]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PHOS/AliPHOSv1.cxx
Adding includes now needed by ROOT
[u/mrichter/AliRoot.git] / PHOS / AliPHOSv1.cxx
CommitLineData
7587f5a5 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
b2a60966 16/* $Id$ */
5f20d3fb 17
702ab87e 18/* History of cvs commits:
19 *
20 * $Log$
e939a978 21 * Revision 1.105 2006/09/13 07:31:01 kharlov
22 * Effective C++ corrections (T.Pocheptsov)
23 *
43fbaae1 24 * Revision 1.104 2005/05/28 14:19:05 schutz
25 * Compilation warnings fixed by T.P.
26 *
702ab87e 27 */
28
7587f5a5 29//_________________________________________________________________________
5f20d3fb 30// Implementation version v1 of PHOS Manager class
a3dfe79c 31//---
a3dfe79c 32//---
33// Layout EMC + CPV has name IHEP:
ed4205d8 34// Produces hits for CPV, cumulated hits
35//---
ed4205d8 36//---
5f20d3fb 37//*-- Author: Yves Schutz (SUBATECH)
b2a60966 38
7587f5a5 39
40// --- ROOT system ---
88cb7938 41#include <TParticle.h>
88cb7938 42#include <TVirtualMC.h>
7587f5a5 43
44// --- Standard library ---
45
88cb7938 46
7587f5a5 47// --- AliRoot header files ---
97cee223 48#include "AliPHOSCPVDigit.h"
97cee223 49#include "AliPHOSGeometry.h"
88cb7938 50#include "AliPHOSHit.h"
88cb7938 51#include "AliPHOSv1.h"
52#include "AliRun.h"
5d12ce38 53#include "AliMC.h"
7587f5a5 54
55ClassImp(AliPHOSv1)
56
bea63bea 57//____________________________________________________________________________
02ab1add 58AliPHOSv1::AliPHOSv1():
43fbaae1 59 fLightYieldMean(0.),
60 fIntrinsicPINEfficiency(0.),
61 fLightYieldAttenuation(0.),
62 fRecalibrationFactor(0.),
63 fElectronsPerGeV(0.),
64 fAPDGain(0.),
65 fLightFactor(0.),
66 fAPDFactor(0.)
bea63bea 67{
43fbaae1 68 //Def ctor.
bea63bea 69}
70
7587f5a5 71//____________________________________________________________________________
72AliPHOSv1::AliPHOSv1(const char *name, const char *title):
43fbaae1 73 AliPHOSv0(name,title),
74 fLightYieldMean(0.),
75 fIntrinsicPINEfficiency(0.),
76 fLightYieldAttenuation(0.),
77 fRecalibrationFactor(0.),
78 fElectronsPerGeV(0.),
79 fAPDGain(0.),
80 fLightFactor(0.),
81 fAPDFactor(0.)
7587f5a5 82{
5f20d3fb 83 //
ed4205d8 84 // We store hits :
5f20d3fb 85 // - fHits (the "normal" one), which retains the hits associated with
86 // the current primary particle being tracked
87 // (this array is reset after each primary has been tracked).
88 //
fa412d9b 89
037cc66d 90
5f20d3fb 91
92 // We do not want to save in TreeH the raw hits
93 // But save the cumulated hits instead (need to create the branch myself)
94 // It is put in the Digit Tree because the TreeH is filled after each primary
7b326aac 95 // and the TreeD at the end of the event (branch is set in FinishEvent() ).
