]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWG/CaloTrackCorrBase/AliCaloPID.cxx
1) K0S histogram is added
[u/mrichter/AliRoot.git] / PWG / CaloTrackCorrBase / AliCaloPID.cxx
CommitLineData
1c5acb87 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
1c5acb87 15
16//_________________________________________________________________________
bdd2a262 17// Class for PID selection with calorimeters
49b5c49b 18// The Output of the main method GetIdentifiedParticleType is a PDG number identifying the cluster,
bdd2a262 19// being kPhoton, kElectron, kPi0 ... as defined in the header file
3c1d9afb 20// - GetIdentifiedParticleType(const AliVCluster * cluster)
49b5c49b 21// Assignes a PID tag to the cluster, right now there is the possibility to : use bayesian weights from reco,
22// recalculate them (EMCAL) or use other procedures not used in reco.
bdd2a262 23// In order to recalculate Bayesian, it is necessary to load the EMCALUtils library
24// and do SwitchOnBayesianRecalculation().
25// To change the PID parameters from Low to High like the ones by default, use the constructor
26// AliCaloPID(flux)
27// where flux is AliCaloPID::kLow or AliCaloPID::kHigh
28// If it is necessary to change the parameters use the constructor
29// AliCaloPID(AliEMCALPIDUtils *utils) and set the parameters before.
49b5c49b 30
3c1d9afb 31// - GetGetIdentifiedParticleTypeFromBayesian(const Double_t * pid, const Float_t energy)
49b5c49b 32// Reads the PID weights array of the ESDs and depending on its magnitude identifies the particle,
3c1d9afb 33// executed when bayesian is ON by GetIdentifiedParticleType(const AliVCluster * cluster)
49b5c49b 34// - SetPIDBits: Simple PID, depending on the thresholds fLOCut fTOFCut and even the
bdd2a262 35// result of the PID bayesian a different PID bit is set.
36//
49b5c49b 37// - IsTrackMatched(): Independent method that needs to be combined with GetIdentifiedParticleType to know if the cluster was matched
bdd2a262 38//
49b5c49b 39//*-- Author: Gustavo Conesa (INFN-LNF)
1c5acb87 40//////////////////////////////////////////////////////////////////////////////
41
42
43// --- ROOT system ---
44#include <TMath.h>
1c5acb87 45#include <TString.h>
f21fc003 46#include <TList.h>
1c5acb87 47
c5693f62 48// ---- ANALYSIS system ----
1c5acb87 49#include "AliCaloPID.h"
3c1d9afb 50#include "AliAODCaloCluster.h"
51#include "AliVCaloCells.h"
d39cba7e 52#include "AliVTrack.h"
1c5acb87 53#include "AliAODPWG4Particle.h"
f2ccb5b8 54#include "AliCalorimeterUtils.h"
49b5c49b 55#include "AliVEvent.h"
f2ccb5b8 56
c5693f62 57// ---- Detector ----
58#include "AliEMCALPIDUtils.h"
59
1c5acb87 60ClassImp(AliCaloPID)
61
62
49b5c49b 63//________________________
1c5acb87 64AliCaloPID::AliCaloPID() :
49b5c49b 65TObject(), fDebug(-1), fParticleFlux(kLow),
66//Bayesian
67fEMCALPIDUtils(), fUseBayesianWeights(kFALSE), fRecalculateBayesian(kFALSE),
a5fb4114 68fEMCALPhotonWeight(0.), fEMCALPi0Weight(0.),
69fEMCALElectronWeight(0.), fEMCALChargeWeight(0.), fEMCALNeutralWeight(0.),
70fPHOSPhotonWeight(0.), fPHOSPi0Weight(0.),
71fPHOSElectronWeight(0.), fPHOSChargeWeight(0.) , fPHOSNeutralWeight(0.),
72fPHOSWeightFormula(0), fPHOSPhotonWeightFormula(0), fPHOSPi0WeightFormula(0),
49b5c49b 73fPHOSPhotonWeightFormulaExpression(""),
74fPHOSPi0WeightFormulaExpression(""),
75//PID calculation
76fEMCALL0CutMax(100.), fEMCALL0CutMin(0),
77fEMCALDEtaCut(2000.), fEMCALDPhiCut(2000.),
78fTOFCut(0.),
3c1d9afb 79fPHOSDispersionCut(1000), fPHOSRCut(1000),
5a72d9af 80//Split
3c1d9afb 81fDoClusterSplitting(kFALSE),
5a72d9af 82fUseSimpleMassCut(kFALSE),
83fUseSimpleM02Cut(kFALSE),
667432ef 84fUseSplitAsyCut(kFALSE),
035e250e 85fUseSplitSSCut(kTRUE),
3c1d9afb 86fSplitM02MaxCut(0), fSplitM02MinCut(0), fSplitMinNCells(0),
87fMassEtaMin(0), fMassEtaMax(0),
88fMassPi0Min(0), fMassPi0Max(0),
5a72d9af 89fMassPhoMin(0), fMassPhoMax(0),
1be44524 90fM02MaxParamShiftNLMN(0),
ac207ee4 91fSplitWidthSigma(0), fMassShiftHighECell(0)
1c5acb87 92{
477d6cee 93 //Ctor
94
95 //Initialize parameters
96 InitParameters();
1c5acb87 97}
98
49b5c49b 99//________________________________________
bdd2a262 100AliCaloPID::AliCaloPID(const Int_t flux) :
49b5c49b 101TObject(), fDebug(-1), fParticleFlux(flux),
102//Bayesian
103fEMCALPIDUtils(), fUseBayesianWeights(kFALSE), fRecalculateBayesian(kFALSE),
a5fb4114 104fEMCALPhotonWeight(0.), fEMCALPi0Weight(0.),
105fEMCALElectronWeight(0.), fEMCALChargeWeight(0.), fEMCALNeutralWeight(0.),
106fPHOSPhotonWeight(0.), fPHOSPi0Weight(0.),
107fPHOSElectronWeight(0.), fPHOSChargeWeight(0.) , fPHOSNeutralWeight(0.),
108fPHOSWeightFormula(0), fPHOSPhotonWeightFormula(0), fPHOSPi0WeightFormula(0),
49b5c49b 109fPHOSPhotonWeightFormulaExpression(""),
110fPHOSPi0WeightFormulaExpression(""),
111//PID calculation
112fEMCALL0CutMax(100.), fEMCALL0CutMin(0),
113fEMCALDEtaCut(2000.), fEMCALDPhiCut(2000.),
114fTOFCut(0.),
3c1d9afb 115fPHOSDispersionCut(1000), fPHOSRCut(1000),
5a72d9af 116//Split
3c1d9afb 117fDoClusterSplitting(kFALSE),
5a72d9af 118fUseSimpleMassCut(kFALSE),
119fUseSimpleM02Cut(kFALSE),
667432ef 120fUseSplitAsyCut(kFALSE),
035e250e 121fUseSplitSSCut(kTRUE),
3c1d9afb 122fSplitM02MaxCut(0), fSplitM02MinCut(0), fSplitMinNCells(0),
123fMassEtaMin(0), fMassEtaMax(0),
124fMassPi0Min(0), fMassPi0Max(0),
5a72d9af 125fMassPhoMin(0), fMassPhoMax(0),
10507906 126fM02MaxParamShiftNLMN(0),
ac207ee4 127fSplitWidthSigma(0), fMassShiftHighECell(0)
bdd2a262 128{
9a6fa057 129 //Ctor
bdd2a262 130
9a6fa057 131 //Initialize parameters
132 InitParameters();
49b5c49b 133
bdd2a262 134}
135
49b5c49b 136//_______________________________________________
f21fc003 137AliCaloPID::AliCaloPID(const TNamed * emcalpid) :
49b5c49b 138TObject(), fDebug(-1), fParticleFlux(kLow),
139//Bayesian
140fEMCALPIDUtils((AliEMCALPIDUtils*)emcalpid),
141fUseBayesianWeights(kFALSE), fRecalculateBayesian(kFALSE),
142fEMCALPhotonWeight(0.), fEMCALPi0Weight(0.),
143fEMCALElectronWeight(0.), fEMCALChargeWeight(0.), fEMCALNeutralWeight(0.),
144fPHOSPhotonWeight(0.), fPHOSPi0Weight(0.),
145fPHOSElectronWeight(0.), fPHOSChargeWeight(0.) , fPHOSNeutralWeight(0.),
146fPHOSWeightFormula(0), fPHOSPhotonWeightFormula(0), fPHOSPi0WeightFormula(0),
147fPHOSPhotonWeightFormulaExpression(""),
148fPHOSPi0WeightFormulaExpression(""),
149//PID calculation
150fEMCALL0CutMax(100.), fEMCALL0CutMin(0),
151fEMCALDEtaCut(2000.), fEMCALDPhiCut(2000.),
152fTOFCut(0.),
3c1d9afb 153fPHOSDispersionCut(1000), fPHOSRCut(1000),
5a72d9af 154//Split
3c1d9afb 155fDoClusterSplitting(kFALSE),
5a72d9af 156fUseSimpleMassCut(kFALSE),
157fUseSimpleM02Cut(kFALSE),
667432ef 158fUseSplitAsyCut(kFALSE),
035e250e 159fUseSplitSSCut(kTRUE),
3c1d9afb 160fSplitM02MaxCut(0), fSplitM02MinCut(0), fSplitMinNCells(0),
161fMassEtaMin(0), fMassEtaMax(0),
162fMassPi0Min(0), fMassPi0Max(0),
5a72d9af 163fMassPhoMin(0), fMassPhoMax(0),
10507906 164fM02MaxParamShiftNLMN(0),
ac207ee4 165fSplitWidthSigma(0), fMassShiftHighECell(0)
5a72d9af 166
bdd2a262 167{
9a6fa057 168 //Ctor
49b5c49b 169
9a6fa057 170 //Initialize parameters
171 InitParameters();
bdd2a262 172}
173
49b5c49b 174//_______________________
175AliCaloPID::~AliCaloPID()
176{
477d6cee 177 //Dtor
178
a5fb4114 179 delete fPHOSPhotonWeightFormula ;
180 delete fPHOSPi0WeightFormula ;
181 delete fEMCALPIDUtils ;
49b5c49b 182
9a6fa057 183}
1c5acb87 184
49b5c49b 185//_______________________________
1c5acb87 186void AliCaloPID::InitParameters()
187{
477d6cee 188 //Initialize the parameters of the PID.
