]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PHOS/AliPHOSv1.cxx
Effective C++ corrections (T.Pocheptsov)
[u/mrichter/AliRoot.git] / PHOS / AliPHOSv1.cxx
CommitLineData
7587f5a5 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b2a60966 16/* $Id$ */
5f20d3fb 17
702ab87e 18/* History of cvs commits:
19 *
20 * $Log$
43fbaae1 21 * Revision 1.104 2005/05/28 14:19:05 schutz
22 * Compilation warnings fixed by T.P.
23 *
702ab87e 24 */
25
7587f5a5 26//_________________________________________________________________________
5f20d3fb 27// Implementation version v1 of PHOS Manager class
a3dfe79c 28//---
a3dfe79c 29//---
30// Layout EMC + CPV has name IHEP:
ed4205d8 31// Produces hits for CPV, cumulated hits
32//---
ed4205d8 33//---
5f20d3fb 34//*-- Author: Yves Schutz (SUBATECH)
b2a60966 35
7587f5a5 36
37// --- ROOT system ---
88cb7938 38#include <TParticle.h>
88cb7938 39#include <TVirtualMC.h>
7587f5a5 40
41// --- Standard library ---
42
88cb7938 43
7587f5a5 44// --- AliRoot header files ---
97cee223 45#include "AliPHOSCPVDigit.h"
97cee223 46#include "AliPHOSGeometry.h"
88cb7938 47#include "AliPHOSHit.h"
88cb7938 48#include "AliPHOSv1.h"
49#include "AliRun.h"
5d12ce38 50#include "AliMC.h"
7587f5a5 51
52ClassImp(AliPHOSv1)
53
bea63bea 54//____________________________________________________________________________
02ab1add 55AliPHOSv1::AliPHOSv1():
43fbaae1 56 fLightYieldMean(0.),
57 fIntrinsicPINEfficiency(0.),
58 fLightYieldAttenuation(0.),
59 fRecalibrationFactor(0.),
60 fElectronsPerGeV(0.),
61 fAPDGain(0.),
62 fLightFactor(0.),
63 fAPDFactor(0.)
bea63bea 64{
43fbaae1 65 //Def ctor.
bea63bea 66}
67
7587f5a5 68//____________________________________________________________________________
69AliPHOSv1::AliPHOSv1(const char *name, const char *title):
43fbaae1 70 AliPHOSv0(name,title),
71 fLightYieldMean(0.),
72 fIntrinsicPINEfficiency(0.),
73 fLightYieldAttenuation(0.),
74 fRecalibrationFactor(0.),
75 fElectronsPerGeV(0.),
76 fAPDGain(0.),
77 fLightFactor(0.),
78 fAPDFactor(0.)
7587f5a5 79{
5f20d3fb 80 //
ed4205d8 81 // We store hits :
5f20d3fb 82 // - fHits (the "normal" one), which retains the hits associated with
83 // the current primary particle being tracked
84 // (this array is reset after each primary has been tracked).
85 //
fa412d9b 86
037cc66d 87
5f20d3fb 88
89 // We do not want to save in TreeH the raw hits
90 // But save the cumulated hits instead (need to create the branch myself)
91 // It is put in the Digit Tree because the TreeH is filled after each primary
7b326aac 92 // and the TreeD at the end of the event (branch is set in FinishEvent() ).
