]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWG1/TRD/AliTRDclusterResolution.cxx
explicit initializations
[u/mrichter/AliRoot.git] / PWG1 / TRD / AliTRDclusterResolution.cxx
CommitLineData
1ee39b3a 1/**************************************************************************
2* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3* *
4* Author: The ALICE Off-line Project. *
5* Contributors are mentioned in the code where appropriate. *
6* *
7* Permission to use, copy, modify and distribute this software and its *
8* documentation strictly for non-commercialf purposes is hereby granted *
9* without fee, provided that the above copyright notice appears in all *
10* copies and that both the copyright notice and this permission notice *
11* appear in the supporting documentation. The authors make no claims *
12* about the suitability of this software for any purpose. It is *
13* provided "as is" without express or implied warranty. *
14**************************************************************************/
15
16/* $Id: AliTRDclusterResolution.cxx */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
20// TRD cluster error parameterization //
21// //
22// This class is designed to produce the reference plots for a detailed study//
23// and parameterization of TRD cluster errors. The following effects are taken//
24// into account : //
25// - dependence with the total charge of the cluster //
26// - dependence with the distance from the center pad. This is monitored
27// for each layer individually since the pad size varies with layer
28// - dependence with the drift length - here the influence of anisochronity
29// and diffusion are searched
30// - dependence with the distance to the anode wire - anisochronity effects
31// - dependence with track angle (for y resolution)
32// The correlation between effects is taken into account.
33//
34// Since magnetic field plays a very important role in the TRD measurement
35// the ExB correction is forced by the setter function SetExB(Int_t). The
36// argument is the detector index, if none is specified all will be
37// considered.
38//
39// Two cases are of big importance.
40// - comparison with MC
41// - comparison with Kalman fit. In this case the covariance matrix of the
42// Kalman fit are needed.
43//
44// The functionalities implemented in this class are based on the storage
45// class AliTRDclusterInfo.
46//
47// The Method
48// ----------
49//
50// The method to disentangle s_y and s_x is based on the relation (see also fig.)
51// BEGIN_LATEX
52// #sigma^{2} = #sigma^{2}_{y} + tg^{2}(#alpha_{L})*#sigma^{2}_{x_{d}} + tg^{2}(#phi-#alpha_{L})*(#sigma^{2}_{x_{d}}+#sigma^{2}_{x_{c}})
53// END_LATEX
54// with
55// BEGIN_LATEX
56// #sigma^{2}_{x_{c}} #approx 0
57// END_LATEX
58// we suppose the chamber is well calibrated for t_{0} and aligned in
59// radial direction.
60//
61// Clusters can be radially shifted due to three causes:
62// - globally shifted - due to residual misalignment/miscalibration(t0)
63// - locally shifted - due to different local drift velocity from the mean
64// - randomly shifted - due to neighboring (radial direction) clusters
65// charge induced by asymmetry of the TRF.
66//
67// We estimate this effects by the relations:
68// BEGIN_LATEX
69// #mu_{y} = tg(#alpha_{L})*#Delta x_{d}(...) + tg(#phi-#alpha_{L})*(#Delta x_{c}(...) + #Delta x_{d}(...))
70// END_LATEX
71// where
72// BEGIN_LATEX
73// #Delta x_{d}(...) = (<v_{d}> + #delta v_{d}(x_{d}, d)) * (t + t^{*}(Q))
74// END_LATEX
75// and we specified explicitely the variation of drift velocity parallel
76// with the track (x_{d}) and perpendicular to it due to anisochronity (d).
77//
78// For estimating the contribution from asymmetry of TRF the following
79// parameterization is being used
80// BEGIN_LATEX
81// t^{*}(Q) = #delta_{0} * #frac{Q_{t+1} - Q_{t-1}}{Q_{t-1} + Q_{t} + Q_{t+1}}
82// END_LATEX
83//
84//
85// Clusters can also be r-phi shifted due to:
86// - wrong PRF or wrong cuts at digits level
87//The following correction is applied :
88// BEGIN_LATEX
89// <#Delta y> = a + b * sin(c*y_{pw})
90// END_LATEX
91
92// The Models
93//
94// Parameterization against total charge
95//
96// Obtained for B=0T at phi=0. All other effects integrated out.
97// BEGIN_LATEX
98// #sigma^{2}_{y}(Q) = #sigma^{2}_{y}(...) + b(#frac{1}{Q} - #frac{1}{Q_{0}})
99// END_LATEX
100// For B diff 0T the error of the average ExB correction error has to be subtracted !!
101//
102// Parameterization Sx
103//
104// The parameterization of the error in the x direction can be written as
105// BEGIN_LATEX
106// #sigma_{x} = #sigma_{x}^{||} + #sigma_{x}^{#perp}
107// END_LATEX
108//
109// where the parallel component is given mainly by the TRF width while
110// the perpendicular component by the anisochronity. The model employed for
111// the parallel is gaus(0)+expo(3) with the following parameters
112// 1 C 5.49018e-01 1.23854e+00 3.84540e-04 -8.21084e-06
113// 2 M 7.82999e-01 6.22531e-01 2.71272e-04 -6.88485e-05
114// 3 S 2.74451e-01 1.13815e+00 2.90667e-04 1.13493e-05
115// 4 E1 2.53596e-01 1.08646e+00 9.95591e-05 -2.11625e-05
116// 5 E2 -2.40078e-02 4.26520e-01 4.67153e-05 -2.35392e-04
117//
118// and perpendicular to the track is pol2 with the parameters
119//
120// Par_0 = 0.190676 +/- 0.41785
121// Par_1 = -3.9269 +/- 7.49862
122// Par_2 = 14.7851 +/- 27.8012
123//
124// Parameterization Sy
125//
126// The parameterization of the error in the y direction along track uses
127// BEGIN_LATEX
128// #sigma_{y}^{||} = #sigma_{y}^{0} -a*exp(1/(x-b))
129// END_LATEX
130//
131// with following values for the parameters:
132// 1 sy0 2.60967e-01 2.99652e-03 7.82902e-06 -1.89636e-04
133// 2 a -7.68941e+00 1.87883e+00 3.84539e-04 9.38268e-07
134// 3 b -3.41160e-01 7.72850e-02 1.63231e-05 2.51602e-05
135//
136//==========================================================================
137// Example how to retrive reference plots from the task
138// void steerClErrParam(Int_t fig=0)
139// {
140// gSystem->Load("libANALYSIS.so");
141// gSystem->Load("libTRDqaRec.so");
142//
143// // initialize DB manager
144// AliCDBManager *cdb = AliCDBManager::Instance();
145// cdb->SetDefaultStorage("local://$ALICE_ROOT/OCDB");
146// cdb->SetRun(0);
147// // initialize magnetic field.
148// AliMagFCheb *field=new AliMagFCheb("Maps","Maps", 2, 1., 10., AliMagFCheb::k5kG);
149// AliTracker::SetFieldMap(field, kTRUE);
150//
151// AliTRDclusterResolution *res = new AliTRDclusterResolution();
152// res->SetMCdata();
153// res->Load("TRD.TaskClErrParam.root");
154// res->SetExB();
155// res->SetVisual();
156// //res->SetSaveAs();
157// res->SetProcessCharge(kFALSE);
158// res->SetProcessCenterPad(kFALSE);
159// //res->SetProcessMean(kFALSE);
160// res->SetProcessSigma(kFALSE);
161// if(!res->PostProcess()) return;
162// new TCanvas;
163// res->GetRefFigure(fig);
164// }
165//
166// Authors: //
167// Alexandru Bercuci <A.Bercuci@gsi.de> //
168////////////////////////////////////////////////////////////////////////////
169
170#include "AliTRDclusterResolution.h"
171#include "info/AliTRDclusterInfo.h"
172#include "AliTRDgeometry.h"
801d4d50 173#include "AliTRDpadPlane.h"
1ee39b3a 174#include "AliTRDcluster.h"
5935a6da 175#include "AliTRDseedV1.h"
1ee39b3a 176#include "AliTRDcalibDB.h"
177#include "AliTRDCommonParam.h"
178#include "Cal/AliTRDCalROC.h"
179#include "Cal/AliTRDCalDet.h"
180
801d4d50 181#include "AliESDEvent.h"
1ee39b3a 182#include "AliCDBManager.h"
183
184#include "TROOT.h"
185#include "TObjArray.h"
186#include "TAxis.h"
187#include "TF1.h"
188#include "TLegend.h"
189#include "TGraphErrors.h"
190#include "TLine.h"
191#include "TH2I.h"
192#include "TH3S.h"
193#include "TTree.h"
194#include "TMath.h"
195#include "TLinearFitter.h"
196
197#include "TCanvas.h"
198#include "TSystem.h"
199
200ClassImp(AliTRDclusterResolution)
201
202const Float_t AliTRDclusterResolution::fgkTimeBinLength = 1./ AliTRDCommonParam::Instance()->GetSamplingFrequency();
203//_______________________________________________________
f8f46e4d 204AliTRDclusterResolution::AliTRDclusterResolution()
205 : AliTRDrecoTask()
705f8b0a 206 ,fCanvas(NULL)
207 ,fInfo(NULL)
208 ,fResults(NULL)
f8f46e4d 209 ,fStatus(0)
210 ,fDet(-1)
801d4d50 211 ,fCol(-1)
212 ,fRow(-1)
f8f46e4d 213 ,fExB(0.)
e3147647 214 ,fVdrift(1.5)
5935a6da 215 ,fT0(0.)
e3147647 216 ,fGain(1.)