189
49b5c49b 190 // Bayesian
2007809d 191 fEMCALPhotonWeight = 0.6 ;
192 fEMCALPi0Weight = 0.6 ;
193 fEMCALElectronWeight = 0.6 ;
194 fEMCALChargeWeight = 0.6 ;
195 fEMCALNeutralWeight = 0.6 ;
477d6cee 196
2007809d 197 fPHOSPhotonWeight = 0.6 ;
198 fPHOSPi0Weight = 0.6 ;
199 fPHOSElectronWeight = 0.6 ;
200 fPHOSChargeWeight = 0.6 ;
201 fPHOSNeutralWeight = 0.6 ;
477d6cee 202
203 //Formula to set the PID weight threshold for photon or pi0
a5fb4114 204 fPHOSWeightFormula = kFALSE;
205 fPHOSPhotonWeightFormulaExpression = "0.98*(x<40)+ 0.68*(x>=100)+(x>=40 && x<100)*(0.98+x*(6e-3)-x*x*(2e-04)+x*x*x*(1.1e-06))";
206 fPHOSPi0WeightFormulaExpression = "0.98*(x<65)+ 0.915*(x>=100)+(x>=65 && x-x*(1.95e-3)-x*x*(4.31e-05)+x*x*x*(3.61e-07))" ;
207
bdd2a262 208 if(fRecalculateBayesian){
49b5c49b 209 if(fParticleFlux == kLow){
210 printf("AliCaloPID::Init() - SetLOWFluxParam\n");
211 fEMCALPIDUtils->SetLowFluxParam() ;
212 }
213 else if (fParticleFlux == kHigh){
214 printf("AliCaloPID::Init() - SetHIGHFluxParam\n");
215 fEMCALPIDUtils->SetHighFluxParam() ;
216 }
217 }
218
219 //PID recalculation, not bayesian
220
221 //EMCAL
222 fEMCALL0CutMax = 0.3 ;
223 fEMCALL0CutMin = 0.01;
224
225 fEMCALDPhiCut = 0.05; // Same cut as in AliEMCALRecoUtils
226 fEMCALDEtaCut = 0.025;// Same cut as in AliEMCALRecoUtils
227
228 // PHOS / EMCAL, not used
229 fTOFCut = 1.e-6;
230
231 //PHOS
232 fPHOSRCut = 2. ;
233 fPHOSDispersionCut = 2.5;
234
3c1d9afb 235 // Cluster splitting
236
5a72d9af 237 fSplitM02MinCut = 0.3 ;
238 fSplitM02MaxCut = 5 ;
239 fSplitMinNCells = 4 ;
3c1d9afb 240
241 fMassEtaMin = 0.4;
242 fMassEtaMax = 0.6;
243
5a72d9af 244 fMassPi0Min = 0.11;
245 fMassPi0Max = 0.18;
3c1d9afb 246
247 fMassPhoMin = 0.0;
5a72d9af 248 fMassPhoMax = 0.08;
249
1be44524 250 fMassPi0Param[0][0] = 0 ; // Constant term on mass dependence
251 fMassPi0Param[0][1] = 0 ; // slope term on mass dependence
252 fMassPi0Param[0][2] = 0 ; // E function change
253 fMassPi0Param[0][3] = 0.063 ; // constant term on mass dependence
254 fMassPi0Param[0][4] = 0.004 ; // slope term on mass dependence
255 fMassPi0Param[0][5] = 0.070 ; // Absolute low mass cut
256
257 fMassPi0Param[1][0] = 0.131 ; // Constant term below 21 GeV
258 fMassPi0Param[1][1] = 0 ; // slope term below 21 GeV
259 fMassPi0Param[1][2] = 21 ; // E function change
260 fMassPi0Param[1][3] = 0.095 ; // constant term on mass dependence
261 fMassPi0Param[1][4] = 0.0017; // slope term on mass dependence
262 fMassPi0Param[1][5] = 0.070 ; // Absolute low mass cut
263
264 fWidthPi0Param[0][0] = 0.023 ; // Constant term on width dependence
265 fWidthPi0Param[0][1] = 0.0 ; // Slope term on width dependence
266 fWidthPi0Param[0][2] = 20 ; // E function change
267 fWidthPi0Param[0][3] =-0.001 ; // Constant term on width dependence
268 fWidthPi0Param[0][4] = 0.0012; // Slope term on width dependence
269 fWidthPi0Param[0][5] = 0.0 ; // xx term
270
271 fWidthPi0Param[1][0] = 0.0075; // Constant term on width dependence
272 fWidthPi0Param[1][1] = 0.0006; // Slope term on width dependence
273 fWidthPi0Param[1][2] = 19 ; // E function change
274 fWidthPi0Param[1][3] = 0.04 ; // Constant term on width dependence
275 fWidthPi0Param[1][4] =-0.0019; // Slope term on width dependence
276 fWidthPi0Param[1][5] = 0.000041;// xx term
ac207ee4 277
278 fMassShiftHighECell = 0; // Shift of cuts in case of higher energy threshold in cells, 5 MeV when Ecell>150 MeV
279
280 //TF1 *lM02MinNLM1 = new TF1("M02MinNLM1","exp(2.135-0.245*x)",6,13.6);
281 fM02MinParam[0][0] = 2.135 ;
282 fM02MinParam[0][1] =-0.245 ;
283 fM02MinParam[0][2] = 0.0 ;
284 fM02MinParam[0][3] = 0.0 ;
285 fM02MinParam[0][4] = 0.0 ;
1be44524 286
287 // Same as NLM=1 for NLM=2
288 fM02MinParam[1][0] = 2.135 ;
289 fM02MinParam[1][1] =-0.245 ;
290 fM02MinParam[1][2] = 0.0 ;
291 fM02MinParam[1][3] = 0.0 ;
ac207ee4 292 fM02MinParam[1][4] = 0.0 ;
ac207ee4 293
294 //TF1 *lM02MaxNLM1 = new TF1("M02MaxNLM1","exp(0.0662-0.0201*x)-0.0955+0.00186*x[0]+9.91/x[0]",6,100);
295 fM02MaxParam[0][0] = 0.0662 ;
296 fM02MaxParam[0][1] =-0.0201 ;
297 fM02MaxParam[0][2] =-0.0955 ;
298 fM02MaxParam[0][3] = 0.00186;
299 fM02MaxParam[0][4] = 9.91 ;
ac207ee4 300
301 //TF1 *lM02MaxNLM2 = new TF1("M02MaxNLM2","exp(0.353-0.0264*x)-0.524+0.00559*x[0]+21.9/x[0]",6,100);
302 fM02MaxParam[1][0] = 0.353 ;
303 fM02MaxParam[1][1] =-0.0264 ;
304 fM02MaxParam[1][2] =-0.524 ;
305 fM02MaxParam[1][3] = 0.00559;
306 fM02MaxParam[1][4] = 21.9 ;
ac207ee4 307
1be44524 308 fM02MaxParamShiftNLMN = 0.75;
995c6150 309
1be44524 310 //TF1 *lAsyNLM1 = new TF1("lAsyNLM1","0.96-879/(x*x*x)",5,100);
311 fAsyMinParam[0][0] = 0.96 ;
312 fAsyMinParam[0][1] = 0 ;
313 fAsyMinParam[0][2] =-879 ;
314 fAsyMinParam[0][3] = 0.96 ; // Absolute max
315
316 //TF1 *lAsyNLM2 = new TF1("lAsyNLM2","0.95+0.0015*x-233/(x*x*x)",5,100);
317 fAsyMinParam[1][0] = 0.95 ;
318 fAsyMinParam[1][1] = 0.0015;
319 fAsyMinParam[1][2] =-233 ;
320 fAsyMinParam[1][3] = 1.0 ; // Absolute max
321
4d97a954 322 fSplitEFracMin[0] = 0.0 ; // 0.96
323 fSplitEFracMin[1] = 0.0 ; // 0.96
324 fSplitEFracMin[2] = 0.0 ; // 0.7
325
2c36e041 326 fSubClusterEMin[0] = 0.0; // 3 GeV
327 fSubClusterEMin[1] = 0.0; // 1 GeV
328 fSubClusterEMin[2] = 0.0; // 1 GeV
329
330
5b4c2f5b 331 fSplitWidthSigma = 3. ;
5a72d9af 332
333}
334
995c6150 335
336//_____________________________________________________________________________________________________