5f20d3fb 93
ed4205d8 94 fHits= new TClonesArray("AliPHOSHit",1000) ;
5d12ce38 95 gAlice->GetMCApp()->AddHitList(fHits) ;
5f20d3fb 96
ed4205d8 97 fNhits = 0 ;
5f20d3fb 98
f6d1e5e1 99 fIshunt = 2 ; // All hits are associated with primary particles
7b326aac 100
9688c1dd 101 //Photoelectron statistics:
102 // The light yield is a poissonian distribution of the number of
103 // photons created in the PbWo4 crystal, calculated using following formula
104 // NumberOfPhotons = EnergyLost * LightYieldMean* APDEfficiency *
105 // exp (-LightYieldAttenuation * DistanceToPINdiodeFromTheHit);
106 // LightYieldMean is parameter calculated to be over 47000 photons per GeV
107 // APDEfficiency is 0.02655
108 // k_0 is 0.0045 from Valery Antonenko
109 // The number of electrons created in the APD is
110 // NumberOfElectrons = APDGain * LightYield
111 // The APD Gain is 300
112 fLightYieldMean = 47000;
113 fIntrinsicPINEfficiency = 0.02655 ; //APD= 0.1875/0.1271 * 0.018 (PIN)
27f33ee5 114 fLightYieldAttenuation = 0.0045 ;
115 fRecalibrationFactor = 13.418/ fLightYieldMean ;
116 fElectronsPerGeV = 2.77e+8 ;
117 fAPDGain = 300. ;
118 fLightFactor = fLightYieldMean * fIntrinsicPINEfficiency ;
184569b0 119 fAPDFactor = (fRecalibrationFactor/100.) * fAPDGain ;
5f20d3fb 120}
121
43fbaae1 122AliPHOSv1::AliPHOSv1(AliPHOSv1 & phos) :
123 AliPHOSv0(phos),
124 fLightYieldMean(0.),
125 fIntrinsicPINEfficiency(0.),
126 fLightYieldAttenuation(0.),
127 fRecalibrationFactor(0.),
128 fElectronsPerGeV(0.),
129 fAPDGain(0.),
130 fLightFactor(0.),
131 fAPDFactor(0.)
132{
133 //Copy ctor. Can be wrong.
134 phos.Copy(*this) ;
135}
136
137
7587f5a5 138//____________________________________________________________________________
bea63bea 139AliPHOSv1::~AliPHOSv1()
b2a60966 140{
bea63bea 141 // dtor
88cb7938 142 if ( fHits) {
ed4205d8 143 fHits->Delete() ;
144 delete fHits ;
145 fHits = 0 ;
184569b0 146 }
7587f5a5 147}
148
780fda6d 149//____________________________________________________________________________
702ab87e 150void AliPHOSv1::Copy(TObject & base)const
780fda6d 151{
702ab87e 152 TObject::Copy(base) ;
153 AliPHOSv0::Copy(base) ;
154 AliPHOSv1 &phos = static_cast<AliPHOSv1 &>(base);
780fda6d 155 phos.fLightYieldMean = fLightYieldMean ;
156 phos.fIntrinsicPINEfficiency = fIntrinsicPINEfficiency ;
157 phos.fLightYieldAttenuation = fLightYieldAttenuation ;
158 phos.fRecalibrationFactor = fRecalibrationFactor ;
159 phos.fElectronsPerGeV = fElectronsPerGeV ;
160 phos.fAPDGain = fAPDGain ;
161 phos.fLightFactor = fLightFactor ;
162 phos.fAPDFactor = fAPDFactor ;
163}
164
7587f5a5 165//____________________________________________________________________________
2af5445a 166void AliPHOSv1::AddHit(Int_t shunt, Int_t primary, Int_t Id, Float_t * hits)
bea63bea 167{
168 // Add a hit to the hit list.