563d1b38 217 ,fDyRange(1.3)
f8f46e4d 218 ,fLy(0)
5935a6da 219 ,fT(0.)
f8f46e4d 220 ,fX(0.)
221 ,fY(0.)
222 ,fZ(0.)
223{
224// Constructor
705f8b0a 225 SetNameTitle("ClErrCalib", "Cluster Error Parameterization");
563d1b38 226 memset(fR, 0, 4*sizeof(Float_t));
227 memset(fP, 0, 4*sizeof(Float_t));
f8f46e4d 228}
229
705f8b0a 230//_______________________________________________________
231AliTRDclusterResolution::AliTRDclusterResolution(const char *name)
232 : AliTRDrecoTask(name, "Cluster Error Parameterization")
4226db3e 233 ,fCanvas(NULL)
234 ,fInfo(NULL)
235 ,fResults(NULL)
1ee39b3a 236 ,fStatus(0)
237 ,fDet(-1)
801d4d50 238 ,fCol(-1)
239 ,fRow(-1)
1ee39b3a 240 ,fExB(0.)
e3147647 241 ,fVdrift(1.5)
5935a6da 242 ,fT0(0.)
e3147647 243 ,fGain(1.)
563d1b38 244 ,fDyRange(1.3)
1ee39b3a 245 ,fLy(0)
5935a6da 246 ,fT(0.)
1ee39b3a 247 ,fX(0.)
248 ,fY(0.)
249 ,fZ(0.)
250{
251// Constructor
252
253 memset(fR, 0, 4*sizeof(Float_t));
254 memset(fP, 0, 4*sizeof(Float_t));
1ee39b3a 255
256 // By default register all analysis
257 // The user can switch them off in his steering macro
258 SetProcess(kQRes);
259 SetProcess(kCenter);
260 SetProcess(kMean);
261 SetProcess(kSigm);
262}
263
264//_______________________________________________________
265AliTRDclusterResolution::~AliTRDclusterResolution()
266{
267// Destructor
268
269 if(fCanvas) delete fCanvas;
1ee39b3a 270 if(fResults){
271 fResults->Delete();
272 delete fResults;
273 }
274}
275
1ee39b3a 276//_______________________________________________________
f8f46e4d 277void AliTRDclusterResolution::UserCreateOutputObjects()
1ee39b3a 278{
1ee39b3a 279 fContainer = Histos();
068e2c00 280 PostData(1, fContainer);
1ee39b3a 281}
282
283//_______________________________________________________
284Bool_t AliTRDclusterResolution::GetRefFigure(Int_t ifig)
285{
286// Steering function to retrieve performance plots
287
288 if(!fResults) return kFALSE;
4226db3e 289 TLegend *leg = NULL;
290 TList *l = NULL;
291 TObjArray *arr = NULL;
292 TTree *t = NULL;
293 TH2 *h2 = NULL;TH1 *h1 = NULL;
294 TGraphErrors *gm(NULL), *gs(NULL), *gp(NULL);
1ee39b3a 295 switch(ifig){
296 case kQRes:
297 if(!(arr = (TObjArray*)fResults->At(kQRes))) break;
298 if(!(gm = (TGraphErrors*)arr->At(0))) break;
299 if(!(gs = (TGraphErrors*)arr->At(1))) break;
300 if(!(gp = (TGraphErrors*)arr->At(2))) break;
5935a6da 301 leg= new TLegend(.7, .7, .9, .95);
302 leg->SetBorderSize(0); leg->SetFillColor(0); leg->SetFillStyle(0);
303 gs->Draw("apl"); leg->AddEntry(gs, "Sigma / Resolution", "pl");
1ee39b3a 304 gs->GetHistogram()->GetYaxis()->SetRangeUser(-50., 700.);
305 gs->GetHistogram()->SetXTitle("Q [a.u.]");
5935a6da 306 gs->GetHistogram()->SetYTitle("y - x tg(#alpha_{L}) [#mum]");
307 gm->Draw("pl");leg->AddEntry(gm, "Mean / Systematics", "pl");
308 gp->Draw("pl");leg->AddEntry(gp, "Abundance / Probability", "pl");
309 leg->Draw();
1ee39b3a 310 return kTRUE;
311 case kCenter:
312 if(!(arr = (TObjArray*)fResults->At(kCenter))) break;
313 gPad->Divide(2, 1); l = gPad->GetListOfPrimitives();
314 ((TVirtualPad*)l->At(0))->cd();
5935a6da 315 ((TTree*)arr->At(0))->Draw(Form("y:t>>h(%d, -0.5, %f, 51, -.51, .51)",AliTRDseedV1::kNtb, AliTRDseedV1::kNtb-0.5),
1ee39b3a 316 "m[0]*(ly==0&&abs(m[0])<1.e-1)", "colz");
317 ((TVirtualPad*)l->At(1))->cd();
318 leg= new TLegend(.7, .7, .9, .95);
319 leg->SetBorderSize(0); leg->SetFillColor(0); leg->SetFillStyle(0);
320 leg->SetHeader("TRD Plane");
321 for(Int_t il = 1; il<=AliTRDgeometry::kNlayer; il++){
322 if(!(gm = (TGraphErrors*)arr->At(il))) return kFALSE;
323 gm->Draw(il>1?"pc":"apc"); leg->AddEntry(gm, Form("%d", il-1), "pl");
324 if(il>1) continue;
5935a6da 325 gm->GetHistogram()->SetXTitle("t_{drift} [tb]");
1ee39b3a 326 gm->GetHistogram()->SetYTitle("#sigma_{y}(x|cen=0) [#mum]");
327 gm->GetHistogram()->GetYaxis()->SetRangeUser(150., 500.);
328 }
329 leg->Draw();
330 return kTRUE;
331 case kSigm:
332 if(!(t = (TTree*)fResults->At(kSigm))) break;
333 t->Draw("z:t>>h2x(23, 0.1, 2.4, 25, 0., 2.5)","sx*(1)", "lego2fb");
334 h2 = (TH2F*)gROOT->FindObject("h2x");
335 printf(" const Double_t sx[24][25]={\n");
336 for(Int_t ix=1; ix<=h2->GetNbinsX(); ix++){
337 printf(" {");
338 for(Int_t iy=1; iy<h2->GetNbinsY(); iy++){
339 printf("%6.4f ", h2->GetBinContent(ix, iy));
340 }
341 printf("%6.4f},\n", h2->GetBinContent(ix, h2->GetNbinsY()));
342 }
343 printf(" };\n");
344 gPad->Divide(2, 1, 1.e-5, 1.e-5); l = gPad->GetListOfPrimitives();
345 ((TVirtualPad*)l->At(0))->cd();
346 h1 = h2->ProjectionX("hsx_pxx"); h1->Scale(1.e4/kND); h1->SetMarkerStyle(24);
347 h1->SetYTitle("<#sigma_{x}> [#mum]");
348 h1->SetXTitle("t_{drift} [#mus]");
5935a6da 349 h1->GetXaxis()->SetRange(2, AliTRDseedV1::kNtb-1); h1->Draw("pc");
1ee39b3a 350
351 t->Draw("z:t>>h2y(23, 0.1, 2.4, 25, 0., 2.5)","sy*(1)", "lego2fb");
352 h2 = (TH2F*)gROOT->FindObject("h2y");
353 printf(" const Double_t sy[24][25]={\n");
354 for(Int_t ix=1; ix<=h2->GetNbinsX(); ix++){
355 printf(" {");
356 for(Int_t iy=1; iy<h2->GetNbinsY(); iy++){
357 printf("%6.4f ", h2->GetBinContent(ix, iy));
358 }
359 printf("%6.4f},\n", h2->GetBinContent(ix, h2->GetNbinsY()));
360 }
361 printf(" };\n");
362 ((TVirtualPad*)l->At(1))->cd();
363 h1 = h2->ProjectionX("hsy_pxx"); h1->Scale(1.e4/kND); h1->SetMarkerStyle(24);
364 h1->SetYTitle("<#sigma_{y}> [#mum]");
365 h1->SetXTitle("t_{drift} [#mus]");
5935a6da 366 h1->GetXaxis()->SetRange(2, AliTRDseedV1::kNtb-1); h1->Draw("pc");
1ee39b3a 367 return kTRUE;
368 case kMean:
369 if(!(t = (TTree*)fResults->At(kMean))) break;
2ba7720d 370 if(!t->Draw(Form("z:t>>h2x(%d, -0.5, %3.1f, %d, 0., 2.5)",
5935a6da 371 AliTRDseedV1::kNtb, AliTRDseedV1::kNtb-0.5, kND),
2ba7720d 372 "dx*(1)", "goff")) break;
1ee39b3a 373 h2 = (TH2F*)gROOT->FindObject("h2x");
5935a6da 374 printf(" const Double_t dx[%d][%d]={\n", AliTRDseedV1::kNtb, kND);
1ee39b3a 375 for(Int_t ix=1; ix<=h2->GetNbinsX(); ix++){
376 printf(" {");
377 for(Int_t iy=1; iy<h2->GetNbinsY(); iy++){
5935a6da 378 printf("%+6.4e, ", h2->GetBinContent(ix, iy));
1ee39b3a 379 }
5935a6da 380 printf("%+6.4e},\n", h2->GetBinContent(ix, h2->GetNbinsY()));
1ee39b3a 381 }
382 printf(" };\n");
5935a6da 383 gPad->Divide(2, 2, 1.e-5, 1.e-5); l = gPad->GetListOfPrimitives();
1ee39b3a 384 ((TVirtualPad*)l->At(0))->cd();
5935a6da 385 h2->Draw("lego2fb");
386 ((TVirtualPad*)l->At(2))->cd();