337Bool_t AliCaloPID::IsInPi0SplitAsymmetryRange(const Float_t energy, const Float_t asy, const Int_t nlm)
338{
339 // Select the appropriate mass range for pi0 selection in splitting method
340 // No used yet in splitting ID decision
341
035e250e 342 if(!fUseSplitAsyCut) return kTRUE ;
343
995c6150 344 Float_t abasy = TMath::Abs(asy);
345
afc83530 346 Int_t inlm = nlm-1;
347 if(nlm > 2) inlm=1; // only 2 cases defined nlm=1 and nlm>=2
348
995c6150 349 // Get the parametrized min cut of asymmetry for NLM=2 up to 11 GeV
667432ef 350
1be44524 351 Float_t cut = fAsyMinParam[inlm][0] + fAsyMinParam[inlm][1]*energy + fAsyMinParam[inlm][2]/energy/energy/energy ;
ac207ee4 352
667432ef 353 // In any case and beyond validity energy range of the function,
354 // the parameter cannot be smaller than 1
1be44524 355 if( cut > fAsyMinParam[inlm][3] ) cut = fAsyMinParam[inlm][3];
995c6150 356
afc83530 357 //printf("energy %2.2f - nlm: %d (%d)- p0 %f, p1 %f, p2 %f, p3 %f ; cut: %2.2f\n",energy,nlm,inlm,
358 // fAsyMinParam[inlm][0],fAsyMinParam[inlm][1],fAsyMinParam[inlm][2],fAsyMinParam[inlm][3],cut);
995c6150 359
360 if(abasy < cut) return kTRUE;
361 else return kFALSE;
362
363}
364
5a72d9af 365//_________________________________________________________________________________________________
366Bool_t AliCaloPID::IsInPi0SplitMassRange(const Float_t energy, const Float_t mass, const Int_t nlm)
367{
368 // Select the appropriate mass range for pi0 selection in splitting method
369
370 if(fUseSimpleMassCut)
371 {
372 if(mass < fMassPi0Max && mass > fMassPi0Min) return kTRUE;
373 else return kFALSE;
374 }
375
376 // Get the selected mean value as reference for the mass
ac207ee4 377 Int_t inlm = nlm-1;
378 if(nlm > 2) inlm=1; // only 2 cases defined nlm=1 and nlm>=2
04852512 379
1be44524 380 Float_t meanMass = energy * fMassPi0Param[inlm][1] + fMassPi0Param[inlm][0];
381 if(energy > fMassPi0Param[inlm][2]) meanMass = energy * fMassPi0Param[inlm][4] + fMassPi0Param[inlm][3];
ac207ee4 382
383 // In case of higher energy cell cut than 50 MeV, smaller mean mass
384 meanMass -= fMassShiftHighECell;
385
5a72d9af 386 // Get the parametrized width of the mass
387 Float_t width = 0.009;
1be44524 388 if (energy > 8 && energy < fWidthPi0Param[inlm][2])
389 width = energy * fWidthPi0Param[inlm][1] + fWidthPi0Param[inlm][0];
390 else if( energy > fWidthPi0Param[inlm][2])
391 width = energy * energy * fWidthPi0Param[inlm][5] + energy * fWidthPi0Param[inlm][4] + fWidthPi0Param[inlm][3];
392
5a72d9af 393 // Calculate the 2 sigma cut
394 Float_t minMass = meanMass-fSplitWidthSigma*width;
395 Float_t maxMass = meanMass+fSplitWidthSigma*width;
396
397 // In case of low energy, hard cut to avoid conversions
1be44524 398 if(energy < 10 && minMass < fMassPi0Param[inlm][5] ) minMass = fMassPi0Param[inlm][5];
5a72d9af 399
ac207ee4 400 //printf("E %2.2f, mass %1.1f, nlm %d: sigma %1.1f width %3.1f, mean Mass %3.0f, minMass %3.0f, maxMass %3.0f\n ",
401 // energy,mass *1000, inlm, fSplitWidthSigma, width*1000, meanMass*1000,minMass*1000,maxMass*1000);
5a72d9af 402
403 if(mass < maxMass && mass > minMass) return kTRUE;
404 else return kFALSE;
5a72d9af 405
406}
407
1be44524 408//________________________________________________
409Bool_t AliCaloPID::IsInM02Range(const Float_t m02)
410{
411 // Select the appropriate m02 range, fix cut, not E dependent
412
413 Float_t minCut = fSplitM02MinCut;
414 Float_t maxCut = fSplitM02MaxCut;
415
416 if(m02 < maxCut && m02 > minCut) return kTRUE;
417 else return kFALSE;
418
419}
420
421//___________________________________________________________________________________________
5b4c2f5b 422Bool_t AliCaloPID::IsInPi0M02Range(const Float_t energy, const Float_t m02, const Int_t nlm)
5a72d9af 423{
5b4c2f5b 424 // Select the appropriate m02 range in splitting method for pi0
5a72d9af 425
035e250e 426 if(!fUseSplitSSCut) return kTRUE ;
1be44524 427
428 //First check the absolute minimum and maximum
429 if(!IsInM02Range(m02)) return kFALSE ;
035e250e 430
1be44524 431 //If requested, check the E dependent cuts
432 else if(!fUseSimpleM02Cut)
5a72d9af 433 {
a5a3f703 434 Int_t inlm = nlm-1;
435 if(nlm > 2) inlm=1; // only 2 cases defined nlm=1 and nlm>=2
5b4c2f5b 436
1be44524 437 Float_t minCut = fSplitM02MinCut;
438 Float_t maxCut = fSplitM02MaxCut;
439
ac207ee4 440 //e^{a+bx} + c + dx + e/x
1be44524 441 if(energy > 1) minCut = TMath::Exp( fM02MinParam[inlm][0] + fM02MinParam[inlm][1]*energy ) +
442 fM02MinParam[inlm][2] + fM02MinParam[inlm][3]*energy + fM02MinParam[inlm][4]/energy;
443
444 if(energy > 1) maxCut = TMath::Exp( fM02MaxParam[inlm][0] + fM02MaxParam[inlm][1]*energy ) +
445 fM02MaxParam[inlm][2] + fM02MaxParam[inlm][3]*energy + fM02MaxParam[inlm][4]/energy;
446
667432ef 447 // In any case and beyond validity energy range of the function,
1be44524 448 // the parameter cannot be smaller than 0.3 or larger than 4-5
449 if( minCut < fSplitM02MinCut) minCut = fSplitM02MinCut;
450 if( maxCut > fSplitM02MaxCut) maxCut = fSplitM02MaxCut;
451 if( nlm > 2 ) maxCut+=fM02MaxParamShiftNLMN;
452
453 //if(energy > 7) printf("\t \t E %2.2f, nlm %d, m02 %2.2f, minM02 %2.2f, maxM02 %2.2f\n",energy, nlm, m02,minCut,maxCut);
454
455 if(m02 < maxCut && m02 > minCut) return kTRUE;
456 else return kFALSE;
457
5a72d9af 458 }
459
1be44524 460 else return kTRUE;
5a72d9af 461
49b5c49b 462}
463
5a72d9af 464