f6d1e5e1 169 // A PHOS hit is the sum of all hits in a single crystal from one primary and within some time gate
bea63bea 170
5f20d3fb 171 Int_t hitCounter ;
bea63bea 172 AliPHOSHit *newHit ;
5f20d3fb 173 AliPHOSHit *curHit ;
174 Bool_t deja = kFALSE ;
fa7cce36 175 AliPHOSGeometry * geom = GetGeometry() ;
bea63bea 176
2af5445a 177 newHit = new AliPHOSHit(shunt, primary, Id, hits) ;
bea63bea 178
7854a24a 179 for ( hitCounter = fNhits-1 ; hitCounter >= 0 && !deja ; hitCounter-- ) {
29b077b5 180 curHit = dynamic_cast<AliPHOSHit*>((*fHits)[hitCounter]) ;
9688c1dd 181 if(curHit->GetPrimary() != primary) break ;
182 // We add hits with the same primary, while GEANT treats primaries succesively
ed4205d8 183 if( *curHit == *newHit ) {
f15a01eb 184 *curHit + *newHit ;
ed4205d8 185 deja = kTRUE ;
5f20d3fb 186 }
187 }
188
189 if ( !deja ) {
ed4205d8 190 new((*fHits)[fNhits]) AliPHOSHit(*newHit) ;
7b326aac 191 // get the block Id number
9688c1dd 192 Int_t relid[4] ;
fa7cce36 193 geom->AbsToRelNumbering(Id, relid) ;
184569b0 194
ed4205d8 195 fNhits++ ;
5f20d3fb 196 }
184569b0 197
bea63bea 198 delete newHit;
bea63bea 199}
200
7b326aac 201//____________________________________________________________________________
202void AliPHOSv1::FinishPrimary()
203{
204 // called at the end of each track (primary) by AliRun
205 // hits are reset for each new track
206 // accumulate the total hit-multiplicity
7b326aac 207
208}
209
210//____________________________________________________________________________
211void AliPHOSv1::FinishEvent()
212{
213 // called at the end of each event by AliRun
214 // accumulate the hit-multiplicity and total energy per block
215 // if the values have been updated check it
88cb7938 216
88cb7938 217 AliDetector::FinishEvent();
7b326aac 218}
5f20d3fb 219//____________________________________________________________________________
7587f5a5 220void AliPHOSv1::StepManager(void)
221{
9688c1dd 222 // Accumulates hits as long as the track stays in a single crystal or CPV gas Cell
b2a60966 223
4f5bbbd4 224 Int_t relid[4] ; // (box, layer, row, column) indices
225 Int_t absid ; // absolute cell ID number
471193a8 226 Float_t xyzte[5]={-1000.,-1000.,-1000.,0.,0.} ; // position wrt MRS, time and energy deposited
4f5bbbd4 227 TLorentzVector pos ; // Lorentz vector of the track current position
fa412d9b 228 Int_t copy ;
7587f5a5 229
fa7cce36 230 TString name = GetGeometry()->GetName() ;
037cc66d 231
9688c1dd 232 Int_t moduleNumber ;
233
d6fb41ac 234 static Int_t idPCPQ = gMC->VolId("PCPQ");
235 if( gMC->CurrentVolID(copy) == idPCPQ &&
9688c1dd 236 (gMC->IsTrackEntering() ) &&
237 gMC->TrackCharge() != 0) {
f6d1e5e1 238
9688c1dd 239 gMC -> TrackPosition(pos);
f6d1e5e1 240
9688c1dd 241 Float_t xyzm[3], xyzd[3] ;
242 Int_t i;
243 for (i=0; i<3; i++) xyzm[i] = pos[i];
244 gMC -> Gmtod (xyzm, xyzd, 1); // transform coordinate from master to daughter system
245
e3daf02c 246 Float_t xyd[3]={0,0,0} ; //local position of the entering
9688c1dd 247 xyd[0] = xyzd[0];
53e03a1e 248 xyd[1] =-xyzd[2];
249 xyd[2] =-xyzd[1];
f6d1e5e1 250
9688c1dd 251 // Current momentum of the hit's track in the local ref. system