1ee39b3a 387 h1 = h2->ProjectionX("hdx_pxx"); h1->Scale(1.e4/kND); h1->SetMarkerStyle(24);
5935a6da 388 h1->SetYTitle("<#deltax> [#mum]");
b9ddd472 389 h1->SetXTitle("t_{drift} [tb]");
5935a6da 390 //h1->GetXaxis()->SetRange(2, AliTRDseedV1::kNtb-1);
391 h1->Draw("pc");
1ee39b3a 392
2ba7720d 393 if(!t->Draw(Form("z:t>>h2y(%d, -0.5, %3.1f, %d, 0., 2.5)",
5935a6da 394 AliTRDseedV1::kNtb, AliTRDseedV1::kNtb-0.5, kND),
2ba7720d 395 "dy*(1)", "goff")) break;
1ee39b3a 396 h2 = (TH2F*)gROOT->FindObject("h2y");
5935a6da 397 printf(" const Double_t dy[%d][%d]={\n", AliTRDseedV1::kNtb, kND);
1ee39b3a 398 for(Int_t ix=1; ix<=h2->GetNbinsX(); ix++){
399 printf(" {");
400 for(Int_t iy=1; iy<h2->GetNbinsY(); iy++){
5935a6da 401 printf("%+6.4e ", h2->GetBinContent(ix, iy));
1ee39b3a 402 }
5935a6da 403 printf("%+6.4e},\n", h2->GetBinContent(ix, h2->GetNbinsY()));
1ee39b3a 404 }
405 printf(" };\n");
406 ((TVirtualPad*)l->At(1))->cd();
5935a6da 407 h2->Draw("lego2fb");
408 ((TVirtualPad*)l->At(3))->cd();
1ee39b3a 409 h1 = h2->ProjectionX("hdy_pxx"); h1->Scale(1.e4/kND); h1->SetMarkerStyle(24);
5935a6da 410 h1->SetYTitle("<#deltay> [#mum]");
b9ddd472 411 h1->SetXTitle("t_{drift} [tb]");
5935a6da 412 //h1->GetXaxis()->SetRange(2, AliTRDseedV1::kNtb-1);
413 h1->Draw("pc");
1ee39b3a 414
415 return kTRUE;
416 default:
417 break;
418 }
419 AliWarning("No container/data found.");
420 return kFALSE;
421}
422
423//_______________________________________________________
424TObjArray* AliTRDclusterResolution::Histos()
425{
426// Retrieve histograms array if already build or build it
427
428 if(fContainer) return fContainer;
429 fContainer = new TObjArray(kNtasks);
430 //fContainer->SetOwner(kTRUE);
431
4226db3e 432 TH3S *h3 = NULL;
433 TObjArray *arr = NULL;
1ee39b3a 434
435 fContainer->AddAt(arr = new TObjArray(2*AliTRDgeometry::kNlayer), kCenter);
436 arr->SetName("Center");
437 for(Int_t il=0; il<AliTRDgeometry::kNlayer; il++){
438 // add resolution plot for each layer
439 if(!(h3=(TH3S*)gROOT->FindObject(Form("hCenResLy%d", il)))){
440 h3 = new TH3S(
441 Form("hCenResLy%d", il),
5935a6da 442 Form(" ly [%d];t [bin];y [pw];#Delta y[cm]", il),
443 AliTRDseedV1::kNtb, -.5, AliTRDseedV1::kNtb-0.5, // x
e3147647 444 51, -.51, .51, // y
563d1b38 445 60, -fDyRange, fDyRange); // dy
1ee39b3a 446 } h3->Reset();
447 arr->AddAt(h3, il);
448 // add Pull plot for each layer
449 if(!(h3=(TH3S*)gROOT->FindObject(Form("hCenPullLy%d", il)))){
450 h3 = new TH3S(
451 Form("hCenPullLy%d", il),
5935a6da 452 Form(" ly [%d];t [bin];y [pw];#Delta y[cm]/#sigma_{y}", il),
453 AliTRDseedV1::kNtb, -0.5, AliTRDseedV1::kNtb-0.5, // x
1ee39b3a 454 51, -.51, .51, // y
563d1b38 455 60, -4., 4.); // dy/sy
1ee39b3a 456 } h3->Reset();
457 arr->AddAt(h3, AliTRDgeometry::kNlayer+il);
458 }
459
460 if(!(h3 = (TH3S*)gROOT->FindObject("Charge"))){
563d1b38 461 h3 = new TH3S("Charge", "dy=f(q)", 50, 2.2, 7.5, 60, -fDyRange, fDyRange, 60, -4., 4.);
1ee39b3a 462 h3->SetXTitle("log(q) [a.u.]");
463 h3->SetYTitle("#Delta y[cm]");
464 h3->SetZTitle("#Delta y/#sigma_{y}");
465 }
466 fContainer->AddAt(h3, kQRes);
467
5935a6da 468 fContainer->AddAt(arr = new TObjArray(AliTRDseedV1::kNtb), kSigm);
1ee39b3a 469 arr->SetName("Resolution");
5935a6da 470 for(Int_t ix=0; ix<AliTRDseedV1::kNtb; ix++){
1ee39b3a 471 if(!(h3=(TH3S*)gROOT->FindObject(Form("hr_x%02d", ix)))){
472 h3 = new TH3S(
473 Form("hr_x%02d", ix),
5935a6da 474 Form(" t_{drift}(%2d)[bin];z [mm];tg#phi;#Delta y[cm]", ix),
1ee39b3a 475 kND, 0., 2.5, // z
476 35, -.35, .35, // tgp
563d1b38 477 60, -fDyRange, fDyRange); // dy
1ee39b3a 478 }
479 arr->AddAt(h3, ix);
480 }
481
5935a6da 482 fContainer->AddAt(arr = new TObjArray(AliTRDseedV1::kNtb), kMean);
1ee39b3a 483 arr->SetName("Systematics");
5935a6da 484 for(Int_t ix=0; ix<AliTRDseedV1::kNtb; ix++){
1ee39b3a 485 if(!(h3=(TH3S*)gROOT->FindObject(Form("hs_x%02d", ix)))){
486 h3 = new TH3S(
487 Form("hs_x%02d", ix),
5935a6da 488 Form(" t_{drift}(%2d)[bin];z [mm];tg#phi - h*tg(#theta);#Delta y[cm]", ix),
1ee39b3a 489 kND, 0., 2.5, // z
490 35, -.35, .35, // tgp-h tgt
563d1b38 491 60, -fDyRange, fDyRange); // dy
1ee39b3a 492 }
493 arr->AddAt(h3, ix);
494 }
495
496 return fContainer;
497}
498
499//_______________________________________________________
f8f46e4d 500void AliTRDclusterResolution::UserExec(Option_t *)
1ee39b3a 501{
502// Fill container histograms
503
e3147647 504
5935a6da 505 fInfo = dynamic_cast<TObjArray *>(GetInputData(1));
e3147647 506 AliDebug(2, Form("Clusters[%d]", fInfo->GetEntriesFast(), fDet, fCol, fRow));
507 if(!IsCalibrated()){
508 LoadCalibration();
509 if(!IsCalibrated()){
510 AliWarning("Loading the calibration settings failed. Check OCDB access.");
801d4d50 511 return;
512 }
513 }
1ee39b3a 514
515 Int_t det, t;
516 Float_t x, y, z, q, dy, dydx, dzdx, cov[3], covcl[3];
4226db3e 517 TH3S *h3 = NULL;
1ee39b3a 518
519 // define limits around ExB for which x contribution is negligible
520 const Float_t kDtgPhi = 3.5e-2; //(+- 2 deg)
521
522 TObjArray *arr0 = (TObjArray*)fContainer->At(kCenter);
523 TObjArray *arr1 = (TObjArray*)fContainer->At(kSigm);
524 TObjArray *arr2 = (TObjArray*)fContainer->At(kMean);
525
4226db3e 526 const AliTRDclusterInfo *cli = NULL;
1ee39b3a 527 TIterator *iter=fInfo->MakeIterator();
528 while((cli=dynamic_cast<AliTRDclusterInfo*>((*iter)()))){
529 cli->GetCluster(det, x, y, z, q, t, covcl);
5935a6da 530
801d4d50 531 // select cluster according to detector region if specified
1ee39b3a 532 if(fDet>=0 && fDet!=det) continue;
801d4d50 533 if(fCol>=0 && fRow>=0){
534 Int_t c,r;
535 cli->GetCenterPad(c, r);
536 if(TMath::Abs(fCol-c) > 5) continue;
537 if(TMath::Abs(fRow-r) > 2) continue;
538 }
801d4d50 539 dy = cli->GetResolution();
540 AliDebug(4, Form("det[%d] tb[%2d] q[%4.0f Log[%6.4f]] dy[%7.2f][um] ypull[%5.2f]", det, t, q, TMath::Log(q), 1.e4*dy, dy/TMath::Sqrt(covcl[0])));
1ee39b3a 541
1ee39b3a 542 cli->GetGlobalPosition(y, z, dydx, dzdx, &cov[0]);
543
544 // resolution as a function of cluster charge
545 // only for phi equal exB
546 if(TMath::Abs(dydx-fExB) < kDtgPhi){
547 h3 = (TH3S*)fContainer->At(kQRes);
548 h3->Fill(TMath::Log(q), dy, dy/TMath::Sqrt(covcl[0]));
1ee39b3a 549 }
550
551 // do not use problematic clusters in resolution analysis
552 // TODO define limits as calibration aware (gain) !!