5f20d3fb 96
ed4205d8 97 fHits= new TClonesArray("AliPHOSHit",1000) ;
5d12ce38 98 gAlice->GetMCApp()->AddHitList(fHits) ;
5f20d3fb 99
ed4205d8 100 fNhits = 0 ;
5f20d3fb 101
f6d1e5e1 102 fIshunt = 2 ; // All hits are associated with primary particles
7b326aac 103
9688c1dd 104 //Photoelectron statistics:
105 // The light yield is a poissonian distribution of the number of
106 // photons created in the PbWo4 crystal, calculated using following formula
107 // NumberOfPhotons = EnergyLost * LightYieldMean* APDEfficiency *
108 // exp (-LightYieldAttenuation * DistanceToPINdiodeFromTheHit);
109 // LightYieldMean is parameter calculated to be over 47000 photons per GeV
110 // APDEfficiency is 0.02655
111 // k_0 is 0.0045 from Valery Antonenko
112 // The number of electrons created in the APD is
113 // NumberOfElectrons = APDGain * LightYield
114 // The APD Gain is 300
115 fLightYieldMean = 47000;
116 fIntrinsicPINEfficiency = 0.02655 ; //APD= 0.1875/0.1271 * 0.018 (PIN)
27f33ee5 117 fLightYieldAttenuation = 0.0045 ;
118 fRecalibrationFactor = 13.418/ fLightYieldMean ;
119 fElectronsPerGeV = 2.77e+8 ;
120 fAPDGain = 300. ;
121 fLightFactor = fLightYieldMean * fIntrinsicPINEfficiency ;
184569b0 122 fAPDFactor = (fRecalibrationFactor/100.) * fAPDGain ;
5f20d3fb 123}
124
7587f5a5 125//____________________________________________________________________________
bea63bea 126AliPHOSv1::~AliPHOSv1()
b2a60966 127{
bea63bea 128 // dtor
88cb7938 129 if ( fHits) {
ed4205d8 130 fHits->Delete() ;
131 delete fHits ;
132 fHits = 0 ;
184569b0 133 }
7587f5a5 134}
135
7587f5a5 136//____________________________________________________________________________
2af5445a 137void AliPHOSv1::AddHit(Int_t shunt, Int_t primary, Int_t Id, Float_t * hits)
bea63bea 138{
139 // Add a hit to the hit list.
f6d1e5e1 140 // A PHOS hit is the sum of all hits in a single crystal from one primary and within some time gate
bea63bea 141
5f20d3fb 142 Int_t hitCounter ;
bea63bea 143 AliPHOSHit *newHit ;
5f20d3fb 144 AliPHOSHit *curHit ;
145 Bool_t deja = kFALSE ;
fa7cce36 146 AliPHOSGeometry * geom = GetGeometry() ;
bea63bea 147
2af5445a 148 newHit = new AliPHOSHit(shunt, primary, Id, hits) ;
bea63bea 149
7854a24a 150 for ( hitCounter = fNhits-1 ; hitCounter >= 0 && !deja ; hitCounter-- ) {
29b077b5 151 curHit = dynamic_cast<AliPHOSHit*>((*fHits)[hitCounter]) ;
9688c1dd 152 if(curHit->GetPrimary() != primary) break ;
153 // We add hits with the same primary, while GEANT treats primaries succesively
ed4205d8 154 if( *curHit == *newHit ) {
f15a01eb 155 *curHit + *newHit ;
ed4205d8 156 deja = kTRUE ;
5f20d3fb 157 }
158 }
159
160 if ( !deja ) {
ed4205d8 161 new((*fHits)[fNhits]) AliPHOSHit(*newHit) ;
7b326aac 162 // get the block Id number
9688c1dd 163 Int_t relid[4] ;
fa7cce36 164 geom->AbsToRelNumbering(Id, relid) ;
184569b0 165
ed4205d8 166 fNhits++ ;
5f20d3fb 167 }
184569b0 168
bea63bea 169 delete newHit;
bea63bea 170}
171
7b326aac 172//____________________________________________________________________________
173void AliPHOSv1::FinishPrimary()
174{
175 // called at the end of each track (primary) by AliRun
176 // hits are reset for each new track
177 // accumulate the total hit-multiplicity
7b326aac 178
179}
180
181//____________________________________________________________________________
182void AliPHOSv1::FinishEvent()
183{
184 // called at the end of each event by AliRun
185 // accumulate the hit-multiplicity and total energy per block
186 // if the values have been updated check it
88cb7938 187
88cb7938 188 AliDetector::FinishEvent();
7b326aac 189}
5f20d3fb 190//____________________________________________________________________________