5b4c2f5b 465//_____________________________________________________________________________________________
466Bool_t AliCaloPID::IsInEtaM02Range(const Float_t energy, const Float_t m02, const Int_t nlm)
467{
468 // Select the appropriate m02 range in splitting method to select eta's
469 // Use same parametrization as pi0, just shift the distributions (to be tuned)
470
035e250e 471 if(!fUseSplitSSCut) return kTRUE ;
472
1be44524 473 //First check the absolute minimum and maximum
474 if(!IsInM02Range(m02)) return kFALSE ;
5b4c2f5b 475
1be44524 476 //DO NOT USE, study parametrization
477
478 //If requested, check the E dependent cuts
479 else if(!fUseSimpleM02Cut)
5b4c2f5b 480 {
481 Int_t inlm = nlm-1;
482 if(nlm > 2) inlm=1; // only 2 cases defined nlm=1 and nlm>=2
483
1be44524 484 Float_t minCut = fSplitM02MinCut;
485 Float_t maxCut = fSplitM02MaxCut;
486
5b4c2f5b 487 Float_t shiftE = energy-20; // to be tuned
488 if(nlm==1) shiftE=energy-28;
489
ac207ee4 490 //e^{a+bx} + c + dx + e/x
1be44524 491 if(shiftE > 1) minCut = TMath::Exp( fM02MinParam[inlm][0] + fM02MinParam[inlm][1]*shiftE ) +
492 fM02MinParam[inlm][2] + fM02MinParam[inlm][3]*shiftE + fM02MinParam[inlm][4]/shiftE;
493
494 // In any case the parameter cannot be smaller than 0.3
495 if( minCut < fSplitM02MinCut) minCut = fSplitM02MinCut;
5b4c2f5b 496
5b4c2f5b 497 shiftE = energy+20; // to be tuned
5b4c2f5b 498
1be44524 499 if(shiftE > 1) maxCut = 1 + TMath::Exp( fM02MaxParam[inlm][0] + fM02MaxParam[inlm][1]*shiftE ) +
500 fM02MaxParam[inlm][2] + fM02MaxParam[inlm][3]*shiftE + fM02MaxParam[inlm][4]/shiftE;
501
502 // In any case the parameter cannot be smaller than 4-5
503 if( maxCut > fSplitM02MaxCut) maxCut = fSplitM02MaxCut;
504 if( nlm > 2 ) maxCut+=fM02MaxParamShiftNLMN;
505
506 //if(energy>6)printf("\t \t E %2.2f, nlm %d, m02 %2.2f, minM02 %2.2f, maxM02 %2.2f\n",energy, nlm, m02,minCut,maxCut);
507
508 if(m02 < maxCut && m02 > minCut) return kTRUE;
509 else return kFALSE;
510
5b4c2f5b 511 }
512
1be44524 513 else return kTRUE;
5b4c2f5b 514
515}
516
517//_____________________________________________________________________________________________
518Bool_t AliCaloPID::IsInConM02Range(const Float_t energy, const Float_t m02, const Int_t nlm)
519{
520 // Select the appropriate m02 range in splitting method for converted photons
521 // Just min limit for pi0s is max for conversion.
522
035e250e 523 if(!fUseSplitSSCut) return kTRUE ;
524
5b4c2f5b 525 Float_t minCut = 0.1;
1be44524 526 Float_t maxCut = fSplitM02MinCut;
5b4c2f5b 527
528 if(!fUseSimpleM02Cut)
529 {
530 Int_t inlm = nlm-1;
531 if(nlm > 2) inlm=1; // only 2 cases defined nlm=1 and nlm>=2
532
ac207ee4 533 //e^{a+bx} + c + dx + e/x
1be44524 534 if(energy > 1) maxCut = TMath::Exp( fM02MinParam[inlm][0] + fM02MinParam[inlm][1]*energy ) +
535 fM02MinParam[inlm][2] + fM02MinParam[inlm][3]*energy + fM02MinParam[inlm][4]/energy;
5b4c2f5b 536
1be44524 537 if( maxCut < fSplitM02MinCut) maxCut = fSplitM02MinCut;
5b4c2f5b 538 }
539
5b4c2f5b 540 if(m02 < maxCut && m02 > minCut) return kTRUE;
541 else return kFALSE;
542
543}
544
c5693f62 545//______________________________________________
546AliEMCALPIDUtils *AliCaloPID::GetEMCALPIDUtils()
547{
548 // return pointer to AliEMCALPIDUtils, create it if needed
549
550 if(!fEMCALPIDUtils) fEMCALPIDUtils = new AliEMCALPIDUtils ;
551 return fEMCALPIDUtils ;
552
553}
554
555
49b5c49b 556//______________________________________________________________________
3c1d9afb 557Int_t AliCaloPID::GetIdentifiedParticleType(const AliVCluster * cluster)
49b5c49b 558{
559 // Returns a PDG number corresponding to the likely ID of the cluster
560
3c1d9afb 561 Float_t energy = cluster->E();
49b5c49b 562 Float_t lambda0 = cluster->GetM02();
563 Float_t lambda1 = cluster->GetM20();
564
565 // ---------------------
566 // Use bayesian approach
567 // ---------------------
568
3c1d9afb 569 if(fUseBayesianWeights)
570 {
00a38d07 571 Double_t weights[AliPID::kSPECIESCN];
49b5c49b 572
3c1d9afb 573 if(cluster->IsEMCAL() && fRecalculateBayesian)
574 {
49b5c49b 575 fEMCALPIDUtils->ComputePID(energy, lambda0);
00a38d07 576 for(Int_t i = 0; i < AliPID::kSPECIESCN; i++) weights[i] = fEMCALPIDUtils->GetPIDFinal(i);
49b5c49b 577 }
3c1d9afb 578 else
579 {
00a38d07 580 for(Int_t i = 0; i < AliPID::kSPECIESCN; i++) weights[i] = cluster->GetPID()[i];
49b5c49b 581 }
582
3c1d9afb 583 if(fDebug > 0) PrintClusterPIDWeights(weights);
49b5c49b 584
3c1d9afb 585 return GetIdentifiedParticleTypeFromBayesWeights(cluster->IsEMCAL(), weights, energy);
bdd2a262 586 }
49b5c49b 587
588 // -------------------------------------------------------
589 // Calculate PID SS from data, do not use bayesian weights
590 // -------------------------------------------------------
591
3c1d9afb 592 if(fDebug > 0) printf("AliCaloPID::GetIdentifiedParticleType: EMCAL %d?, E %3.2f, l0 %3.2f, l1 %3.2f, disp %3.2f, tof %1.11f, distCPV %3.2f, distToBC %1.1f, NMax %d\n",
593 cluster->IsEMCAL(),energy,lambda0,cluster->GetM20(),cluster->GetDispersion(),cluster->GetTOF(),
49b5c49b 594 cluster->GetEmcCpvDistance(), cluster->GetDistanceToBadChannel(),cluster->GetNExMax());
595
3c1d9afb 596 if(cluster->IsEMCAL())
597 {
49b5c49b 598 if(fDebug > 0) printf("AliCaloPID::GetIdentifiedParticleType() - EMCAL SS %f <%f < %f?\n",fEMCALL0CutMin, lambda0, fEMCALL0CutMax);
599
600 if(lambda0 < fEMCALL0CutMax && lambda0 > fEMCALL0CutMin) return kPhoton ;
