]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWG1/AliESDRecV0Info.cxx
AliRecInfo file splitted to 3 classes (Marian)
[u/mrichter/AliRoot.git] / PWG1 / AliESDRecV0Info.cxx
CommitLineData
6fc428f0 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16
17///////////////////////////////////////////////////////////////////////////////
18// //
19// //
20// Comparison class for V0 information //
21// responsible:
22// marian.ivanov@cern.ch //
23//
24//
25
26
27
28
29
30#include <stdio.h>
31#include <string.h>
32//ROOT includes
33#include "Rtypes.h"
34//
35//ALIROOT includes
36//
37#include "AliESDtrack.h"
38#include "AliTPCParam.h"
39#include "AliTrackReference.h"
40#include "AliTPCParamSR.h"
41#include "AliESD.h"
42#include "AliESDfriend.h"
43#include "AliESDtrack.h"
44#include "AliTPCseed.h"
45#include "AliITStrackMI.h"
46#include "AliTRDtrack.h"
47#include "AliHelix.h"
48#include "AliESDVertex.h"
49#include "AliExternalTrackParam.h"
50#include "AliESDkink.h"
51#include "AliESDv0.h"
52#include "AliV0.h"
53//
54#include "AliTreeDraw.h"
55#include "AliGenInfo.h"
56
57#include "AliESDRecV0Info.h"
58
59
60
61ClassImp(AliESDRecV0Info)
62
63
64
65
66
67void AliESDRecV0Info::Update(Float_t vertex[3])
68{
69
70 if ( (fT1.fStatus[1]>0)&& (fT2.fStatus[1]>0)){
71 Float_t distance1,distance2;
72 Double_t xx[3],pp[3];
73 //
74 Double_t xd[3],pd[3],signd;
75 Double_t xm[3],pm[3],signm;
76 //
77 //
78 if (fT1.fITSOn&&fT2.fITSOn){
79 for (Int_t i=0;i<3;i++){
80 xd[i] = fT2.fITSinR1[i];
81 pd[i] = fT2.fITSinP1[i];
82 xm[i] = fT1.fITSinR1[i];
83 pm[i] = fT1.fITSinP1[i];
84 }
85 }
86 else{
87
88 for (Int_t i=0;i<3;i++){
89 xd[i] = fT2.fTPCinR1[i];
90 pd[i] = fT2.fTPCinP1[i];
91 xm[i] = fT1.fTPCinR1[i];
92 pm[i] = fT1.fTPCinP1[i];
93 }
94 }
95 //
96 //
97 signd = fT2.fSign<0 ? -1:1;
98 signm = fT1.fSign<0 ? -1:1;
99
100 AliHelix dhelix1(xd,pd,signd);
101 dhelix1.GetMomentum(0,pp,0);
102 dhelix1.Evaluate(0,xx);
103 //
104 // Double_t x2[3],p2[3];
105 //
106 AliHelix mhelix(xm,pm,signm);
107 //
108 //find intersection linear
109 //
110 Double_t phase[2][2],radius[2];
111 Int_t points = dhelix1.GetRPHIintersections(mhelix, phase, radius,200);
112 Double_t delta1=10000,delta2=10000;
113
114 if (points==1){
115 fRs[0] = TMath::Sqrt(radius[0]);
116 fRs[1] = TMath::Sqrt(radius[0]);
117 }
118 if (points==2){
119 fRs[0] =TMath::Min(TMath::Sqrt(radius[0]),TMath::Sqrt(radius[1]));
120 fRs[1] =TMath::Max(TMath::Sqrt(radius[0]),TMath::Sqrt(radius[1]));
121 }
122
123 if (points>0){
124 dhelix1.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
125 dhelix1.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
126 dhelix1.LinearDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
127 }
128 if (points==2){