7587f5a5 191void AliPHOSv1::StepManager(void)
192{
9688c1dd 193 // Accumulates hits as long as the track stays in a single crystal or CPV gas Cell
b2a60966 194
4f5bbbd4 195 Int_t relid[4] ; // (box, layer, row, column) indices
196 Int_t absid ; // absolute cell ID number
471193a8 197 Float_t xyzte[5]={-1000.,-1000.,-1000.,0.,0.} ; // position wrt MRS, time and energy deposited
4f5bbbd4 198 TLorentzVector pos ; // Lorentz vector of the track current position
fa412d9b 199 Int_t copy ;
7587f5a5 200
fa7cce36 201 TString name = GetGeometry()->GetName() ;
037cc66d 202
9688c1dd 203 Int_t moduleNumber ;
204
d6fb41ac 205 static Int_t idPCPQ = gMC->VolId("PCPQ");
206 if( gMC->CurrentVolID(copy) == idPCPQ &&
9688c1dd 207 (gMC->IsTrackEntering() ) &&
208 gMC->TrackCharge() != 0) {
f6d1e5e1 209
9688c1dd 210 gMC -> TrackPosition(pos);
f6d1e5e1 211
9688c1dd 212 Float_t xyzm[3], xyzd[3] ;
213 Int_t i;
214 for (i=0; i<3; i++) xyzm[i] = pos[i];
215 gMC -> Gmtod (xyzm, xyzd, 1); // transform coordinate from master to daughter system
216
e3daf02c 217 Float_t xyd[3]={0,0,0} ; //local position of the entering
9688c1dd 218 xyd[0] = xyzd[0];
53e03a1e 219 xyd[1] =-xyzd[2];
220 xyd[2] =-xyzd[1];
f6d1e5e1 221
9688c1dd 222 // Current momentum of the hit's track in the local ref. system
223 TLorentzVector pmom ; //momentum of the particle initiated hit
224 gMC -> TrackMomentum(pmom);
225 Float_t pm[3], pd[3];
226 for (i=0; i<3; i++)
227 pm[i] = pmom[i];
f6d1e5e1 228
9688c1dd 229 gMC -> Gmtod (pm, pd, 2); // transform 3-momentum from master to daughter system
230 pmom[0] = pd[0];
cf75bc19 231 pmom[1] =-pd[1];
232 pmom[2] =-pd[2];
f6d1e5e1 233
9688c1dd 234 // Digitize the current CPV hit:
235
236 // 1. find pad response and
237 gMC->CurrentVolOffID(3,moduleNumber);
238 moduleNumber--;
239
240 TClonesArray *cpvDigits = new TClonesArray("AliPHOSCPVDigit",0); // array of digits for current hit
90cceaf6 241 CPVDigitize(pmom,xyd,cpvDigits);
fa412d9b 242
9688c1dd 243 Float_t xmean = 0;
244 Float_t zmean = 0;
245 Float_t qsum = 0;
246 Int_t idigit,ndigits;
247
248 // 2. go through the current digit list and sum digits in pads
249
250 ndigits = cpvDigits->GetEntriesFast();
251 for (idigit=0; idigit<ndigits-1; idigit++) {
29b077b5 252 AliPHOSCPVDigit *cpvDigit1 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 253 Float_t x1 = cpvDigit1->GetXpad() ;
254 Float_t z1 = cpvDigit1->GetYpad() ;
255 for (Int_t jdigit=idigit+1; jdigit<ndigits; jdigit++) {
29b077b5 256 AliPHOSCPVDigit *cpvDigit2 = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(jdigit));
9688c1dd 257 Float_t x2 = cpvDigit2->GetXpad() ;
258 Float_t z2 = cpvDigit2->GetYpad() ;
259 if (x1==x2 && z1==z2) {
260 Float_t qsum = cpvDigit1->GetQpad() + cpvDigit2->GetQpad() ;
261 cpvDigit2->SetQpad(qsum) ;
262 cpvDigits->RemoveAt(idigit) ;
fa412d9b 263 }
264 }
9688c1dd 265 }
266 cpvDigits->Compress() ;
267
268 // 3. add digits to temporary hit list fTmpHits
269
270 ndigits = cpvDigits->GetEntriesFast();
271 for (idigit=0; idigit<ndigits; idigit++) {
29b077b5 272 AliPHOSCPVDigit *cpvDigit = dynamic_cast<AliPHOSCPVDigit*>(cpvDigits->UncheckedAt(idigit));
9688c1dd 273 relid[0] = moduleNumber + 1 ; // CPV (or PHOS) module number
274 relid[1] =-1 ; // means CPV
275 relid[2] = cpvDigit->GetXpad() ; // column number of a pad
276 relid[3] = cpvDigit->GetYpad() ; // row number of a pad
277
278 // get the absolute Id number
279 GetGeometry()->RelToAbsNumbering(relid, absid) ;
280
281 // add current digit to the temporary hit list
282
471193a8 283 xyzte[3] = gMC->TrackTime() ;
284 xyzte[4] = cpvDigit->GetQpad() ; // amplitude in a pad
2af5445a 285
286 Int_t primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