601 else return kNeutralUnknown ;
3c1d9afb 602 } // EMCAL
603 else // PHOS
604 {
605 if(TestPHOSDispersion(energy,lambda0,lambda1) < fPHOSDispersionCut) return kPhoton;
606 else return kNeutralUnknown;
49b5c49b 607 }
608
1c5acb87 609}
610
49b5c49b 611//_______________________________________________________________________________
3c1d9afb 612Int_t AliCaloPID::GetIdentifiedParticleTypeFromBayesWeights(const Bool_t isEMCAL,
49b5c49b 613 const Double_t * pid,
614 const Float_t energy)
615{
616 //Return most probable identity of the particle after bayesian weights calculated in reconstruction
477d6cee 617
3c1d9afb 618 if(!pid)
619 {
b8bec44f 620 AliFatal("pid pointer not initialized!!!");
477d6cee 621 }
622
15800db4 623 Float_t wPh = fPHOSPhotonWeight ;
477d6cee 624 Float_t wPi0 = fPHOSPi0Weight ;
15800db4 625 Float_t wE = fPHOSElectronWeight ;
626 Float_t wCh = fPHOSChargeWeight ;
627 Float_t wNe = fPHOSNeutralWeight ;
49b5c49b 628
3c1d9afb 629 if(!isEMCAL && fPHOSWeightFormula){
a5fb4114 630 wPh = GetPHOSPhotonWeightFormula()->Eval(energy) ;
631 wPi0 = GetPHOSPi0WeightFormula() ->Eval(energy);
632 }
3c1d9afb 633 else
634 {
477d6cee 635 wPh = fEMCALPhotonWeight ;
636 wPi0 = fEMCALPi0Weight ;
637 wE = fEMCALElectronWeight ;
638 wCh = fEMCALChargeWeight ;
639 wNe = fEMCALNeutralWeight ;
477d6cee 640 }
641
3c1d9afb 642 if(fDebug > 0) PrintClusterPIDWeights(pid);
643
477d6cee 644 Int_t pdg = kNeutralUnknown ;
c8fe2783 645 Float_t chargedHadronWeight = pid[AliVCluster::kProton]+pid[AliVCluster::kKaon]+
49b5c49b 646 pid[AliVCluster::kPion]+pid[AliVCluster::kMuon];
c8fe2783 647 Float_t neutralHadronWeight = pid[AliVCluster::kNeutron]+pid[AliVCluster::kKaon0];
648 Float_t allChargedWeight = pid[AliVCluster::kElectron]+pid[AliVCluster::kEleCon]+ chargedHadronWeight;
649 Float_t allNeutralWeight = pid[AliVCluster::kPhoton]+pid[AliVCluster::kPi0]+ neutralHadronWeight;
477d6cee 650
651 //Select most probable ID
3c1d9afb 652 if(!isEMCAL) // PHOS
653 {
a5fb4114 654 if(pid[AliVCluster::kPhoton] > wPh) pdg = kPhoton ;
655 else if(pid[AliVCluster::kPi0] > wPi0) pdg = kPi0 ;
c8fe2783 656 else if(pid[AliVCluster::kElectron] > wE) pdg = kElectron ;
a5fb4114 657 else if(pid[AliVCluster::kEleCon] > wE) pdg = kEleCon ;
658 else if(chargedHadronWeight > wCh) pdg = kChargedHadron ;
659 else if(neutralHadronWeight > wNe) pdg = kNeutralHadron ;
477d6cee 660 else if(allChargedWeight > allNeutralWeight)
661 pdg = kChargedUnknown ;
662 else
663 pdg = kNeutralUnknown ;
664 }
3c1d9afb 665 else //EMCAL
666 {
2007809d 667 if(pid[AliVCluster::kPhoton] > wPh) pdg = kPhoton ;
668 else if(pid[AliVCluster::kElectron] > wE) pdg = kElectron ;
669 else if(pid[AliVCluster::kPhoton]+pid[AliVCluster::kElectron] > wPh) pdg = kPhoton ; //temporal sollution until track matching for electrons is considered
670 else if(pid[AliVCluster::kPi0] > wPi0) pdg = kPi0 ;
477d6cee 671 else if(chargedHadronWeight + neutralHadronWeight > wCh) pdg = kChargedHadron ;
672 else if(neutralHadronWeight + chargedHadronWeight > wNe) pdg = kNeutralHadron ;
2007809d 673 else pdg = kNeutralUnknown ;
477d6cee 674 }
675
21a4b1c0 676 if(fDebug > 0)printf("AliCaloPID::GetIdentifiedParticleType:Final Pdg: %d, cluster energy %2.2f \n", pdg,energy);
1c5acb87 677
49b5c49b 678 return pdg ;
9a6fa057 679
1c5acb87 680}
681
3c1d9afb 682//____________________________________________________________________________________________________
683Int_t AliCaloPID::GetIdentifiedParticleTypeFromClusterSplitting(AliVCluster* cluster,
684 AliVCaloCells* cells,
685 AliCalorimeterUtils * caloutils,
686 Double_t vertex[3],
687 Int_t & nMax,
19391b8c 688 Double_t & mass, Double_t & angle,
cfdf2b91 689 TLorentzVector & l1, TLorentzVector & l2,
4914e781 690 Int_t & absId1, Int_t & absId2,
691 Float_t & distbad1, Float_t & distbad2,
692 Bool_t & fidcut1, Bool_t & fidcut2 )
3c1d9afb 693{
694 // Split the cluster in 2, do invariant mass, get the mass and decide
695 // if this is a photon, pi0, eta, ...
696
5a72d9af 697 Float_t eClus = cluster->E();
698 Float_t m02 = cluster->GetM02();
2bf17171 699 const Int_t nc = cluster->GetNCells();
700 Int_t absIdList[nc];
4d97a954 701 Float_t maxEList [nc];
3c1d9afb 702
3c1d9afb 703 mass = -1.;
704 angle = -1.;
667432ef 705
cf7e2ca9 706 //If too low number of cells, skip it
707 if ( nc < fSplitMinNCells) return kNeutralUnknown ;
708
709 if(fDebug > 0) printf("\t pass nCells cut\n");
710
3c1d9afb 711 // Get Number of local maxima
5a72d9af 712 nMax = caloutils->GetNumberOfLocalMaxima(cluster, cells, absIdList, maxEList) ;
3c1d9afb 713
5a72d9af 714 if(fDebug > 0) printf("AliCaloPID::GetIdentifiedParticleTypeFromClusterSplitting() - Cluster : E %1.1f, M02 %1.2f, NLM %d, N Cells %d\n",
715 eClus,m02,nMax,nc);
716
3c1d9afb 717 //---------------------------------------------------------------------
718 // Get the 2 max indeces and do inv mass
719 //---------------------------------------------------------------------
720
19391b8c 721 TString calorimeter = "EMCAL";
722 if(cluster->IsPHOS()) calorimeter = "PHOS";
723
724 if ( nMax == 2 )
3c1d9afb 725 {
726 absId1 = absIdList[0];
727 absId2 = absIdList[1];
19391b8c 728
729 //Order in energy
730 Float_t en1 = cells->GetCellAmplitude(absId1);
731 caloutils->RecalibrateCellAmplitude(en1,calorimeter,absId1);
732 Float_t en2 = cells->GetCellAmplitude(absId2);