129 dhelix1.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
130 dhelix1.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
131 dhelix1.LinearDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
132 }
133 if (points==1){
134 fRs[0] = TMath::Sqrt(radius[0]);
135 fRs[1] = TMath::Sqrt(radius[0]);
136 fDistMinR = delta1;
137 }
138 if (points==2){
139 if (radius[0]<radius[1]){
140 fRs[0] = TMath::Sqrt(radius[0]);
141 fRs[1] = TMath::Sqrt(radius[1]);
142 fDistMinR = delta1;
143 }
144 else{
145 fRs[0] = TMath::Sqrt(radius[1]);
146 fRs[1] = TMath::Sqrt(radius[0]);
147 fDistMinR = delta2;
148 }
149 }
150 //
151 //
152 distance1 = TMath::Min(delta1,delta2);
153 //
154 //find intersection parabolic
155 //
156 points = dhelix1.GetRPHIintersections(mhelix, phase, radius);
157 delta1=10000,delta2=10000;
158
159 if (points>0){
160 dhelix1.ParabolicDCA(mhelix,phase[0][0],phase[0][1],radius[0],delta1);
161 }
162 if (points==2){
163 dhelix1.ParabolicDCA(mhelix,phase[1][0],phase[1][1],radius[1],delta2);
164 }
165
166 distance2 = TMath::Min(delta1,delta2);
167 if (distance2>100) fDist2 =100;
168 return;
169 if (delta1<delta2){
170 //get V0 info
171 dhelix1.Evaluate(phase[0][0],fXr);
172 dhelix1.GetMomentum(phase[0][0],fPdr);
173 mhelix.GetMomentum(phase[0][1],fPm);
174 dhelix1.GetAngle(phase[0][0],mhelix,phase[0][1],fAngle);
175 fRr = TMath::Sqrt(radius[0]);
176 }
177 else{
178 dhelix1.Evaluate(phase[1][0],fXr);
179 dhelix1.GetMomentum(phase[1][0], fPdr);
180 mhelix.GetMomentum(phase[1][1], fPm);
181 dhelix1.GetAngle(phase[1][0],mhelix,phase[1][1],fAngle);
182 fRr = TMath::Sqrt(radius[1]);
183 }
184 fDist1 = TMath::Sqrt(distance1);
185 fDist2 = TMath::Sqrt(distance2);
186
187 if (fDist2<10.5){
188 Double_t x,alpha,param[5],cov[15];
189 //
190 fT1.GetESDtrack()->GetInnerExternalParameters(alpha,x,param);
191 fT1.GetESDtrack()->GetInnerExternalCovariance(cov);
192 AliExternalTrackParam paramm(x,alpha,param,cov);
193 //
194 fT2.GetESDtrack()->GetInnerExternalParameters(alpha,x,param);
195 fT2.GetESDtrack()->GetInnerExternalCovariance(cov);
196 AliExternalTrackParam paramd(x,alpha,param,cov);
197 }
198 //
199 //
200
201 Float_t v[3] = {fXr[0]-vertex[0],fXr[1]-vertex[1],fXr[2]-vertex[2]};
202 Float_t p[3] = {fPdr[0]+fPm[0], fPdr[1]+fPm[1],fPdr[2]+fPm[2]};
203
204 Float_t vnorm2 = v[0]*v[0]+v[1]*v[1];
205 Float_t vnorm3 = TMath::Sqrt(v[2]*v[2]+vnorm2);
206 vnorm2 = TMath::Sqrt(vnorm2);
207 Float_t pnorm2 = p[0]*p[0]+p[1]*p[1];
208 Float_t pnorm3 = TMath::Sqrt(p[2]*p[2]+pnorm2);
209 pnorm2 = TMath::Sqrt(pnorm2);
210
211 fPointAngleFi = (v[0]*p[0]+v[1]*p[1])/(vnorm2*pnorm2);
212 fPointAngleTh = (v[2]*p[2]+vnorm2*pnorm2)/(vnorm3*pnorm3);
213 fPointAngle = (v[0]*p[0]+v[1]*p[1]+v[2]*p[2])/(vnorm3*pnorm3);
214 }
215}
216