287 AddHit(fIshunt, primary, absid, xyzte);
9688c1dd 288
289 if (cpvDigit->GetQpad() > 0.02) {
290 xmean += cpvDigit->GetQpad() * (cpvDigit->GetXpad() + 0.5);
291 zmean += cpvDigit->GetQpad() * (cpvDigit->GetYpad() + 0.5);
292 qsum += cpvDigit->GetQpad();
fa412d9b 293 }
fa412d9b 294 }
e534a69d 295 if (cpvDigits) {
296 cpvDigits->Delete();
297 delete cpvDigits;
298 cpvDigits=0;
299 }
9688c1dd 300 }
037cc66d 301
9688c1dd 302
d6fb41ac 303 static Int_t idPXTL = gMC->VolId("PXTL");
304 if(gMC->CurrentVolID(copy) == idPXTL ) { // We are inside a PBWO crystal
9688c1dd 305
fa412d9b 306 gMC->TrackPosition(pos) ;
471193a8 307 xyzte[0] = pos[0] ;
308 xyzte[1] = pos[1] ;
309 xyzte[2] = pos[2] ;
597e6309 310
9688c1dd 311 Float_t global[3], local[3] ;
312 global[0] = pos[0] ;
313 global[1] = pos[1] ;
314 global[2] = pos[2] ;
315 Float_t lostenergy = gMC->Edep();
f6d1e5e1 316
317 //Put in the TreeK particle entering PHOS and all its parents
318 if ( gMC->IsTrackEntering() ){
319 Float_t xyzd[3] ;
471193a8 320 gMC -> Gmtod (xyzte, xyzd, 1); // transform coordinate from master to daughter system
97c3e101 321 if (xyzd[1] < -GetGeometry()->GetCrystalSize(1)/2.+0.1){ //Entered close to forward surface
5d12ce38 322 Int_t parent = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
81d4c3d5 323 TParticle * part = gAlice->GetMCApp()->Particle(parent) ;
324 Float_t vert[3],vertd[3] ;
325 vert[0]=part->Vx() ;
326 vert[1]=part->Vy() ;
327 vert[2]=part->Vz() ;
328 gMC -> Gmtod (vert, vertd, 1); // transform coordinate from master to daughter system
2af5445a 329 if(vertd[1]<-GetGeometry()->GetCrystalSize(1)/2.-0.1){ //Particle is created in foront of PHOS
330 //0.1 to get rid of numerical errors
331 part->SetBit(kKeepBit);
81d4c3d5 332 while ( parent != -1 ) {
333 part = gAlice->GetMCApp()->Particle(parent) ;
81d4c3d5 334 part->SetBit(kKeepBit);
335 parent = part->GetFirstMother() ;
336 }
f6d1e5e1 337 }
338 }
339 }
9688c1dd 340 if ( lostenergy != 0 ) { // Track is inside the crystal and deposits some energy
471193a8 341 xyzte[3] = gMC->TrackTime() ;
f6d1e5e1 342
9688c1dd 343 gMC->CurrentVolOffID(10, moduleNumber) ; // get the PHOS module number ;
7b326aac 344
9688c1dd 345 Int_t strip ;
346 gMC->CurrentVolOffID(3, strip);
347 Int_t cell ;
348 gMC->CurrentVolOffID(2, cell);
f6d1e5e1 349
9688c1dd 350 Int_t row = 1 + GetGeometry()->GetNZ() - strip % GetGeometry()->GetNZ() ;
351 Int_t col = (Int_t) TMath::Ceil((Double_t) strip/GetGeometry()->GetNZ()) -1 ;
f6d1e5e1 352
9688c1dd 353 absid = (moduleNumber-1)*GetGeometry()->GetNCristalsInModule() +
354 row + (col*GetGeometry()->GetEMCAGeometry()->GetNCellsInStrip() + cell-1)*GetGeometry()->GetNZ() ;
f6d1e5e1 355
9688c1dd 356 gMC->Gmtod(global, local, 1) ;
357
471193a8 358 //Calculates the light yield, the number of photons produced in the
9688c1dd 359 //crystal
27f33ee5 360 Float_t lightYield = gRandom->Poisson(fLightFactor * lostenergy *
9688c1dd 361 exp(-fLightYieldAttenuation *
362 (local[1]+GetGeometry()->GetCrystalSize(1)/2.0 ))
363 ) ;
471193a8 364
9688c1dd 365 //Calculates de energy deposited in the crystal
471193a8 366 xyzte[4] = fAPDFactor * lightYield ;
9688c1dd 367
2af5445a 368 Int_t primary ;
369 if(fIshunt == 2){
370 primary = gAlice->GetMCApp()->GetCurrentTrackNumber() ;
371 TParticle * part = gAlice->GetMCApp()->Particle(primary) ;
372 while ( !part->TestBit(kKeepBit) ) {
373 primary = part->GetFirstMother() ;
374 if(primary == -1){
375 primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
376 break ; //there is a possibility that particle passed e.g. thermal isulator and hits a side
377 //surface of the crystal. In this case it may have no primary at all.