733 caloutils->RecalibrateCellAmplitude(en2,calorimeter,absId2);
734 if(en1 < en2)
735 {
736 absId2 = absIdList[0];
737 absId1 = absIdList[1];
738 }
3c1d9afb 739 }
740 else if( nMax == 1 )
741 {
742
743 absId1 = absIdList[0];
744
745 //Find second highest energy cell
746
3c1d9afb 747 Float_t enmax = 0 ;
748 for(Int_t iDigit = 0 ; iDigit < cluster->GetNCells() ; iDigit++)
749 {
750 Int_t absId = cluster->GetCellsAbsId()[iDigit];
751 if( absId == absId1 ) continue ;
752 Float_t endig = cells->GetCellAmplitude(absId);
753 caloutils->RecalibrateCellAmplitude(endig,calorimeter,absId);
754 if(endig > enmax)
755 {
756 enmax = endig ;
757 absId2 = absId ;
758 }
759 }// cell loop
760 }// 1 maxima
761 else
762 { // n max > 2
763 // loop on maxima, find 2 highest
764
765 // First max
766 Float_t enmax = 0 ;
767 for(Int_t iDigit = 0 ; iDigit < nMax ; iDigit++)
768 {
769 Float_t endig = maxEList[iDigit];
770 if(endig > enmax)
771 {
772 enmax = endig ;
773 absId1 = absIdList[iDigit];
774 }
775 }// first maxima loop
776
777 // Second max
778 Float_t enmax2 = 0;
779 for(Int_t iDigit = 0 ; iDigit < nMax ; iDigit++)
780 {
781 if(absIdList[iDigit]==absId1) continue;
782 Float_t endig = maxEList[iDigit];
783 if(endig > enmax2)
784 {
785 enmax2 = endig ;
786 absId2 = absIdList[iDigit];
787 }
788 }// second maxima loop
789
790 } // n local maxima > 2
791
cf7e2ca9 792 if(absId2<0 || absId1<0)
793 {
794 if(fDebug > 0) printf("AliCaloPID::GetIdentifiedParticleTypeFromClusterSplitting() - Bad index for local maxima : N max %d, i1 %d, i2 %d, cluster E %2.2f, ncells %d, m02 %2.2f\n",
795 nMax,absId1,absId2,eClus,nc,m02);
796 return kNeutralUnknown ;
797 }
798
3c1d9afb 799 //---------------------------------------------------------------------
800 // Split the cluster energy in 2, around the highest 2 local maxima
801 //---------------------------------------------------------------------
802
2bf17171 803 AliAODCaloCluster cluster1(0, 0,NULL,0.,NULL,NULL,1,0);
804 AliAODCaloCluster cluster2(1, 0,NULL,0.,NULL,NULL,1,0);
3c1d9afb 805
2bf17171 806 caloutils->SplitEnergy(absId1,absId2,cluster, cells, &cluster1, &cluster2,nMax); /*absIdList, maxEList,*/
3c1d9afb 807
4914e781 808 fidcut1 = caloutils->GetEMCALRecoUtils()->CheckCellFiducialRegion(caloutils->GetEMCALGeometry(), &cluster1,cells);
809 fidcut2 = caloutils->GetEMCALRecoUtils()->CheckCellFiducialRegion(caloutils->GetEMCALGeometry(), &cluster2,cells);
810
811 caloutils->GetEMCALRecoUtils()->RecalculateClusterDistanceToBadChannel(caloutils->GetEMCALGeometry(),cells,&cluster1);
812 caloutils->GetEMCALRecoUtils()->RecalculateClusterDistanceToBadChannel(caloutils->GetEMCALGeometry(),cells,&cluster2);
813
814 distbad1 = cluster1.GetDistanceToBadChannel();
815 distbad2 = cluster2.GetDistanceToBadChannel();
816// if(!fidcut2 || !fidcut1 || distbad1 < 2 || distbad2 < 2)
817// printf("*** Dist to bad channel cl %f, cl1 %f, cl2 %f; fid cut cl %d, cl1 %d, cl2 %d \n",
818// cluster->GetDistanceToBadChannel(),distbad1,distbad2,
819// caloutils->GetEMCALRecoUtils()->CheckCellFiducialRegion(caloutils->GetEMCALGeometry(), cluster,cells),fidcut1,fidcut2);
820
cfdf2b91 821 cluster1.GetMomentum(l1,vertex);
822 cluster2.GetMomentum(l2,vertex);
3c1d9afb 823
cfdf2b91 824 mass = (l1+l2).M();
825 angle = l2.Angle(l1.Vect());
826 Float_t e1 = cluster1.E();
827 Float_t e2 = cluster2.E();
4914e781 828
5a72d9af 829 // Consider clusters with splitted energy not too different to original cluster energy
4d97a954 830 Float_t splitFracCut = 0;
831 if(nMax < 3) splitFracCut = fSplitEFracMin[nMax-1];
832 else splitFracCut = fSplitEFracMin[2];
833 if((e1+e2)/eClus < splitFracCut) return kNeutralUnknown ;
2c36e041 834
5a72d9af 835 if(fDebug > 0) printf("\t pass Split E frac cut\n");
2c36e041 836
837 // Consider sub-clusters with minimum energy
838 Float_t minECut = fSubClusterEMin[2];
839 if (nMax == 2) minECut = fSubClusterEMin[1];
840 else if(nMax == 1) minECut = fSubClusterEMin[0];
841 if(e1 < minECut || e2 < minECut)
842 {
843 //printf("Reject: e1 %2.1f, e2 %2.1f, cut %2.1f\n",e1,e2,minECut);
844 return kNeutralUnknown ;
845 }
846
847 if(fDebug > 0) printf("\t pass min sub-cluster E cut\n");
848
667432ef 849 // Asymmetry of cluster
850 Float_t asy =-10;
851 if(e1+e2 > 0) asy = (e1-e2) / (e1+e2);
1be44524 852
035e250e 853 if( !IsInPi0SplitAsymmetryRange(eClus,asy,nMax) ) return kNeutralUnknown ;
667432ef 854
1be44524 855
667432ef 856 if (fDebug>0) printf("\t pass asymmetry cut\n");
5b4c2f5b 857
858 Bool_t pi0OK = kFALSE;
859 Bool_t etaOK = kFALSE;
860 Bool_t conOK = kFALSE;
861
862 //If too small or big M02, skip it
863 if (IsInPi0M02Range(eClus,m02,nMax)) pi0OK = kTRUE;
864 else if(IsInEtaM02Range(eClus,m02,nMax)) etaOK = kTRUE;
865 else if(IsInConM02Range(eClus,m02,nMax)) conOK = kTRUE;
866
5a72d9af 867 // Check the mass, and set an ID to the splitted cluster
5b4c2f5b 868 if ( conOK && mass < fMassPhoMax && mass > fMassPhoMin ) { if(fDebug > 0) printf("\t Split Conv \n"); return kPhoton ; }
869 else if( etaOK && mass < fMassEtaMax && mass > fMassEtaMin ) { if(fDebug > 0) printf("\t Split Eta \n"); return kEta ; }
870 else if( pi0OK && IsInPi0SplitMassRange(cluster->E(),mass,nMax)) { if(fDebug > 0) printf("\t Split Pi0 \n"); return kPi0 ; }
871 else return kNeutralUnknown ;
3c1d9afb 872
3c1d9afb 873}
874
49b5c49b 875//_________________________________________
876TString AliCaloPID::GetPIDParametersList()