e3147647 553 if(q<20.*fGain || q>250.*fGain) continue;
1ee39b3a 554
5935a6da 555 //x = (t+.5)*fgkTimeBinLength; // conservative approach !!
1ee39b3a 556
557 // resolution as a function of y displacement from pad center
558 // only for phi equal exB
5935a6da 559 if(TMath::Abs(dydx-fExB) < kDtgPhi){
1ee39b3a 560 Int_t ly(AliTRDgeometry::GetLayer(det));
561 h3 = (TH3S*)arr0->At(ly);
5935a6da 562 h3->Fill(t, cli->GetYDisplacement(), dy);
1ee39b3a 563 h3 = (TH3S*)arr0->At(AliTRDgeometry::kNlayer+ly);
5935a6da 564 h3->Fill(t, cli->GetYDisplacement(), dy/TMath::Sqrt(covcl[0]));
1ee39b3a 565 }
566
5935a6da 567 Int_t it(((TH3S*)arr0->At(0))->GetXaxis()->FindBin(t));
1ee39b3a 568
569 // fill histo for resolution (sigma)
5935a6da 570 ((TH3S*)arr1->At(it-1))->Fill(10.*cli->GetAnisochronity(), dydx, dy);
1ee39b3a 571
572 // fill histo for systematic (mean)
5935a6da 573 ((TH3S*)arr2->At(it-1))->Fill(10.*cli->GetAnisochronity(), dydx-cli->GetTilt()*dzdx, dy);
1ee39b3a 574 }
1ee39b3a 575}
576
577
578//_______________________________________________________
579Bool_t AliTRDclusterResolution::PostProcess()
580{
581 if(!fContainer) return kFALSE;
e3147647 582 if(!IsCalibrated()){
583 AliWarning("Not calibrated.");
584 return kFALSE;
585 }
4226db3e 586 TObjArray *arr = NULL;
587 TTree *t=NULL;
1ee39b3a 588 if(!fResults){
4226db3e 589 TGraphErrors *g = NULL;
1ee39b3a 590 fResults = new TObjArray(kNtasks);
591 fResults->SetOwner();
592 fResults->AddAt(arr = new TObjArray(3), kQRes);
593 arr->SetOwner();
594 arr->AddAt(g = new TGraphErrors(), 0);
595 g->SetLineColor(kBlue); g->SetMarkerColor(kBlue);
596 g->SetMarkerStyle(7);
597 arr->AddAt(g = new TGraphErrors(), 1);
598 g->SetLineColor(kRed); g->SetMarkerColor(kRed);
599 g->SetMarkerStyle(23);
600 arr->AddAt(g = new TGraphErrors(), 2);
601 g->SetLineColor(kGreen); g->SetMarkerColor(kGreen);
602 g->SetMarkerStyle(7);
603
604 // pad center dependence
605 fResults->AddAt(arr = new TObjArray(AliTRDgeometry::kNlayer+1), kCenter);
606 arr->SetOwner();
607 arr->AddAt(
608 t = new TTree("cent", "dy=f(y,x,ly)"), 0);
609 t->Branch("ly", &fLy, "ly/B");
5935a6da 610 t->Branch("t", &fT, "t/F");
1ee39b3a 611 t->Branch("y", &fY, "y/F");
612 t->Branch("m", &fR[0], "m[2]/F");
613 t->Branch("s", &fR[2], "s[2]/F");
614 t->Branch("pm", &fP[0], "pm[2]/F");
615 t->Branch("ps", &fP[2], "ps[2]/F");
616 for(Int_t il=1; il<=AliTRDgeometry::kNlayer; il++){
617 arr->AddAt(g = new TGraphErrors(), il);
618 g->SetLineColor(il); g->SetLineStyle(il);
619 g->SetMarkerColor(il);g->SetMarkerStyle(4);
620 }
621
622
623 fResults->AddAt(t = new TTree("sigm", "dy=f(dw,x,dydx)"), kSigm);
5935a6da 624 t->Branch("t", &fT, "t/F");
625 t->Branch("x", &fX, "x/F");
1ee39b3a 626 t->Branch("z", &fZ, "z/F");
627 t->Branch("sx", &fR[0], "sx[2]/F");
628 t->Branch("sy", &fR[2], "sy[2]/F");
629
630
631 fResults->AddAt(t = new TTree("mean", "dy=f(dw,x,dydx - h dzdx)"), kMean);
5935a6da 632 t->Branch("t", &fT, "t/F");
633 t->Branch("x", &fX, "x/F");
1ee39b3a 634 t->Branch("z", &fZ, "z/F");
635 t->Branch("dx", &fR[0], "dx[2]/F");
636 t->Branch("dy", &fR[2], "dy[2]/F");
637 } else {
4226db3e 638 TObject *o = NULL;
1ee39b3a 639 TIterator *iter=fResults->MakeIterator();
640 while((o=((*iter)()))) o->Clear(); // maybe it is wrong but we should never reach this point
641 }
642
1ee39b3a 643 // process resolution dependency on charge
644 if(HasProcess(kQRes)) ProcessCharge();
645
646 // process resolution dependency on y displacement
647 if(HasProcess(kCenter)) ProcessCenterPad();
648
649 // process resolution dependency on drift legth and drift cell width
650 if(HasProcess(kSigm)) ProcessSigma();
651
652 // process systematic shift on drift legth and drift cell width
653 if(HasProcess(kMean)) ProcessMean();
654
655 return kTRUE;
656}
657
658//_______________________________________________________
e3147647 659Bool_t AliTRDclusterResolution::LoadCalibration()
1ee39b3a 660{
801d4d50 661// Retrieve calibration parameters from OCDB, drift velocity and t0 for the detector region specified by
662// a previous call to AliTRDclusterResolution::SetCalibrationRegion().