378 //We can not easily separate this case from the case when this is part of the shower,
379 //developed in the neighboring crystal.
380 }
381 part = gAlice->GetMCApp()->Particle(primary) ;
382 }
5a49626b 383 }
2af5445a 384 else
385 primary = gAlice->GetMCApp()->GetPrimary( gAlice->GetMCApp()->GetCurrentTrackNumber() );
5a49626b 386
2af5445a 387
388
9688c1dd 389 // add current hit to the hit list
21cd0c07 390 // Info("StepManager","%d %d", primary, tracknumber) ;
2af5445a 391 AddHit(fIshunt, primary, absid, xyzte);
184569b0 392
fa412d9b 393 } // there is deposited energy
394 } // we are inside a PHOS Xtal
f6d1e5e1 395
fa412d9b 396}
397
398//____________________________________________________________________________
90cceaf6 399void AliPHOSv1::CPVDigitize (TLorentzVector p, Float_t *zxhit, TClonesArray *cpvDigits)
fa412d9b 400{
401 // ------------------------------------------------------------------------
402 // Digitize one CPV hit:
403 // On input take exact 4-momentum p and position zxhit of the hit,
404 // find the pad response around this hit and
405 // put the amplitudes in the pads into array digits
406 //
407 // Author: Yuri Kharlov (after Serguei Sadovsky)
408 // 2 October 2000
409 // ------------------------------------------------------------------------
410
fa7cce36 411 const Float_t kCelWr = GetGeometry()->GetPadSizePhi()/2; // Distance between wires (2 wires above 1 pad)
a3dfe79c 412 const Float_t kDetR = 0.1; // Relative energy fluctuation in track for 100 e-
413 const Float_t kdEdx = 4.0; // Average energy loss in CPV;
414 const Int_t kNgamz = 5; // Ionization size in Z
415 const Int_t kNgamx = 9; // Ionization size in Phi
416 const Float_t kNoise = 0.03; // charge noise in one pad
fa412d9b 417
418 Float_t rnor1,rnor2;
419
420 // Just a reminder on axes notation in the CPV module:
421 // axis Z goes along the beam
422 // axis X goes across the beam in the module plane
423 // axis Y is a normal to the module plane showing from the IP
424
425 Float_t hitX = zxhit[0];
426 Float_t hitZ =-zxhit[1];
427 Float_t pX = p.Px();
428 Float_t pZ =-p.Pz();
429 Float_t pNorm = p.Py();
a3dfe79c 430 Float_t eloss = kdEdx;
3d402178 431
21cd0c07 432//Info("CPVDigitize", "YVK : %f %f | %f %f %d", hitX, hitZ, pX, pZ, pNorm) ;
7b326aac 433
fa7cce36 434 Float_t dZY = pZ/pNorm * GetGeometry()->GetCPVGasThickness();
435 Float_t dXY = pX/pNorm * GetGeometry()->GetCPVGasThickness();
fa412d9b 436 gRandom->Rannor(rnor1,rnor2);
a3dfe79c 437 eloss *= (1 + kDetR*rnor1) *
fa7cce36 438 TMath::Sqrt((1 + ( pow(dZY,2) + pow(dXY,2) ) / pow(GetGeometry()->GetCPVGasThickness(),2)));
439 Float_t zhit1 = hitZ + GetGeometry()->GetCPVActiveSize(1)/2 - dZY/2;
440 Float_t xhit1 = hitX + GetGeometry()->GetCPVActiveSize(0)/2 - dXY/2;
fa412d9b 441 Float_t zhit2 = zhit1 + dZY;
442 Float_t xhit2 = xhit1 + dXY;
443
a3dfe79c 444 Int_t iwht1 = (Int_t) (xhit1 / kCelWr); // wire (x) coordinate "in"
