2; // center 13
536 Float_t xwr23 = (xwht2 + xwht3) / 2; // center 23
537 Float_t dxw1 = xhit1 - xwr13;
538 Float_t dxw2 = xhit2 - xwr23;
a3dfe79c 539 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
540 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
541 Float_t egm3 = kCelWr / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
fa412d9b 542 zxe[0][0] = (dXY*(xwr13-xwht1)/dXY + zhit1 + zhit1) / 2;
543 zxe[1][0] = xwht1;
a3dfe79c 544 zxe[2][0] = eloss * egm1;
fa412d9b 545 zxe[0][1] = (dXY*(xwr23-xwht1)/dXY + zhit1 + zhit2) / 2;
546 zxe[1][1] = xwht2;
a3dfe79c 547 zxe[2][1] = eloss * egm2;
fa412d9b 548 zxe[0][2] = dXY*(xwht3-xwht1)/dXY + zhit1;
549 zxe[1][2] = xwht3;
a3dfe79c 550 zxe[2][2] = eloss * egm3;
fa412d9b 551 }
552 else { // incline 2-wire hit
553 nIter = 2;
a3dfe79c 554 Float_t xwht1 = (iwht1 + 0.5) * kCelWr;
555 Float_t xwht2 = (iwht2 + 0.5) * kCelWr;
fa412d9b 556 Float_t xwr12 = (xwht1 + xwht2) / 2;
557 Float_t dxw1 = xhit1 - xwr12;
558 Float_t dxw2 = xhit2 - xwr12;
559 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
560 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
561 zxe[0][0] = (zhit1 + zhit2 - dZY*egm1) / 2;
562 zxe[1][0] = xwht1;
a3dfe79c 563 zxe[2][0] = eloss * egm1;
fa412d9b 564 zxe[0][1] = (zhit1 + zhit2 + dZY*egm2) / 2;
565 zxe[1][1] = xwht2;
a3dfe79c 566 zxe[2][1] = eloss * egm2;
fa412d9b 567 }
bea63bea 568
fa412d9b 569 // Finite size of ionization region
570
fa7cce36 571 Int_t nCellZ = GetGeometry()->GetNumberOfCPVPadsZ();
572 Int_t nCellX = GetGeometry()->GetNumberOfCPVPadsPhi();
a3dfe79c 573 Int_t nz3 = (kNgamz+1)/2;
574 Int_t nx3 = (kNgamx+1)/2;
575 cpvDigits->Expand(nIter*kNgamx*kNgamz);
29b077b5 576 TClonesArray &ldigits = *(static_cast<TClonesArray *>(cpvDigits));
fa412d9b 577
578 for (Int_t iter=0; iter<nIter; iter++) {
579
580 Float_t zhit = zxe[0][iter];
581 Float_t xhit = zxe[1][iter];
582 Float_t qhit = zxe[2][iter];
fa7cce36 583 Float_t zcell = zhit / GetGeometry()->GetPadSizeZ();
584 Float_t xcell = xhit / GetGeometry()->GetPadSizePhi();
fa412d9b 585 if ( zcell<=0 || xcell<=0 ||
586 zcell>=nCellZ || xcell>=nCellX) return;
587 Int_t izcell = (Int_t) zcell;
588 Int_t ixcell = (Int_t) xcell;
589 Float_t zc = zcell - izcell - 0.5;
590 Float_t xc = xcell - ixcell - 0.5;
a3dfe79c 591 for (Int_t iz=1; iz<=kNgamz; iz++) {
fa412d9b 592 Int_t kzg = izcell + iz - nz3;
593 if (kzg<=0 || kzg>nCellZ) continue;
594 Float_t zg = (Float_t)(iz-nz3) - zc;
a3dfe79c 595 for (Int_t ix=1; ix<=kNgamx; ix++) {
fa412d9b 596 Int_t kxg = ixcell + ix - nx3;
597 if (kxg<=0 || kxg>nCellX) continue;
598 Float_t xg = (Float_t)(ix-nx3) - xc;
599
600 // Now calculate pad response
601 Float_t qpad = CPVPadResponseFunction(qhit,zg,xg);
a3dfe79c 602 qpad += kNoise*rnor2;
fa412d9b 603 if (qpad<0) continue;
604
605 // Fill the array with pad response ID and amplitude
3d402178 606 new(ldigits[cpvDigits->GetEntriesFast()]) AliPHOSCPVDigit(kxg,kzg,qpad);
fa412d9b 607 }
fa412d9b 608 }
fa412d9b 609 }
610}
611
612//____________________________________________________________________________
613Float_t AliPHOSv1::CPVPadResponseFunction(Float_t qhit, Float_t zhit, Float_t xhit) {
614 // ------------------------------------------------------------------------
615 // Calculate the amplitude in one CPV pad using the
616 // cumulative pad response function
617 // Author: Yuri Kharlov (after Serguei Sadovski)
618 // 3 October 2000
619 // ------------------------------------------------------------------------
620
fa7cce36 621 Double_t dz = GetGeometry()->GetPadSizeZ() / 2;
622 Double_t dx = GetGeometry()->GetPadSizePhi() / 2;
623 Double_t z = zhit * GetGeometry()->GetPadSizeZ();
624 Double_t x = xhit * GetGeometry()->GetPadSizePhi();
fa412d9b 625 Double_t amplitude = qhit *
626 (CPVCumulPadResponse(z+dz,x+dx) - CPVCumulPadResponse(z+dz,x-dx) -
627 CPVCumulPadResponse(z-dz,x+dx) + CPVCumulPadResponse(z-dz,x-dx));
628 return (Float_t)amplitude;
7587f5a5 629}
630
fa412d9b 631//____________________________________________________________________________
632Double_t AliPHOSv1::CPVCumulPadResponse(Double_t x, Double_t y) {
633 // ------------------------------------------------------------------------
634 // Cumulative pad response function
635 // It includes several terms from the CF decomposition in electrostatics
636 // Note: this cumulative function is wrong since omits some terms
637 // but the cell amplitude obtained with it is correct because
638 // these omitting terms cancel
639 // Author: Yuri Kharlov (after Serguei Sadovski)
640 // 3 October 2000
641 // ------------------------------------------------------------------------
642
a3dfe79c 643 const Double_t kA=1.0;
644 const Double_t kB=0.7;
fa412d9b 645
646 Double_t r2 = x*x + y*y;
647 Double_t xy = x*y;
648 Double_t cumulPRF = 0;
649 for (Int_t i=0; i<=4; i++) {
a3dfe79c 650 Double_t b1 = (2*i + 1) * kB;
fa412d9b 651 cumulPRF += TMath::Power(-1,i) * TMath::ATan( xy / (b1*TMath::Sqrt(b1*b1 + r2)) );
652 }
a3dfe79c 653 cumulPRF *= kA/(2*TMath::Pi());
fa412d9b 654 return cumulPRF;
655}
7eb9d12d 656