877{
477d6cee 878 //Put data member values in string to keep in output container
879
880 TString parList ; //this will be list of parameters used for this analysis.
5ae09196 881 const Int_t buffersize = 255;
882 char onePar[buffersize] ;
883 snprintf(onePar,buffersize,"--- AliCaloPID ---\n") ;
477d6cee 884 parList+=onePar ;
49b5c49b 885 if(fUseBayesianWeights){
886 snprintf(onePar,buffersize,"fEMCALPhotonWeight =%2.2f (EMCAL bayesian weight for photons)\n",fEMCALPhotonWeight) ;
887 parList+=onePar ;
888 snprintf(onePar,buffersize,"fEMCALPi0Weight =%2.2f (EMCAL bayesian weight for pi0)\n",fEMCALPi0Weight) ;
889 parList+=onePar ;
890 snprintf(onePar,buffersize,"fEMCALElectronWeight =%2.2f(EMCAL bayesian weight for electrons)\n",fEMCALElectronWeight) ;
891 parList+=onePar ;
892 snprintf(onePar,buffersize,"fEMCALChargeWeight =%2.2f (EMCAL bayesian weight for charged hadrons)\n",fEMCALChargeWeight) ;
893 parList+=onePar ;
894 snprintf(onePar,buffersize,"fEMCALNeutralWeight =%2.2f (EMCAL bayesian weight for neutral hadrons)\n",fEMCALNeutralWeight) ;
895 parList+=onePar ;
896 snprintf(onePar,buffersize,"fPHOSPhotonWeight =%2.2f (PHOS bayesian weight for photons)\n",fPHOSPhotonWeight) ;
897 parList+=onePar ;
898 snprintf(onePar,buffersize,"fPHOSPi0Weight =%2.2f (PHOS bayesian weight for pi0)\n",fPHOSPi0Weight) ;
899 parList+=onePar ;
900 snprintf(onePar,buffersize,"fPHOSElectronWeight =%2.2f(PHOS bayesian weight for electrons)\n",fPHOSElectronWeight) ;
901 parList+=onePar ;
902 snprintf(onePar,buffersize,"fPHOSChargeWeight =%2.2f (PHOS bayesian weight for charged hadrons)\n",fPHOSChargeWeight) ;
903 parList+=onePar ;
904 snprintf(onePar,buffersize,"fPHOSNeutralWeight =%2.2f (PHOS bayesian weight for neutral hadrons)\n",fPHOSNeutralWeight) ;
905 parList+=onePar ;
906
907 if(fPHOSWeightFormula){
908 snprintf(onePar,buffersize,"PHOS Photon Weight Formula: %s\n",fPHOSPhotonWeightFormulaExpression.Data() ) ;
909 parList+=onePar;
910 snprintf(onePar,buffersize,"PHOS Pi0 Weight Formula: %s\n",fPHOSPi0WeightFormulaExpression.Data() ) ;
911 parList+=onePar;
912 }
913 }
914 else {
915 snprintf(onePar,buffersize,"EMCAL: fEMCALL0CutMin =%2.2f, fEMCALL0CutMax =%2.2f (Cut on Shower Shape) \n",fEMCALL0CutMin, fEMCALL0CutMax) ;
916 parList+=onePar ;
917 snprintf(onePar,buffersize,"EMCAL: fEMCALDEtaCut =%2.2f, fEMCALDPhiCut =%2.2f (Cut on track matching) \n",fEMCALDEtaCut, fEMCALDPhiCut) ;
918 parList+=onePar ;
919 snprintf(onePar,buffersize,"fTOFCut =%e (Cut on TOF, used in PID evaluation) \n",fTOFCut) ;
920 parList+=onePar ;
921 snprintf(onePar,buffersize,"fPHOSRCut =%2.2f, fPHOSDispersionCut =%2.2f (Cut on Shower Shape and CPV) \n",fPHOSRCut,fPHOSDispersionCut) ;
922 parList+=onePar ;
923
a5fb4114 924 }
477d6cee 925
3c1d9afb 926 if(fDoClusterSplitting)
927 {
928 snprintf(onePar,buffersize,"%2.2f< M02 < %2.2f \n", fSplitM02MinCut, fSplitM02MaxCut) ;
929 parList+=onePar ;
930 snprintf(onePar,buffersize,"fMinNCells =%d \n", fSplitMinNCells) ;
931 parList+=onePar ;
932 snprintf(onePar,buffersize,"pi0 : %2.1f < m <%2.1f\n", fMassPi0Min,fMassPi0Max);
933 parList+=onePar ;
934 snprintf(onePar,buffersize,"eta : %2.1f < m <%2.1f\n", fMassEtaMin,fMassEtaMax);
935 parList+=onePar ;
936 snprintf(onePar,buffersize,"conv: %2.1f < m <%2.1f\n", fMassPhoMin,fMassPhoMax);
937 parList+=onePar ;
938 }
939
477d6cee 940 return parList;
941
1c5acb87 942}
943
49b5c49b 944//________________________________________________
1c5acb87 945void AliCaloPID::Print(const Option_t * opt) const
946{
477d6cee 947
948 //Print some relevant parameters set for the analysis
949 if(! opt)
950 return;
951
952 printf("***** Print: %s %s ******\n", GetName(), GetTitle() ) ;
953
3c1d9afb 954 if(fUseBayesianWeights)
955 {
49b5c49b 956 printf("PHOS PID weight , photon %0.2f, pi0 %0.2f, e %0.2f, charge %0.2f, neutral %0.2f \n",
3c1d9afb 957 fPHOSPhotonWeight, fPHOSPi0Weight,
958 fPHOSElectronWeight, fPHOSChargeWeight, fPHOSNeutralWeight) ;
49b5c49b 959 printf("EMCAL PID weight, photon %0.2f, pi0 %0.2f, e %0.2f, charge %0.2f, neutral %0.2f\n",
3c1d9afb 960 fEMCALPhotonWeight, fEMCALPi0Weight,
961 fEMCALElectronWeight, fEMCALChargeWeight, fEMCALNeutralWeight) ;
49b5c49b 962
963 printf("PHOS Parametrized weight on? = %d\n", fPHOSWeightFormula) ;
3c1d9afb 964 if(fPHOSWeightFormula)
965 {
49b5c49b 966 printf("Photon weight formula = %s\n", fPHOSPhotonWeightFormulaExpression.Data());
967 printf("Pi0 weight formula = %s\n", fPHOSPi0WeightFormulaExpression .Data());
968 }
969 if(fRecalculateBayesian) printf(" Recalculate bayesian with Particle Flux? = %d\n",fParticleFlux);
970 }
3c1d9afb 971 else
972 {
973 printf("TOF cut = %e\n", fTOFCut);
974 printf("EMCAL Lambda0 cut min = %2.2f; max = %2.2f\n", fEMCALL0CutMin,fEMCALL0CutMax);
975 printf("EMCAL cluster-track dEta < %2.3f; dPhi < %2.3f\n", fEMCALDEtaCut, fEMCALDPhiCut);
976 printf("PHOS Treac matching cut =%2.2f, Dispersion Cut =%2.2f \n",fPHOSRCut, fPHOSDispersionCut) ;
49b5c49b 977
a5fb4114 978 }
477d6cee 979
3c1d9afb 980 if(fDoClusterSplitting)
981 {
982 printf("Min. N Cells =%d \n", fSplitMinNCells) ;
983 printf("%2.2f < lambda_0^2 <%2.2f \n",fSplitM02MinCut,fSplitM02MaxCut);
984 printf("pi0 : %2.2f<m<%2.2f \n", fMassPi0Min,fMassPi0Max);
985 printf("eta : %2.2f<m<%2.2f \n", fMassEtaMin,fMassEtaMax);
986 printf("phot: %2.2f<m<%2.2f \n", fMassPhoMin,fMassPhoMax);
987 }
988
477d6cee 989 printf(" \n");
990
1c5acb87 991}
992
3c1d9afb 993//_________________________________________________________________
994void AliCaloPID::PrintClusterPIDWeights(const Double_t * pid) const
995{
996 // print PID of cluster, (AliVCluster*)cluster->GetPID()
997
c2791479 998 printf("AliCaloPID::PrintClusterPIDWeights() \n \t ph %0.2f, pi0 %0.2f, el %0.2f, conv el %0.2f, \n \t \
3c1d9afb 999 pion %0.2f, kaon %0.2f, proton %0.2f , neutron %0.2f, kaon %0.2f \n",
1000 pid[AliVCluster::kPhoton], pid[AliVCluster::kPi0],
1001 pid[AliVCluster::kElectron], pid[AliVCluster::kEleCon],
1002 pid[AliVCluster::kPion], pid[AliVCluster::kKaon],
1003 pid[AliVCluster::kProton],
1004 pid[AliVCluster::kNeutron], pid[AliVCluster::kKaon0]);
1005
1006}
1007
49b5c49b 1008//___________________________________________________________________________
3c1d9afb 1009void AliCaloPID::SetPIDBits(AliVCluster * cluster,
49b5c49b 1010 AliAODPWG4Particle * ph, AliCalorimeterUtils* cu,
1011 AliVEvent* event)
1012{
477d6cee 1013 //Set Bits for PID selection
1014
1015 //Dispersion/lambdas
5ae09196 1016 //Double_t disp= cluster->GetDispersion() ;
1017 Double_t l1 = cluster->GetM20() ;
1018 Double_t l0 = cluster->GetM02() ;
1019 Bool_t isDispOK = kTRUE ;
9a6fa057 1020 if(cluster->IsPHOS()){
49b5c49b 1021 if(TestPHOSDispersion(ph->Pt(),l0,l1) < fPHOSDispersionCut) isDispOK = kTRUE;
1022 else isDispOK = kFALSE;
5ae09196 1023 }
1024 else{//EMCAL
1025
49b5c49b 1026 if(l0 > fEMCALL0CutMin && l0 < fEMCALL0CutMax) isDispOK = kTRUE;
1027
5ae09196 1028 }
1029
1030 ph->SetDispBit(isDispOK) ;
477d6cee 1031
1032 //TOF
1033 Double_t tof=cluster->GetTOF() ;
1034 ph->SetTOFBit(TMath::Abs(tof)<fTOFCut) ;
1035
49b5c49b 1036 //Charged
1037 Bool_t isNeutral = IsTrackMatched(cluster,cu,event);
5ae09196 1038
1039 ph->SetChargedBit(isNeutral);
477d6cee 1040
1041 //Set PID pdg
3c1d9afb 1042 ph->SetIdentifiedParticleType(GetIdentifiedParticleType(cluster));
477d6cee 1043
5a72d9af 1044 if(fDebug > 0)
1045 {
5ae09196 1046 printf("AliCaloPID::SetPIDBits: TOF %e, Lambda0 %2.2f, Lambda1 %2.2f\n",tof , l0, l1);
477d6cee 1047 printf("AliCaloPID::SetPIDBits: pdg %d, bits: TOF %d, Dispersion %d, Charge %d\n",
49b5c49b 1048 ph->GetIdentifiedParticleType(), ph->GetTOFBit() , ph->GetDispBit() , ph->GetChargedBit());
477d6cee 1049 }
1c5acb87 1050}
1051
09273901 1052//_________________________________________________________
49b5c49b 1053Bool_t AliCaloPID::IsTrackMatched(AliVCluster* cluster,
1054 AliCalorimeterUtils * cu,
1055 AliVEvent* event) const
1056{
5ae09196 1057 //Check if there is any track attached to this cluster
1058
1059 Int_t nMatches = cluster->GetNTracksMatched();
49b5c49b 1060 AliVTrack * track = 0;
1061 Double_t p[3];
1062
44443bbd 1063 if(nMatches > 0)
1064 {
49b5c49b 1065 //In case of ESDs, by default without match one entry with negative index, no match, reject.