663
664 AliCDBManager *cdb = AliCDBManager::Instance(); // init OCDB
1ee39b3a 665 if(cdb->GetRun() < 0){
666 AliError("OCDB manager not properly initialized");
667 return kFALSE;
668 }
669
670 // check magnetic field
801d4d50 671 AliESDEvent *esd = dynamic_cast<AliESDEvent*>(InputEvent());
672 if(!esd){
673 AliError("Failed retrieving ESD event");
674 return kFALSE;
675 }
e3147647 676 if(!esd->InitMagneticField()){
801d4d50 677 AliError("Magnetic field failed initialization.");
678 return kFALSE;
1ee39b3a 679 }
680
801d4d50 681 // check pad for detector
682 if(fCol>=0 && fRow>=0){
683 AliTRDgeometry geo;
684 AliTRDpadPlane *pp(geo.GetPadPlane(fDet));
685 if(fCol>=pp->GetNcols() ||
686 fRow>=pp->GetNrows()){
687 AliWarning(Form("Pad coordinates col[%d] or row[%d] incorrect for det[%d].\nLimits are max col[%d] max row[%d]. Reset to default", fCol, fRow, fDet, pp->GetNcols(), pp->GetNrows()));
688 fCol = -1; fRow=-1;
689 }
690 }
1ee39b3a 691
692 AliTRDcalibDB *fCalibration = AliTRDcalibDB::Instance();
801d4d50 693 AliTRDCalROC *fCalVdriftROC(fCalibration->GetVdriftROC(fDet>=0?fDet:0))
694 ,*fCalT0ROC(fCalibration->GetT0ROC(fDet>=0?fDet:0));
1ee39b3a 695 const AliTRDCalDet *fCalVdriftDet = fCalibration->GetVdriftDet();
5935a6da 696 const AliTRDCalDet *fCalT0Det = fCalibration->GetT0Det();
1ee39b3a 697
801d4d50 698 fVdrift = fCalVdriftDet->GetValue(fDet>=0?fDet:0);
699 if(fCol>=0 && fRow>=0) fVdrift*= fCalVdriftROC->GetValue(fCol, fRow);
5935a6da 700 fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVdrift);
801d4d50 701 fT0 = fCalT0Det->GetValue(fDet>=0?fDet:0);
702 if(fCol>=0 && fRow>=0) fT0 *= fCalT0ROC->GetValue(fCol, fRow);
e3147647 703 fGain = (fCol>=0 && fRow>=0)?fCalibration-> GetGainFactor(fDet, fCol, fRow):fCalibration-> GetGainFactorAverage(fDet);
704 SetBit(kCalibrated);
5935a6da 705
e3147647 706 AliDebug(1, Form("Calibrate for Det[%3d] Col[%3d] Row[%2d] : \n t0[%5.3f] vd[%5.3f] gain[%5.3f] ExB[%f]", fDet, fCol, fRow, fT0, fVdrift, fGain, fExB));
5935a6da 707
1ee39b3a 708 return kTRUE;
709}
710
801d4d50 711//_______________________________________________________
712void AliTRDclusterResolution::SetCalibrationRegion(Int_t det, Int_t col, Int_t row)
713{
714// Set calibration region in terms of detector and pad.
715// By default detector 0 mean values are considered.
716
717 if(det>=0 && det<AliTRDgeometry::kNdet){
718 fDet = det;
719 if(col>=0 && row>=0){
720 fCol = col;
721 fRow = row;
722 }
723 return;
724 }
725 AliError(Form("Detector index outside range [0 %d].", AliTRDgeometry::kNdet));
726}
727
1ee39b3a 728//_______________________________________________________
729void AliTRDclusterResolution::SetVisual()
730{
731 if(fCanvas) return;
732 fCanvas = new TCanvas("clResCanvas", "Cluster Resolution Visualization", 10, 10, 600, 600);
733}
734
735//_______________________________________________________
736void AliTRDclusterResolution::ProcessCharge()
737{
738// Resolution as a function of cluster charge.
739//
740// As described in the function ProcessCenterPad() the error parameterization for clusters for phi = a_L can be
741// written as:
742// BEGIN_LATEX
743// #sigma_{y}^{2} = #sigma_{y}^{2}|_{B=0} + tg^{2}(#alpha_{L})*#sigma_{x}^{2}
744// END_LATEX
745// with the contribution in case of B=0 given by:
746// BEGIN_LATEX
747// #sigma_{y}|_{B=0} = #sigma_{diff}*Gauss(0, s_{ly}) + #delta_{#sigma}(q)
748// END_LATEX
749// which further can be simplified to:
750// BEGIN_LATEX
751// <#sigma_{y}|_{B=0}>(q) = <#sigma_{y}> + #delta_{#sigma}(q)
752// <#sigma_{y}> = #int{f(q)#sigma_{y}dq}
753// END_LATEX
754// The results for s_y and f(q) are displayed below:
755//Begin_Html
756//<img src="TRD/clusterQerror.gif">
757//End_Html
758// The function has to extended to accomodate gain calibration scalling and errors.
759//
760// Author
761// Alexandru Bercuci <A.Bercuci@gsi.de>
762
5935a6da 763 TH3S *h3(NULL);
764 if(!(h3 = (TH3S*)fContainer->At(kQRes))) {
1ee39b3a 765 AliWarning("Missing dy=f(Q) histo");
766 return;
767 }
768 TF1 f("f", "gaus", -.5, .5);
5935a6da 769 TAxis *ax(NULL);
770 TH1 *h1(NULL);
1ee39b3a 771
772 // compute mean error on x
773 Double_t s2x = 0.;
5935a6da 774 for(Int_t ix=5; ix<AliTRDseedV1::kNtb; ix++){
1ee39b3a 775 // retrieve error on the drift length
776 s2x += AliTRDcluster::GetSX(ix);
777 }
5935a6da 778 s2x /= (AliTRDseedV1::kNtb-5); s2x *= s2x;
76d976d2 779 //Double_t exb2 = fExB*fExB;
1ee39b3a 780
781 TObjArray *arr = (TObjArray*)fResults->At(kQRes);
782 TGraphErrors *gqm = (TGraphErrors*)arr->At(0);
783 TGraphErrors *gqs = (TGraphErrors*)arr->At(1);
784 TGraphErrors *gqp = (TGraphErrors*)arr->At(2);
785 Double_t q, n = 0., entries;
5935a6da 786 ax = h3->GetXaxis();
1ee39b3a 787 for(Int_t ix=1; ix<=ax->GetNbins(); ix++){
788 q = TMath::Exp(ax->GetBinCenter(ix));
5935a6da 789 ax->SetRange(ix, ix);
790 h1 = h3->Project3D("y");
1ee39b3a 791 entries = h1->GetEntries();
5935a6da 792 if(entries < 150) continue;
1ee39b3a 793 h1->Fit(&f, "Q");
794
795 // Fill sy^2 = f(q)
796 Int_t ip = gqm->GetN();
797 gqm->SetPoint(ip, q, 1.e4*f.GetParameter(1));
798 gqm->SetPointError(ip, 0., 1.e4*f.GetParError(1));
799
800 // correct sigma for ExB effect
5935a6da 801 gqs->SetPoint(ip, q, 1.e4*f.GetParameter(2)/**f.GetParameter(2)-exb2*s2x)*/);
802 gqs->SetPointError(ip, 0., 1.e4*f.GetParError(2)/**f.GetParameter(2)*/);
1ee39b3a 803
804 // save probability
805 n += entries;
806 gqp->SetPoint(ip, q, entries);
807 gqp->SetPointError(ip, 0., 0./*TMath::Sqrt(entries)*/);
808 }
809
810 // normalize probability and get mean sy
811 Double_t sm = 0., sy;
812 for(Int_t ip=gqp->GetN(); ip--;){
813 gqp->GetPoint(ip, q, entries);
814 entries/=n;
5935a6da 815 gqp->SetPoint(ip, q, 1.e4*entries);
1ee39b3a 816 gqs->GetPoint(ip, q, sy);
817 sm += entries*sy;
818 }
819
820 // error parametrization s(q) = <sy> + b(1/q-1/q0)
821 TF1 fq("fq", "[0] + [1]/x", 20., 250.);
822 gqs->Fit(&fq/*, "W"*/);
823 printf("sm=%f [0]=%f [1]=%f\n", 1.e-4*sm, fq.GetParameter(0), fq.GetParameter(1));
824 printf(" const Float_t sq0inv = %f; // [1/q0]\n", (sm-fq.GetParameter(0))/fq.GetParameter(1));
825 printf(" const Float_t sqb = %f; // [cm]\n", 1.e-4*fq.GetParameter(1));
826}
827
828//_______________________________________________________
829void AliTRDclusterResolution::ProcessCenterPad()
830{
831// Resolution as a function of y displacement from pad center and drift length.
832//
833// Since the error parameterization of cluster r-phi position can be written as (see AliTRDcluster::SetSigmaY2()):
834// BEGIN_LATEX
835// #sigma_{y}^{2} = (#sigma_{diff}*Gauss(0, s_{ly}) + #delta_{#sigma}(q))^{2} + tg^{2}(#alpha_{L})*#sigma_{x}^{2} + tg^{2}(#phi-#alpha_{L})*#sigma_{x}^{2}+[tg(#phi-#alpha_{L})*tg(#alpha_{L})*x]^{2}/12
836// END_LATEX
837// one can see that for phi = a_L one gets the following expression:
838// BEGIN_LATEX
839// #sigma_{y}^{2} = #sigma_{y}^{2}|_{B=0} + tg^{2}(#alpha_{L})*#sigma_{x}^{2}
840// END_LATEX
841// where we have explicitely marked the remaining term in case of absence of magnetic field. Thus one can use the
842// previous equation to estimate s_y for B=0 and than by comparing in magnetic field conditions one can get the s_x.