252 TLorentzVector pmom ; //momentum of the particle initiated hit
253 gMC -> TrackMomentum(pmom);
254 Float_t pm[3], pd[3];
255 for (i=0; i<3; i++)
256 pm[i] = pmom[i];
f6d1e5e1 257
9688c1dd 258 gMC -> Gmtod (pm, pd, 2); // transform 3-momentum from master to daughter system
259 pmom[0] = pd[0];
cf75bc19 260 pmom[1] =-pd[1];
261 pmom[2] =-pd[2];
f6d1e5e1 262
9688c1dd 263 // Digitize the current CPV hit:
264
265 // 1. find pad response and
266 gMC->CurrentVolOffID(3,moduleNumber);
267 moduleNumber--;
268
269 TClonesArray *cpvDigits = new TClonesArray("AliPHOSCPVDigit",0); // array of digits for current hit
90cceaf6 270 CPVDigitize(pmom,xyd,cpvDigits);
fa412d9b 271
9688c1dd 272 Float_t xmean = 0;
273 Float_t zmean = 0;
274 Float_t qsum = 0;
275 Int_t idigit,ndigits;
276
277 // 2. go through the current digit list and sum digits in pads
278
279 ndigits = cpvDigits->GetEntriesFast();
280 for (idigit=0; idigit<ndigits-1; idigit++) {
29b077b5 281 AliPHOSCPVDigit *cpvDigit1 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 282 Float_t x1 = cpvDigit1->GetXpad() ;
283 Float_t z1 = cpvDigit1->GetYpad() ;
284 for (Int_t jdigit=idigit+1; jdigit<ndigits; jdigit++) {
29b077b5 285 AliPHOSCPVDigit *cpvDigit2 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(jdigit));
9688c1dd 286 Float_t x2 = cpvDigit2->GetXpad() ;
287 Float_t z2 = cpvDigit2->GetYpad() ;
288 if (x1==x2 && z1==z2) {
289 Float_t qsum = cpvDigit1->GetQpad() + cpvDigit2->GetQpad() ;
290 cpvDigit2->SetQpad(qsum) ;
291 cpvDigits->RemoveAt(idigit) ;
fa412d9b 292 }
293 }
9688c1dd 294 }
295 cpvDigits->Compress() ;
296
297 // 3. add digits to temporary hit list fTmpHits
298
299 ndigits = cpvDigits->GetEntriesFast();
300 for (idigit=0; idigit<ndigits; idigit++) {
29b077b5 301 AliPHOSCPVDigit *cpvDigit = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 302 relid[0] = moduleNumber + 1 ; // CPV (or PHOS) module number
303 relid[1] =-1 ; // means CPV
304 relid[2] = cpvDigit->GetXpad() ; // column number of a pad
305 relid[3] = cpvDigit->GetYpad() ; // row number of a pad
306
307 // get the absolute Id number
308 GetGeometry()->RelToAbsNumbering(relid, absid) ;
309
310 // add current digit to the temporary hit list
311
471193a8 312 xyzte[3] = gMC->TrackTime() ;
313 xyzte[4] = cpvDigit->GetQpad() ; // amplitude in a pad
2af5445a 314
315 Int_t primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
316 AddHit(fIshunt, primary, absid, xyzte);
9688c1dd 317
318 if (cpvDigit->GetQpad() > 0.02) {
319 xmean += cpvDigit->GetQpad() * (cpvDigit->GetXpad() + 0.5);
320 zmean += cpvDigit->GetQpad() * (cpvDigit->GetYpad() + 0.5);
321 qsum += cpvDigit->GetQpad();
fa412d9b 322 }
fa412d9b 323 }
e534a69d 324 if (cpvDigits) {
325 cpvDigits->Delete();
326 delete cpvDigits;
327 cpvDigits=0;
328 }
9688c1dd 329 }
037cc66d 330
9688c1dd 331
d6fb41ac 332 static Int_t idPXTL = gMC->VolId("PXTL");
333 if(gMC->CurrentVolID(copy) == idPXTL ) { // We are inside a PBWO crystal
9688c1dd 334
fa412d9b 335 gMC->TrackPosition(pos) ;
471193a8 336 xyzte[0] = pos[0] ;
337 xyzte[1] = pos[1] ;
338 xyzte[2] = pos[2] ;