445 Int_t iwht2 = (Int_t) (xhit2 / kCelWr); // wire (x) coordinate "out"
fa412d9b 446
447 Int_t nIter;
448 Float_t zxe[3][5];
449 if (iwht1==iwht2) { // incline 1-wire hit
450 nIter = 2;
451 zxe[0][0] = (zhit1 + zhit2 - dZY*0.57735) / 2;
a3dfe79c 452 zxe[1][0] = (iwht1 + 0.5) * kCelWr;
453 zxe[2][0] = eloss/2;
fa412d9b 454 zxe[0][1] = (zhit1 + zhit2 + dZY*0.57735) / 2;
a3dfe79c 455 zxe[1][1] = (iwht1 + 0.5) * kCelWr;
456 zxe[2][1] = eloss/2;
fa412d9b 457 }
458 else if (TMath::Abs(iwht1-iwht2) != 1) { // incline 3-wire hit
459 nIter = 3;
460 Int_t iwht3 = (iwht1 + iwht2) / 2;
a3dfe79c 461 Float_t xwht1 = (iwht1 + 0.5) * kCelWr; // wire 1
462 Float_t xwht2 = (iwht2 + 0.5) * kCelWr; // wire 2
463 Float_t xwht3 = (iwht3 + 0.5) * kCelWr; // wire 3
fa412d9b 464 Float_t xwr13 = (xwht1 + xwht3) / 2; // center 13
465 Float_t xwr23 = (xwht2 + xwht3) / 2; // center 23
466 Float_t dxw1 = xhit1 - xwr13;
467 Float_t dxw2 = xhit2 - xwr23;
a3dfe79c 468 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
469 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
470 Float_t egm3 = kCelWr / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) + kCelWr );
fa412d9b 471 zxe[0][0] = (dXY*(xwr13-xwht1)/dXY + zhit1 + zhit1) / 2;
472 zxe[1][0] = xwht1;
a3dfe79c 473 zxe[2][0] = eloss * egm1;
fa412d9b 474 zxe[0][1] = (dXY*(xwr23-xwht1)/dXY + zhit1 + zhit2) / 2;
475 zxe[1][1] = xwht2;
a3dfe79c 476 zxe[2][1] = eloss * egm2;
fa412d9b 477 zxe[0][2] = dXY*(xwht3-xwht1)/dXY + zhit1;
478 zxe[1][2] = xwht3;
a3dfe79c 479 zxe[2][2] = eloss * egm3;
fa412d9b 480 }
481 else { // incline 2-wire hit
482 nIter = 2;
a3dfe79c 483 Float_t xwht1 = (iwht1 + 0.5) * kCelWr;
484 Float_t xwht2 = (iwht2 + 0.5) * kCelWr;
fa412d9b 485 Float_t xwr12 = (xwht1 + xwht2) / 2;
486 Float_t dxw1 = xhit1 - xwr12;
487 Float_t dxw2 = xhit2 - xwr12;
488 Float_t egm1 = TMath::Abs(dxw1) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
489 Float_t egm2 = TMath::Abs(dxw2) / ( TMath::Abs(dxw1) + TMath::Abs(dxw2) );
490 zxe[0][0] = (zhit1 + zhit2 - dZY*egm1) / 2;
491 zxe[1][0] = xwht1;
a3dfe79c 492 zxe[2][0] = eloss * egm1;
fa412d9b 493 zxe[0][1] = (zhit1 + zhit2 + dZY*egm2) / 2;
494 zxe[1][1] = xwht2;
a3dfe79c 495 zxe[2][1] = eloss * egm2;
fa412d9b 496 }
bea63bea 497
fa412d9b 498 // Finite size of ionization region
499
fa7cce36 500 Int_t nCellZ = GetGeometry()->GetNumberOfCPVPadsZ();
501 Int_t nCellX = GetGeometry()->GetNumberOfCPVPadsPhi();
a3dfe79c 502 Int_t nz3 = (kNgamz+1)/2;
503 Int_t nx3 = (kNgamx+1)/2;
504 cpvDigits->Expand(nIter*kNgamx*kNgamz);
29b077b5 505 TClonesArray &ldigits = *(static_cast<TClonesArray *>(cpvDigits));
fa412d9b 506
507 for (Int_t iter=0; iter<nIter; iter++) {
508
509 Float_t zhit = zxe[0][iter];
510 Float_t xhit = zxe[1][iter];
511 Float_t qhit = zxe[2][iter];
fa7cce36 512 Float_t zcell = zhit / GetGeometry()->GetPadSizeZ();
513 Float_t xcell = xhit / GetGeometry()->GetPadSizePhi();
fa412d9b 514 if ( zcell<=0 || xcell<=0 ||
515 zcell>=nCellZ || xcell>=nCellX) return;