843// This is a simplified method to determine the error parameterization for s_x and s_y as compared to the one
844// implemented in ProcessSigma(). For more details on cluster error parameterization please see also
845// AliTRDcluster::SetSigmaY2()
846//
847// The representation of dy=f(y_cen, x_drift| layer) can be also used to estimate the systematic shift in the r-phi
848// coordinate resulting from imperfection in the cluster shape parameterization. From the expresion of the shift derived
849// in ProcessMean() with phi=exb one gets:
850// BEGIN_LATEX
851// <#Delta y>= <#delta x> * (tg(#alpha_{L})-h*dz/dx) + <#delta y - #delta x * tg(#alpha_{L})>
852// <#Delta y>(y_{cen})= -h*<#delta x>(x_{drift}, q_{cl}) * dz/dx + #delta y(y_{cen}, ...)
853// END_LATEX
854// where all dependences are made explicit. This last expression can be used in two ways:
855// - by average on the dz/dx we can determine directly dy (the method implemented here)
856// - by plotting as a function of dzdx one can determine both dx and dy components in an independent method.
857//Begin_Html
858//<img src="TRD/clusterYcorr.gif">
859//End_Html
860// Author
861// Alexandru Bercuci <A.Bercuci@gsi.de>
862
863 TObjArray *arr = (TObjArray*)fContainer->At(kCenter);
864 if(!arr) {
865 AliWarning("Missing dy=f(y | x, ly) container");
866 return;
867 }
868 Double_t exb2 = fExB*fExB;
869 Float_t s[AliTRDgeometry::kNlayer];
870 TF1 f("f", "gaus", -.5, .5);
871 TF1 fp("fp", "gaus", -3.5, 3.5);
872
4226db3e 873 TH1D *h1 = NULL; TH2F *h2 = NULL; TH3S *h3r=NULL, *h3p=NULL;
1ee39b3a 874 TObjArray *arrRes = (TObjArray*)fResults->At(kCenter);
875 TTree *t = (TTree*)arrRes->At(0);
4226db3e 876 TGraphErrors *gs = NULL;
877 TAxis *ax = NULL;
1ee39b3a 878
5935a6da 879 AliDebug(1, Form("Calibrate for Det[%3d] t0[%5.3f] vd[%5.3f]", fDet, fT0, fVdrift));
880
1ee39b3a 881 const Int_t nl = AliTRDgeometry::kNlayer;
5935a6da 882 printf(" const Float_t lSy[%d][%d] = {\n {", nl, AliTRDseedV1::kNtb);
1ee39b3a 883 for(Int_t il=0; il<nl; il++){
884 if(!(h3r = (TH3S*)arr->At(il))) continue;
885 if(!(h3p = (TH3S*)arr->At(nl+il))) continue;
886 gs = (TGraphErrors*)arrRes->At(il+1);
887 fLy = il;
1ee39b3a 888 for(Int_t ix=1; ix<=h3r->GetXaxis()->GetNbins(); ix++){
889 ax = h3r->GetXaxis(); ax->SetRange(ix, ix);
890 ax = h3p->GetXaxis(); ax->SetRange(ix, ix);
5935a6da 891 fT = ax->GetBinCenter(ix);
1ee39b3a 892 for(Int_t iy=1; iy<=h3r->GetYaxis()->GetNbins(); iy++){
893 ax = h3r->GetYaxis(); ax->SetRange(iy, iy);
894 ax = h3p->GetYaxis(); ax->SetRange(iy, iy);
895 fY = ax->GetBinCenter(iy);
1ee39b3a 896 // finish navigation in the HnSparse
897
898 h1 = (TH1D*)h3r->Project3D("z");
899 Int_t entries = (Int_t)h1->Integral();
900 if(entries < 50) continue;
901 //Adjust(&f, h1);
902 h1->Fit(&f, "QN");
903
904 // Fill sy,my=f(y_w,x,ly)
905 fR[0] = f.GetParameter(1); fR[1] = f.GetParError(1);
906 fR[2] = f.GetParameter(2); fR[3] = f.GetParError(2);
907
908 h1 = (TH1D*)h3p->Project3D("z");
909 h1->Fit(&fp, "QN");
910 fP[0] = fp.GetParameter(1); fP[1] = fp.GetParError(1);
911 fP[2] = fp.GetParameter(2); fP[3] = fp.GetParError(2);
912
ca50a37e 913 AliDebug(4, Form("ly[%d] tb[%2d] y[%+5.2f] m[%5.3f] s[%5.3f] pm[%5.3f] ps[%5.3f]", fLy, (Int_t)fT, fY, fR[0], fR[2], fP[0], fP[2]));
1ee39b3a 914 t->Fill();
1ee39b3a 915 }
916 }
5935a6da 917 t->Draw(Form("y:t>>h(%d, -0.5, %f, 51, -.51, .51)", AliTRDseedV1::kNtb, AliTRDseedV1::kNtb-0.5),
1ee39b3a 918 Form("s[0]*(ly==%d&&abs(m[0])<1.e-1)", fLy),
919 "goff");
920 h2=(TH2F*)gROOT->FindObject("h");
921 f.FixParameter(1, 0.);
922 Int_t n = h2->GetXaxis()->GetNbins(), nn(0); s[il]=0.;
923 printf(" {");
924 for(Int_t ix=1; ix<=n; ix++){
925 ax = h2->GetXaxis();
5935a6da 926 fT = ax->GetBinCenter(ix);
1ee39b3a 927 h1 = h2->ProjectionY("hCenPy", ix, ix);
928 //if((Int_t)h1->Integral() < 1.e-10) continue;
929
930 // Apply lorentz angle correction
931 // retrieve error on the drift length
932 Double_t s2x = AliTRDcluster::GetSX(ix-1); s2x *= s2x;
933 Int_t nnn = 0;
934 for(Int_t iy=1; iy<=h1->GetNbinsX(); iy++){
935 Double_t s2 = h1->GetBinContent(iy); s2*= s2;
936 // sigma square corrected for Lorentz angle
937 // s2 = s2_y(y_w,x)+exb2*s2_x
938 Double_t sy = TMath::Sqrt(TMath::Max(s2 - exb2*s2x, Double_t(0.)));
939 if(sy<1.e-20) continue;
940 h1->SetBinContent(iy, sy); nnn++;
5935a6da 941 AliDebug(4, Form("s[%6.2f] sx[%6.2f] sy[%6.2f]\n",
1ee39b3a 942 1.e4*TMath::Sqrt(s2), 1.e4*TMath::Abs(fExB*AliTRDcluster::GetSX(ix-1)),
5935a6da 943 1.e4*h1->GetBinContent(iy)));
1ee39b3a 944 }
945 // do fit only if enough data
946 Double_t sPRF = 0.;
947 if(nnn>5){
948 h1->Fit(&f, "QN");
5935a6da 949 sPRF = f.GetParameter(2); nn++;
1ee39b3a 950 }
951 s[il]+=sPRF;
952 printf("%6.4f,%s", sPRF, ix%6?" ":"\n ");
953 Int_t jx = gs->GetN();
5935a6da 954 gs->SetPoint(jx, fT, 1.e4*sPRF);
1ee39b3a 955 gs->SetPointError(jx, 0., 0./*f.GetParError(0)*/);
956 }
957 printf("\b},\n");
958 s[il]/=nn;
959
5935a6da 960 f.ReleaseParameter(1);
1ee39b3a 961
962
963 if(!fCanvas) continue;
964 h2->Draw("lego2fb");
965 fCanvas->Modified(); fCanvas->Update();
966 if(IsSaveAs()) fCanvas->SaveAs(Form("Figures/ProcessCenter_ly[%d].gif", fLy));
967 else gSystem->Sleep(100);
968 }
969 printf(" };\n");
970 printf(" const Float_t lPRF[] = {"
971 "%5.3f, %5.3f, %5.3f, %5.3f, %5.3f, %5.3f};\n",
972 s[0], s[1], s[2], s[3], s[4], s[5]);
973}
974
975//_______________________________________________________
976void AliTRDclusterResolution::ProcessSigma()
977{
978// As the r-phi coordinate is the only one which is measured by the TRD detector we have to rely on it to
979// estimate both the radial (x) and r-phi (y) errors. This method is based on the following assumptions.
980// The measured error in the y direction is the sum of the intrinsic contribution of the r-phi measurement
981// with the contribution of the radial measurement - because x is not a parameter of Alice track model (Kalman).