597e6309 339
9688c1dd 340 Float_t global[3], local[3] ;
341 global[0] = pos[0] ;
342 global[1] = pos[1] ;
343 global[2] = pos[2] ;
344 Float_t lostenergy = gMC->Edep();
f6d1e5e1 345
346 //Put in the TreeK particle entering PHOS and all its parents
347 if ( gMC->IsTrackEntering() ){
348 Float_t xyzd[3] ;
471193a8 349 gMC -> Gmtod (xyzte, xyzd, 1); // transform coordinate from master to daughter system
97c3e101 350 if (xyzd[1] < -GetGeometry()->GetCrystalSize(1)/2.+0.1){ //Entered close to forward surface
5d12ce38 351 Int_t parent = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
81d4c3d5 352 TParticle * part = gAlice->GetMCApp()->Particle(parent) ;
353 Float_t vert[3],vertd[3] ;
354 vert[0]=part->Vx() ;
355 vert[1]=part->Vy() ;
356 vert[2]=part->Vz() ;
357 gMC -> Gmtod (vert, vertd, 1); // transform coordinate from master to daughter system
2af5445a 358 if(vertd[1]<-GetGeometry()->GetCrystalSize(1)/2.-0.1){ //Particle is created in foront of PHOS
359 //0.1 to get rid of numerical errors
360 part->SetBit(kKeepBit);
81d4c3d5 361 while ( parent != -1 ) {
362 part = gAlice->GetMCApp()->Particle(parent) ;
81d4c3d5 363 part->SetBit(kKeepBit);
364 parent = part->GetFirstMother() ;
365 }
f6d1e5e1 366 }
367 }
368 }
9688c1dd 369 if ( lostenergy != 0 ) { // Track is inside the crystal and deposits some energy
471193a8 370 xyzte[3] = gMC->TrackTime() ;
f6d1e5e1 371
9688c1dd 372 gMC->CurrentVolOffID(10, moduleNumber) ; // get the PHOS module number ;
7b326aac 373
9688c1dd 374 Int_t strip ;
375 gMC->CurrentVolOffID(3, strip);
376 Int_t cell ;
377 gMC->CurrentVolOffID(2, cell);
f6d1e5e1 378
9688c1dd 379 Int_t row = 1 + GetGeometry()->GetNZ() - strip % GetGeometry()->GetNZ() ;
380 Int_t col = (Int_t) TMath::Ceil((Double_t) strip/GetGeometry()->GetNZ()) -1 ;
f6d1e5e1 381
9688c1dd 382 absid = (moduleNumber-1)*GetGeometry()->GetNCristalsInModule() +
383 row + (col*GetGeometry()->GetEMCAGeometry()->GetNCellsInStrip() + cell-1)*GetGeometry()->GetNZ() ;
f6d1e5e1 384
9688c1dd 385 gMC->Gmtod(global, local, 1) ;
386
471193a8 387 //Calculates the light yield, the number of photons produced in the
9688c1dd 388 //crystal
27f33ee5 389 Float_t lightYield = gRandom->Poisson(fLightFactor * lostenergy *
9688c1dd 390 exp(-fLightYieldAttenuation *
391 (local[1]+GetGeometry()->GetCrystalSize(1)/2.0 ))
392 ) ;
471193a8 393
9688c1dd 394 //Calculates de energy deposited in the crystal
471193a8 395 xyzte[4] = fAPDFactor * lightYield ;
9688c1dd 396
2af5445a 397 Int_t primary ;
398 if(fIshunt == 2){
399 primary = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
400 TParticle * part = gAlice->GetMCApp()->Particle(primary) ;
401 while ( !part->TestBit(kKeepBit) ) {
402 primary = part->GetFirstMother() ;
403 if(primary == -1){
404 primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
405 break ; //there is a possibility that particle passed e.g. thermal isulator and hits a side
406 //surface of the crystal. In this case it may have no primary at all.
407 //We can not easily separate this case from the case when this is part of the shower,
408 //developed in the neighboring crystal.