1066 if(!strcmp("AliESDCaloCluster",Form("%s",cluster->ClassName())))
1067 {
1068 Int_t iESDtrack = cluster->GetTrackMatchedIndex();
1069 if(iESDtrack >= 0) track = dynamic_cast<AliVTrack*> (event->GetTrack(iESDtrack));
1070 else return kFALSE;
d39cba7e 1071
44443bbd 1072 if (!track)
1073 {
1074 if(fDebug > 0) printf("AliCaloPID::IsTrackMatched() - Null matched track in ESD when index is OK!\n");
49b5c49b 1075 return kFALSE;
1076 }
1077 }
1078 else { // AOD
1079 track = dynamic_cast<AliVTrack*> (cluster->GetTrackMatched(0));
44443bbd 1080 if (!track)
1081 {
1082 if(fDebug > 0) printf("AliCaloPID::IsTrackMatched() - Null matched track in AOD!\n");
49b5c49b 1083 return kFALSE;
c76f0089 1084 }
d39cba7e 1085 }
5ae09196 1086
49b5c49b 1087 Float_t dZ = cluster->GetTrackDz();
1088 Float_t dR = cluster->GetTrackDx();
1089
1090 // if track matching was recalculated
44443bbd 1091 if(cluster->IsEMCAL() && cu && cu->IsRecalculationOfClusterTrackMatchingOn())
1092 {
49b5c49b 1093 dR = 2000., dZ = 2000.;
31ae6d59 1094 cu->GetEMCALRecoUtils()->GetMatchedResiduals(cluster->GetID(),dZ,dR);
49b5c49b 1095 }
09273901 1096
44443bbd 1097 if(cluster->IsPHOS())
1098 {
49b5c49b 1099 track->GetPxPyPz(p) ;
1100 TLorentzVector trackmom(p[0],p[1],p[2],0);
1101 Int_t charge = track->Charge();
1102 Double_t mf = event->GetMagneticField();
1103 if(TestPHOSChargedVeto(dR, dZ, trackmom.Pt(), charge, mf ) < fPHOSRCut) return kTRUE;
1104 else return kFALSE;
1105
1106 }//PHOS
5a72d9af 1107 else //EMCAL
1108 {
1109 if(fDebug > 1)
49b5c49b 1110 printf("AliCaloPID::IsTrackMatched - EMCAL dR %f < %f, dZ %f < %f \n",dR, fEMCALDPhiCut, dZ, fEMCALDEtaCut);
1111
1112 if(TMath::Abs(dR) < fEMCALDPhiCut &&
1113 TMath::Abs(dZ) < fEMCALDEtaCut) return kTRUE;
1114 else return kFALSE;
1115
1116 }//EMCAL cluster
1117
1118
1119 } // more than 1 match, at least one track in array
1120 else return kFALSE;
1121
1122}
1123
1124//___________________________________________________________________________________________________
1125Float_t AliCaloPID::TestPHOSDispersion(const Double_t pt, const Double_t l1, const Double_t l2) const
1126{
1127 //Check if cluster photon-like. Uses photon cluster parameterization in real pp data
1128 //Returns distance in sigmas. Recommended cut 2.5
1129
1130 Double_t l2Mean = 1.53126+9.50835e+06/(1.+1.08728e+07*pt+1.73420e+06*pt*pt) ;
1131 Double_t l1Mean = 1.12365+0.123770*TMath::Exp(-pt*0.246551)+5.30000e-03*pt ;
1132 Double_t l2Sigma = 6.48260e-02+7.60261e+10/(1.+1.53012e+11*pt+5.01265e+05*pt*pt)+9.00000e-03*pt;
1133 Double_t l1Sigma = 4.44719e-04+6.99839e-01/(1.+1.22497e+00*pt+6.78604e-07*pt*pt)+9.00000e-03*pt;
1134 Double_t c =-0.35-0.550*TMath::Exp(-0.390730*pt) ;
f3138ecf 1135 Double_t r2 = 0.5* (l1-l1Mean)*(l1-l1Mean)/l1Sigma/l1Sigma +
49b5c49b 1136 0.5* (l2-l2Mean)*(l2-l2Mean)/l2Sigma/l2Sigma +
1137 0.5*c*(l1-l1Mean)*(l2-l2Mean)/l1Sigma/l2Sigma ;
1138
f3138ecf 1139 if(fDebug > 0) printf("AliCaloPID::TestPHOSDispersion() - PHOS SS R %f < %f?\n", TMath::Sqrt(r2), fPHOSDispersionCut);
5ae09196 1140
f3138ecf 1141 return TMath::Sqrt(r2) ;
5ae09196 1142
1143}
1144
49b5c49b 1145//_______________________________________________________________________________________________
1146Float_t AliCaloPID::TestPHOSChargedVeto(const Double_t dx, const Double_t dz, const Double_t pt,
1147 const Int_t charge, const Double_t mf) const
1148{
1149 //Checks distance to the closest track. Takes into account
1150 //non-perpendicular incidence of tracks.
1151 //returns distance in sigmas. Recommended cut: 2.
1152 //Requires (sign) of magnetic filed. onc can find it for example as following
1153 // Double_t mf=0. ;
1154 // AliESDEvent *event = dynamic_cast<AliESDEvent*>(InputEvent());
1155 // if(event)
1156 // mf = event->GetMagneticField(); //Positive for ++ and negative for --
1157
1158
1159 Double_t meanX = 0.;
1160 Double_t meanZ = 0.;
1161 Double_t sx = TMath::Min(5.4,2.59719e+02*TMath::Exp(-pt/1.02053e-01)+
1162 6.58365e-01*5.91917e-01*5.91917e-01/((pt-9.61306e-01)*(pt-9.61306e-01)+5.91917e-01*5.91917e-01)+
1163 1.59219);
1164 Double_t sz = TMath::Min(2.75,4.90341e+02*1.91456e-02*1.91456e-02/(pt*pt+1.91456e-02*1.91456e-02)+
1165 1.60) ;
1166
1167 if(mf<0.){ //field --
1168 meanZ = -0.468318 ;
1169 if(charge>0)
1170 meanX = TMath::Min(7.3, 3.89994*1.20679 *1.20679 /(pt*pt+1.20679*1.20679)+
1171 0.249029+2.49088e+07*TMath::Exp(-pt*3.33650e+01)) ;
1172 else
1173 meanX =-TMath::Min(7.7, 3.86040*0.912499*0.912499/(pt*pt+0.912499*0.912499)+
1174 1.23114 +4.48277e+05*TMath::Exp(-pt*2.57070e+01)) ;
1175 }
1176 else{ //Field ++
1177 meanZ = -0.468318;
1178 if(charge>0)
1179 meanX =-TMath::Min(8.0,3.86040*1.31357*1.31357/(pt*pt+1.31357*1.31357)+
1180 0.880579+7.56199e+06*TMath::Exp(-pt*3.08451e+01)) ;
1181 else
1182 meanX = TMath::Min(6.85, 3.89994*1.16240*1.16240/(pt*pt+1.16240*1.16240)-
1183 0.120787+2.20275e+05*TMath::Exp(-pt*2.40913e+01)) ;
1184 }
9a6fa057 1185
49b5c49b 1186 Double_t rz = (dz-meanZ)/sz ;
1187 Double_t rx = (dx-meanX)/sx ;
9a6fa057 1188
49b5c49b 1189 if(fDebug > 0)
1190 printf("AliCaloPID::TestPHOSDispersion() - PHOS Matching R %f < %f\n",TMath::Sqrt(rx*rx+rz*rz), fPHOSRCut);
9a6fa057 1191
49b5c49b 1192 return TMath::Sqrt(rx*rx+rz*rz) ;
9a6fa057 1193
1194}