982// BEGIN_LATEX
983// #sigma^{2}|_{y} = #sigma^{2}_{y*} + #sigma^{2}_{x*}
984// END_LATEX
985// In the general case
986// BEGIN_LATEX
987// #sigma^{2}_{y*} = #sigma^{2}_{y} + tg^{2}(#alpha_{L})#sigma^{2}_{x_{drift}}
988// #sigma^{2}_{x*} = tg^{2}(#phi - #alpha_{L})*(#sigma^{2}_{x_{drift}} + #sigma^{2}_{x_{0}} + tg^{2}(#alpha_{L})*x^{2}/12)
989// END_LATEX
990// where we have explicitely show the lorentz angle correction on y and the projection of radial component on the y
991// direction through the track angle in the bending plane (phi). Also we have shown that the radial component in the
992// last equation has twp terms, the drift and the misalignment (x_0). For ideal geometry or known misalignment one
993// can solve the equation
994// BEGIN_LATEX
995// #sigma^{2}|_{y} = tg^{2}(#phi - #alpha_{L})*(#sigma^{2}_{x} + tg^{2}(#alpha_{L})*x^{2}/12)+ [#sigma^{2}_{y} + tg^{2}(#alpha_{L})#sigma^{2}_{x}]
996// END_LATEX
997// by fitting a straight line:
998// BEGIN_LATEX
999// #sigma^{2}|_{y} = a(x_{cl}, z_{cl}) * tg^{2}(#phi - #alpha_{L}) + b(x_{cl}, z_{cl})
1000// END_LATEX
1001// the error parameterization will be given by:
1002// BEGIN_LATEX
1003// #sigma_{x} (x_{cl}, z_{cl}) = #sqrt{a(x_{cl}, z_{cl}) - tg^{2}(#alpha_{L})*x^{2}/12}
1004// #sigma_{y} (x_{cl}, z_{cl}) = #sqrt{b(x_{cl}, z_{cl}) - #sigma^{2}_{x} (x_{cl}, z_{cl}) * tg^{2}(#alpha_{L})}
1005// END_LATEX
1006// Below there is an example of such dependency.
1007//Begin_Html
1008//<img src="TRD/clusterSigmaMethod.gif">
1009//End_Html
1010//
1011// The error parameterization obtained by this method are implemented in the functions AliTRDcluster::GetSX() and
1012// AliTRDcluster::GetSYdrift(). For an independent method to determine s_y as a function of drift length check the
1013// function ProcessCenterPad(). One has to keep in mind that while this method return the mean s_y over the distance
1014// to pad center distribution the other method returns the *STANDARD* value at center=0 (maximum). To recover the
1015// standard value one has to solve the obvious equation:
1016// BEGIN_LATEX
1017// #sigma_{y}^{STANDARD} = #frac{<#sigma_{y}>}{#int{s exp(s^{2}/#sigma) ds}}
1018// END_LATEX
1019// with "<s_y>" being the value calculated here and "sigma" the width of the s_y distribution calculated in
1020// ProcessCenterPad().
1021//
1022// Author
1023// Alexandru Bercuci <A.Bercuci@gsi.de>
1024
1025 TObjArray *arr = (TObjArray*)fContainer->At(kSigm);
1026 if(!arr){
1027 AliWarning("Missing dy=f(x_d, d_w) container");
1028 return;
1029 }
1030
1031 // init visualization
4226db3e 1032 TGraphErrors *ggs = NULL;
1033 TGraph *line = NULL;
1ee39b3a 1034 if(fCanvas){
1035 ggs = new TGraphErrors();
1036 line = new TGraph();
1037 line->SetLineColor(kRed);line->SetLineWidth(2);
1038 }
1039
1040 // init logistic support
1041 TF1 f("f", "gaus", -.5, .5);
1042 TLinearFitter gs(1,"pol1");
4226db3e 1043 TH1 *hFrame=NULL;
1044 TH1D *h1 = NULL; TH3S *h3=NULL;
1045 TAxis *ax = NULL;
5935a6da 1046 Double_t exb2 = fExB*fExB;
1ee39b3a 1047 AliTRDcluster c;
1048 TTree *t = (TTree*)fResults->At(kSigm);
5935a6da 1049 for(Int_t ix=0; ix<AliTRDseedV1::kNtb; ix++){
1ee39b3a 1050 if(!(h3=(TH3S*)arr->At(ix))) continue;
1051 c.SetPadTime(ix);
5935a6da 1052 fX = c.GetXloc(fT0, fVdrift);
1053 fT = c.GetLocalTimeBin(); // ideal
1054 printf(" pad time[%d] local[%f]\n", ix, fT);
1ee39b3a 1055 for(Int_t iz=1; iz<=h3->GetXaxis()->GetNbins(); iz++){
1056 ax = h3->GetXaxis();
1057 ax->SetRange(iz, iz);
1058 fZ = ax->GetBinCenter(iz);
1059
1060 // reset visualization
1061 if(fCanvas){
1062 new(ggs) TGraphErrors();
1063 ggs->SetMarkerStyle(7);
1064 }
1065 gs.ClearPoints();
1066
1067 for(Int_t ip=1; ip<=h3->GetYaxis()->GetNbins(); ip++){
1068 ax = h3->GetYaxis();
1069 ax->SetRange(ip, ip);
1070 Double_t tgl = ax->GetBinCenter(ip);
1071 // finish navigation in the HnSparse
1072
1073 //if(TMath::Abs(dydx)>0.18) continue;
1074 Double_t tgg = (tgl-fExB)/(1.+tgl*fExB);
1075 Double_t tgg2 = tgg*tgg;
1076
1077 h1 = (TH1D*)h3->Project3D("z");
1078 Int_t entries = (Int_t)h1->Integral();
1079 if(entries < 50) continue;
1080 //Adjust(&f, h1);
1081 h1->Fit(&f, "QN");
1082
1083 Double_t s2 = f.GetParameter(2)*f.GetParameter(2);
1084 Double_t s2e = 2.*f.GetParameter(2)*f.GetParError(2);
1085 // Fill sy^2 = f(tg^2(phi-a_L))
1086 gs.AddPoint(&tgg2, s2, s2e);
1087
1088 if(!ggs) continue;
1089 Int_t jp = ggs->GetN();
1090 ggs->SetPoint(jp, tgg2, s2);
1091 ggs->SetPointError(jp, 0., s2e);
1092 }
1093 // TODO here a more robust fit method has to be provided
1094 // for which lower boundaries on the parameters have to
1095 // be imposed. Unfortunately the Minuit fit does not work
1096 // for the TGraph in the case of B not 0.
1097 if(gs.Eval()) continue;
1098
5935a6da 1099 fR[0] = gs.GetParameter(1) - fX*fX*exb2/12.;
1100 AliDebug(3, Form(" s2x+x2=%f ang=%f s2x=%f", gs.GetParameter(1), fX*fX*exb2/12., fR[0]));
1ee39b3a 1101 fR[0] = TMath::Max(fR[0], Float_t(4.e-4));
1102
1103 // s^2_y = s0^2_y + tg^2(a_L) * s^2_x
1104 // s0^2_y = f(D_L)*x + s_PRF^2
1105 fR[2]= gs.GetParameter(0)-exb2*fR[0];
5935a6da 1106 AliDebug(3, Form(" s2y+s2x=%f s2y=%f", fR[0], fR[2]));
1ee39b3a 1107 fR[2] = TMath::Max(fR[2], Float_t(2.5e-5));
1108 fR[0] = TMath::Sqrt(fR[0]);
1109 fR[1] = .5*gs.GetParError(1)/fR[0];
1110 fR[2] = TMath::Sqrt(fR[2]);
1111 fR[3] = gs.GetParError(0)+exb2*exb2*gs.GetParError(1);
1112 t->Fill();
5935a6da 1113 AliDebug(2, Form("xd=%4.2f[cm] sx=%6.1f[um] sy=%5.1f[um]", fX, 1.e4*fR[0], 1.e4*fR[2]));
1ee39b3a 1114
1115 if(!fCanvas) continue;
1116 fCanvas->cd(); fCanvas->SetLogx(); //fCanvas->SetLogy();
1117 if(!hFrame){
1118 fCanvas->SetMargin(0.15, 0.01, 0.1, 0.01);
1119 hFrame=new TH1I("hFrame", "", 100, 0., .3);
1120 hFrame->SetMinimum(0.);hFrame->SetMaximum(.005);
1121 hFrame->SetXTitle("tg^{2}(#phi-#alpha_{L})");
1122 hFrame->SetYTitle("#sigma^{2}y[cm^{2}]");
1123 hFrame->GetYaxis()->SetTitleOffset(2.);
1124 hFrame->SetLineColor(1);hFrame->SetLineWidth(1);
1125 hFrame->Draw();
1126 } else hFrame->Reset();
1127 Double_t xx = 0., dxx=.2/50;
1128 for(Int_t ip=0;ip<50;ip++){
1129 line->SetPoint(ip, xx, gs.GetParameter(0)+xx*gs.GetParameter(1));
1130 xx+=dxx;
1131 }
1132 ggs->Draw("pl"); line->Draw("l");
1133 fCanvas->Modified(); fCanvas->Update();
1134 if(IsSaveAs()) fCanvas->SaveAs(Form("Figures/ProcessSigma_z[%5.3f]_x[%5.3f].gif", fZ, fX));
1135 else gSystem->Sleep(100);
1136 }
1137 }
1138 return;
1139}
1140
1141//_______________________________________________________
1142void AliTRDclusterResolution::ProcessMean()
1143{
1144// By this method the cluster shift in r-phi and radial directions can be estimated by comparing with the MC.