409 }
410 part = gAlice->GetMCApp()->Particle(primary) ;
411 }
5a49626b 412 }
2af5445a 413 else
414 primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
5a49626b 415
2af5445a 416
417
9688c1dd 418 // add current hit to the hit list
21cd0c07 419 // Info("StepManager","%d %d", primary, tracknumber) ;
2af5445a 420 AddHit(fIshunt, primary, absid, xyzte);
184569b0 421
fa412d9b 422 } // there is deposited energy
423 } // we are inside a PHOS Xtal
f6d1e5e1 424
fa412d9b 425}
426
427//____________________________________________________________________________
90cceaf6 428void AliPHOSv1::CPVDigitize (TLorentzVector p, Float_t *zxhit, TClonesArray *cpvDigits)
fa412d9b 429{
430 // ------------------------------------------------------------------------
431 // Digitize one CPV hit:
432 // On input take exact 4-momentum p and position zxhit of the hit,
433 // find the pad response around this hit and
434 // put the amplitudes in the pads into array digits
435 //
436 // Author: Yuri Kharlov (after Serguei Sadovsky)
437 // 2 October 2000
438 // ------------------------------------------------------------------------
439
fa7cce36 440 const Float_t kCelWr = GetGeometry()->GetPadSizePhi()/2; // Distance between wires (2 wires above 1 pad)
a3dfe79c 441 const Float_t kDetR = 0.1; // Relative energy fluctuation in track for 100 e-
442 const Float_t kdEdx = 4.0; // Average energy loss in CPV;
443 const Int_t kNgamz = 5; // Ionization size in Z
444 const Int_t kNgamx = 9; // Ionization size in Phi
445 const Float_t kNoise = 0.03; // charge noise in one pad
fa412d9b 446
447 Float_t rnor1,rnor2;
448
449 // Just a reminder on axes notation in the CPV module:
450 // axis Z goes along the beam
451 // axis X goes across the beam in the module plane
452 // axis Y is a normal to the module plane showing from the IP
453
454 Float_t hitX = zxhit[0];
455 Float_t hitZ =-zxhit[1];
456 Float_t pX = p.Px();
457 Float_t pZ =-p.Pz();
458 Float_t pNorm = p.Py();
a3dfe79c 459 Float_t eloss = kdEdx;
3d402178 460
21cd0c07 461//Info("CPVDigitize", "YVK : %f %f | %f %f %d", hitX, hitZ, pX, pZ, pNorm) ;
7b326aac 462
fa7cce36 463 Float_t dZY = pZ/pNorm * GetGeometry()->GetCPVGasThickness();
464 Float_t dXY = pX/pNorm * GetGeometry()->GetCPVGasThickness();
fa412d9b 465 gRandom->Rannor(rnor1,rnor2);
a3dfe79c 466 eloss *= (1 + kDetR*rnor1) *
fa7cce36 467 TMath::Sqrt((1 + ( pow(dZY,2) + pow(dXY,2) ) / pow(GetGeometry()->GetCPVGasThickness(),2)));
468 Float_t zhit1 = hitZ + GetGeometry()->GetCPVActiveSize(1)/2 - dZY/2;
469 Float_t xhit1 = hitX + GetGeometry()->GetCPVActiveSize(0)/2 - dXY/2;
fa412d9b 470 Float_t zhit2 = zhit1 + dZY;
471 Float_t xhit2 = xhit1 + dXY;
472
a3dfe79c 473 Int_t iwht1 = (Int_t) (xhit1 / kCelWr); // wire (x) coordinate "in"
474 Int_t iwht2 = (Int_t) (xhit2 / kCelWr); // wire (x) coordinate "out"
fa412d9b 475
476 Int_t nIter;
477 Float_t zxe[3][5];