516 Int_t izcell = (Int_t) zcell;
517 Int_t ixcell = (Int_t) xcell;
518 Float_t zc = zcell - izcell - 0.5;
519 Float_t xc = xcell - ixcell - 0.5;
a3dfe79c 520 for (Int_t iz=1; iz<=kNgamz; iz++) {
fa412d9b 521 Int_t kzg = izcell + iz - nz3;
522 if (kzg<=0 || kzg>nCellZ) continue;
523 Float_t zg = (Float_t)(iz-nz3) - zc;
a3dfe79c 524 for (Int_t ix=1; ix<=kNgamx; ix++) {
fa412d9b 525 Int_t kxg = ixcell + ix - nx3;
526 if (kxg<=0 || kxg>nCellX) continue;
527 Float_t xg = (Float_t)(ix-nx3) - xc;
528
529 // Now calculate pad response
530 Float_t qpad = CPVPadResponseFunction(qhit,zg,xg);
a3dfe79c 531 qpad += kNoise*rnor2;
fa412d9b 532 if (qpad<0) continue;
533
534 // Fill the array with pad response ID and amplitude
3d402178 535 new(ldigits[cpvDigits->GetEntriesFast()]) AliPHOSCPVDigit(kxg,kzg,qpad);
fa412d9b 536 }
fa412d9b 537 }
fa412d9b 538 }
539}
540
541//____________________________________________________________________________
542Float_t AliPHOSv1::CPVPadResponseFunction(Float_t qhit, Float_t zhit, Float_t xhit) {
543 // ------------------------------------------------------------------------
544 // Calculate the amplitude in one CPV pad using the
545 // cumulative pad response function
546 // Author: Yuri Kharlov (after Serguei Sadovski)
547 // 3 October 2000
548 // ------------------------------------------------------------------------
549
fa7cce36 550 Double_t dz = GetGeometry()->GetPadSizeZ() / 2;
551 Double_t dx = GetGeometry()->GetPadSizePhi() / 2;
552 Double_t z = zhit * GetGeometry()->GetPadSizeZ();
553 Double_t x = xhit * GetGeometry()->GetPadSizePhi();
fa412d9b 554 Double_t amplitude = qhit *
555 (CPVCumulPadResponse(z+dz,x+dx) - CPVCumulPadResponse(z+dz,x-dx) -
556 CPVCumulPadResponse(z-dz,x+dx) + CPVCumulPadResponse(z-dz,x-dx));
557 return (Float_t)amplitude;
7587f5a5 558}
559
fa412d9b 560//____________________________________________________________________________
561Double_t AliPHOSv1::CPVCumulPadResponse(Double_t x, Double_t y) {
562 // ------------------------------------------------------------------------
563 // Cumulative pad response function
564 // It includes several terms from the CF decomposition in electrostatics
565 // Note: this cumulative function is wrong since omits some terms
566 // but the cell amplitude obtained with it is correct because
567 // these omitting terms cancel
568 // Author: Yuri Kharlov (after Serguei Sadovski)
569 // 3 October 2000
570 // ------------------------------------------------------------------------
571
a3dfe79c 572 const Double_t kA=1.0;
573 const Double_t kB=0.7;
fa412d9b 574
575 Double_t r2 = x*x + y*y;
576 Double_t xy = x*y;
577 Double_t cumulPRF = 0;
578 for (Int_t i=0; i<=4; i++) {
a3dfe79c 579 Double_t b1 = (2*i + 1) * kB;
fa412d9b 580 cumulPRF += TMath::Power(-1,i) * TMath::ATan( xy / (b1*TMath::Sqrt(b1*b1 + r2)) );
581 }
a3dfe79c 582 cumulPRF *= kA/(2*TMath::Pi());
fa412d9b 583 return cumulPRF;
584}
7eb9d12d 585