1145// The resolution of the cluster corrected for pad tilt with respect to MC in the r-phi (measuring) plane can be
1146// expressed by:
1147// BEGIN_LATEX
1148// #Delta y=w - y_{MC}(x_{cl})
1149// w = y_{cl}^{'} + h*(z_{MC}(x_{cl})-z_{cl})
1150// y_{MC}(x_{cl}) = y_{0} - dy/dx*x_{cl}
1151// z_{MC}(x_{cl}) = z_{0} - dz/dx*x_{cl}
1152// y_{cl}^{'} = y_{cl}-x_{cl}*tg(#alpha_{L})
1153// END_LATEX
1154// where x_cl is the drift length attached to a cluster, y_cl is the r-phi coordinate of the cluster measured by
1155// charge sharing on adjacent pads and y_0 and z_0 are MC reference points (as example the track references at
1156// entrance/exit of a chamber). If we suppose that both r-phi (y) and radial (x) coordinate of the clusters are
1157// affected by errors we can write
1158// BEGIN_LATEX
1159// x_{cl} = x_{cl}^{*} + #delta x
1160// y_{cl} = y_{cl}^{*} + #delta y
1161// END_LATEX
1162// where the starred components are the corrected values. Thus by definition the following quantity
1163// BEGIN_LATEX
1164// #Delta y^{*}= w^{*} - y_{MC}(x_{cl}^{*})
1165// END_LATEX
1166// has 0 average over all dependency. Using this decomposition we can write:
1167// BEGIN_LATEX
1168// <#Delta y>=<#Delta y^{*}> + <#delta x * (dy/dx-h*dz/dx) + #delta y - #delta x * tg(#alpha_{L})>
1169// END_LATEX
1170// which can be transformed to the following linear dependence:
1171// BEGIN_LATEX
1172// <#Delta y>= <#delta x> * (dy/dx-h*dz/dx) + <#delta y - #delta x * tg(#alpha_{L})>
1173// END_LATEX
1174// if expressed as function of dy/dx-h*dz/dx. Furtheremore this expression can be plotted for various clusters
1175// i.e. we can explicitely introduce the diffusion (x_cl) and drift cell - anisochronity (z_cl) dependences. From
1176// plotting this dependence and linear fitting it with:
1177// BEGIN_LATEX
1178// <#Delta y>= a(x_{cl}, z_{cl}) * (dy/dx-h*dz/dx) + b(x_{cl}, z_{cl})
1179// END_LATEX
1180// the systematic shifts will be given by:
1181// BEGIN_LATEX
1182// #delta x (x_{cl}, z_{cl}) = a(x_{cl}, z_{cl})
1183// #delta y (x_{cl}, z_{cl}) = b(x_{cl}, z_{cl}) + a(x_{cl}, z_{cl}) * tg(#alpha_{L})
1184// END_LATEX
1185// Below there is an example of such dependency.
1186//Begin_Html
1187//<img src="TRD/clusterShiftMethod.gif">
1188//End_Html
1189//
1190// The occurance of the radial shift is due to the following conditions
1191// - the approximation of a constant drift velocity over the drift length (larger drift velocities close to
1192// cathode wire plane)
1193// - the superposition of charge tails in the amplification region (first clusters appear to be located at the
1194// anode wire)
1195// - the superposition of charge tails in the drift region (shift towards anode wire)
1196// - diffusion effects which convolute with the TRF thus enlarging it
1197// - approximate knowledge of the TRF (approximate measuring in test beam conditions)
1198//
1199// The occurance of the r-phi shift is due to the following conditions
1200// - approximate model for cluster shape (LUT)
1201// - rounding-up problems
1202//
1203// The numerical results for ideal simulations for the radial and r-phi shifts are displayed below and used
1204// for the cluster reconstruction (see the functions AliTRDcluster::GetXcorr() and AliTRDcluster::GetYcorr()).
1205//Begin_Html
1206//<img src="TRD/clusterShiftX.gif">
1207//<img src="TRD/clusterShiftY.gif">
1208//End_Html
1209// More details can be found in the presentation given during the TRD
1210// software meeting at the end of 2008 and beginning of year 2009, published on indico.cern.ch.
1211//
1212// Author
1213// Alexandru Bercuci <A.Bercuci@gsi.de>
1214
1215
1216
1217 TObjArray *arr = (TObjArray*)fContainer->At(kMean);
1218 if(!arr){
1219 AliWarning("Missing dy=f(x_d, d_w) container");
1220 return;
1221 }
1222
1223 // init logistic support
1224 TF1 f("f", "gaus", -.5, .5);
1225 TF1 line("l", "[0]+[1]*x", -.15, .15);
1226 TGraphErrors *gm = new TGraphErrors();
4226db3e 1227 TH1 *hFrame=NULL;
1228 TH1D *h1 = NULL; TH3S *h3 =NULL;
1229 TAxis *ax = NULL;
5935a6da 1230
1231 AliDebug(1, Form("Calibrate for Det[%3d] t0[%5.3f] vd[%5.3f]", fDet, fT0, fVdrift));
1ee39b3a 1232
1233 AliTRDcluster c;
1234 TTree *t = (TTree*)fResults->At(kMean);
5935a6da 1235 for(Int_t ix=0; ix<AliTRDseedV1::kNtb; ix++){
1ee39b3a 1236 if(!(h3=(TH3S*)arr->At(ix))) continue;
1237 c.SetPadTime(ix);
5935a6da 1238 fX = c.GetXloc(fT0, fVdrift);
1239 fT = c.GetLocalTimeBin();
1ee39b3a 1240 for(Int_t iz=1; iz<=h3->GetXaxis()->GetNbins(); iz++){
1241 ax = h3->GetXaxis();
1242 ax->SetRange(iz, iz);
1243 fZ = ax->GetBinCenter(iz);
1244
1245 // reset fitter
1246 new(gm) TGraphErrors();
1247 gm->SetMarkerStyle(7);
1248
1249 for(Int_t ip=1; ip<=h3->GetYaxis()->GetNbins(); ip++){
1250 ax = h3->GetYaxis();
1251 ax->SetRange(ip, ip);
1252 Double_t tgl = ax->GetBinCenter(ip);
1253 // finish navigation in the HnSparse
1254
1255 h1 = (TH1D*)h3->Project3D("z");
1256 Int_t entries = (Int_t)h1->Integral();
b9ddd472 1257 if(entries < 50) continue;
1ee39b3a 1258 //Adjust(&f, h1);
1259 h1->Fit(&f, "QN");
1260
1261 // Fill <Dy> = f(dydx - h*dzdx)
1262 Int_t jp = gm->GetN();
1263 gm->SetPoint(jp, tgl, f.GetParameter(1));
1264 gm->SetPointError(jp, 0., f.GetParError(1));
1265 }
5935a6da 1266 if(gm->GetN()<10) continue;
1ee39b3a 1267
1268 gm->Fit(&line, "QN");
1269 fR[0] = line.GetParameter(1); // dx
1270 fR[1] = line.GetParError(1);
1271 fR[2] = line.GetParameter(0) + fExB*fR[0]; // xs = dy - tg(a_L)*dx
1272 t->Fill();
5935a6da 1273 AliDebug(2, Form("tb[%02d] xd=%4.2f[cm] dx=%6.2f[um] dy=%6.2f[um]", ix, fX, 1.e4*fR[0], 1.e4*fR[2]));
1ee39b3a 1274 if(!fCanvas) continue;
5935a6da 1275
1ee39b3a 1276 fCanvas->cd();
1277 if(!hFrame){
1278 fCanvas->SetMargin(0.1, 0.02, 0.1, 0.01);
1279 hFrame=new TH1I("hFrame", "", 100, -.3, .3);
1280 hFrame->SetMinimum(-.1);hFrame->SetMaximum(.1);
1281 hFrame->SetXTitle("tg#phi-htg#theta");
1282 hFrame->SetYTitle("#Delta y[cm]");
1283 hFrame->GetYaxis()->SetTitleOffset(1.5);
1284 hFrame->SetLineColor(1);hFrame->SetLineWidth(1);
1285 hFrame->Draw();
1286 } else hFrame->Reset();
1287 gm->Draw("pl"); line.Draw("same");
1288 fCanvas->Modified(); fCanvas->Update();
5935a6da 1289 if(IsSaveAs()) fCanvas->SaveAs(Form("Figures/ProcessMean_Z[%5.3f]_TB[%02d].gif", fZ, ix));
1ee39b3a 1290 else gSystem->Sleep(100);
1291 }
1292 }
1293}