478 if (iwht1==iwht2) { // incline 1-wire hit
479 nIter = 2;
480 zxe[0][0] = (zhit1 + zhit2 - dZY*0.57735) / 2;
a3dfe79c 481 zxe[1][0] = (iwht1 + 0.5) * kCelWr;
482 zxe[2][0] = eloss/2;
fa412d9b 483 zxe[0][1] = (zhit1 + zhit2 + dZY*0.57735) / 2;
a3dfe79c 484 zxe[1][1] = (iwht1 + 0.5) * kCelWr;
485 zxe[2][1] = eloss/2;
fa412d9b 486 }
487 else if (TMath::Abs(iwht1-iwht2) != 1) { // incline 3-wire hit
488 nIter = 3;
489 Int_t iwht3 = (iwht1 + iwht2) / 2;
a3dfe79c 490 Float_t xwht1 = (iwht1 + 0.5) * kCelWr; // wire 1
491 Float_t xwht2 = (iwht2 + 0.5) * kCelWr; // wire 2
492 Float_t xwht3 = (iwht3 + 0.5) * kCelWr; // wire 3
fa412d9b 493 Float_t xwr13 = (xwht1 + xwht3) / 2; // center 13
494 Float_t xwr23 = (xwht2 + xwht3) / 2; // center 23
495 Float_t dxw1 = xhit1 - xwr13;
496 Float_t dxw2 = xhit2 - xwr23;
a3dfe79c 497 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
498 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
499 Float_t egm3 = kCelWr / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
fa412d9b 500 zxe[0][0] = (dXY*(xwr13-xwht1)/dXY + zhit1 + zhit1) / 2;
501 zxe[1][0] = xwht1;
a3dfe79c 502 zxe[2][0] = eloss * egm1;
fa412d9b 503 zxe[0][1] = (dXY*(xwr23-xwht1)/dXY + zhit1 + zhit2) / 2;
504 zxe[1][1] = xwht2;
a3dfe79c 505 zxe[2][1] = eloss * egm2;
fa412d9b 506 zxe[0][2] = dXY*(xwht3-xwht1)/dXY + zhit1;
507 zxe[1][2] = xwht3;
a3dfe79c 508 zxe[2][2] = eloss * egm3;
fa412d9b 509 }
510 else { // incline 2-wire hit
511 nIter = 2;
a3dfe79c 512 Float_t xwht1 = (iwht1 + 0.5) * kCelWr;
513 Float_t xwht2 = (iwht2 + 0.5) * kCelWr;
fa412d9b 514 Float_t xwr12 = (xwht1 + xwht2) / 2;
515 Float_t dxw1 = xhit1 - xwr12;
516 Float_t dxw2 = xhit2 - xwr12;
517 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
518 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
519 zxe[0][0] = (zhit1 + zhit2 - dZY*egm1) / 2;
520 zxe[1][0] = xwht1;
a3dfe79c 521 zxe[2][0] = eloss * egm1;
fa412d9b 522 zxe[0][1] = (zhit1 + zhit2 + dZY*egm2) / 2;
523 zxe[1][1] = xwht2;
a3dfe79c 524 zxe[2][1] = eloss * egm2;
fa412d9b 525 }
bea63bea 526
fa412d9b 527 // Finite size of ionization region
528
fa7cce36 529 Int_t nCellZ = GetGeometry()->GetNumberOfCPVPadsZ();
530 Int_t nCellX = GetGeometry()->GetNumberOfCPVPadsPhi();
a3dfe79c 531 Int_t nz3 = (kNgamz+1)/2;
532 Int_t nx3 = (kNgamx+1)/2;
533 cpvDigits->Expand(nIter*kNgamx*kNgamz);
29b077b5 534 TClonesArray &ldigits = *(static_cast<TClonesArray *>(cpvDigits));
fa412d9b 535
536 for (Int_t iter=0; iter<nIter; iter++) {
537
538 Float_t zhit = zxe[0][iter];
539 Float_t xhit = zxe[1][iter];
540 Float_t qhit = zxe[2][iter];
fa7cce36 541 Float_t zcell = zhit / GetGeometry()->GetPadSizeZ();
542 Float_t xcell = xhit / GetGeometry()->GetPadSizePhi();
fa412d9b 543 if ( zcell<=0 || xcell<=0 ||
544 zcell>=nCellZ || xcell>=nCellX) return;
545 Int_t izcell = (Int_t) zcell;
546 Int_t ixcell = (Int_t) xcell;
547 Float_t zc = zcell - izcell - 0.5;
548 Float_t xc = xcell - ixcell - 0.5;
a3dfe79c 549 for (Int_t iz=1; iz<=kNgamz; iz++) {
fa412d9b 550 Int_t kzg = izcell + iz - nz3;
551 if (kzg<=0 || kzg>nCellZ) continue;
552 Float_t zg = (Float_t)(iz-nz3) - zc;
a3dfe79c 553 for (Int_t ix=1; ix<=kNgamx; ix++) {
fa412d9b 554 Int_t kxg = ixcell + ix - nx3;
555 if (kxg<=0 || kxg>nCellX) continue;
556 Float_t xg = (Float_t)(ix-nx3) - xc;
557
558 // Now calculate pad response
559 Float_t qpad = CPVPadResponseFunction(qhit,zg,xg);
a3dfe79c 560 qpad += kNoise*rnor2;
fa412d9b 561 if (qpad<0) continue;
562
563 // Fill the array with pad response ID and amplitude
3d402178 564 new(ldigits[cpvDigits->GetEntriesFast()]) AliPHOSCPVDigit(kxg,kzg,qpad);
fa412d9b 565 }
fa412d9b 566 }
fa412d9b 567 }
568}
569
570//____________________________________________________________________________
571Float_t AliPHOSv1::CPVPadResponseFunction(Float_t qhit, Float_t zhit, Float_t xhit) {
572 // ------------------------------------------------------------------------
573 // Calculate the amplitude in one CPV pad using the
574 // cumulative pad response function
575 // Author: Yuri Kharlov (after Serguei Sadovski)
576 // 3 October 2000
577 // ------------------------------------------------------------------------
578
fa7cce36 579 Double_t dz = GetGeometry()->GetPadSizeZ() / 2;
580 Double_t dx = GetGeometry()->GetPadSizePhi() / 2;
581 Double_t z = zhit * GetGeometry()->GetPadSizeZ();
582 Double_t x = xhit * GetGeometry()->GetPadSizePhi();
fa412d9b 583 Double_t amplitude = qhit *
584 (CPVCumulPadResponse(z+dz,x+dx) - CPVCumulPadResponse(z+dz,x-dx) -
585 CPVCumulPadResponse(z-dz,x+dx) + CPVCumulPadResponse(z-dz,x-dx));
586 return (Float_t)amplitude;
7587f5a5 587}
588
fa412d9b 589//____________________________________________________________________________
590Double_t AliPHOSv1::CPVCumulPadResponse(Double_t x, Double_t y) {
591 // ------------------------------------------------------------------------
592 // Cumulative pad response function
593 // It includes several terms from the CF decomposition in electrostatics
594 // Note: this cumulative function is wrong since omits some terms
595 // but the cell amplitude obtained with it is correct because
596 // these omitting terms cancel
597 // Author: Yuri Kharlov (after Serguei Sadovski)
598 // 3 October 2000
599 // ------------------------------------------------------------------------
600
a3dfe79c 601 const Double_t kA=1.0;
602 const Double_t kB=0.7;
fa412d9b 603
604 Double_t r2 = x*x + y*y;
605 Double_t xy = x*y;
606 Double_t cumulPRF = 0;
607 for (Int_t i=0; i<=4; i++) {
a3dfe79c 608 Double_t b1 = (2*i + 1) * kB;
fa412d9b 609 cumulPRF += TMath::Power(-1,i) * TMath::ATan( xy / (b1*TMath::Sqrt(b1*b1 + r2)) );
610 }
a3dfe79c 611 cumulPRF *= kA/(2*TMath::Pi());
fa412d9b 612 return cumulPRF;
613}
7eb9d12d 614