]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWG1/TRD/AliTRDclusterResolution.cxx
Streamlining with the analyis framework:
[u/mrichter/AliRoot.git] / PWG1 / TRD / AliTRDclusterResolution.cxx
CommitLineData
1ee39b3a 1/**************************************************************************
2* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3* *
4* Author: The ALICE Off-line Project. *
5* Contributors are mentioned in the code where appropriate. *
6* *
7* Permission to use, copy, modify and distribute this software and its *
8* documentation strictly for non-commercialf purposes is hereby granted *
9* without fee, provided that the above copyright notice appears in all *
10* copies and that both the copyright notice and this permission notice *
11* appear in the supporting documentation. The authors make no claims *
12* about the suitability of this software for any purpose. It is *
13* provided "as is" without express or implied warranty. *
14**************************************************************************/
15
16/* $Id: AliTRDclusterResolution.cxx */
17
18///////////////////////////////////////////////////////////////////////////////
19// //
20// TRD cluster error parameterization //
21// //
22// This class is designed to produce the reference plots for a detailed study//
23// and parameterization of TRD cluster errors. The following effects are taken//
24// into account : //
25// - dependence with the total charge of the cluster //
26// - dependence with the distance from the center pad. This is monitored
27// for each layer individually since the pad size varies with layer
28// - dependence with the drift length - here the influence of anisochronity
29// and diffusion are searched
30// - dependence with the distance to the anode wire - anisochronity effects
31// - dependence with track angle (for y resolution)
32// The correlation between effects is taken into account.
33//
34// Since magnetic field plays a very important role in the TRD measurement
35// the ExB correction is forced by the setter function SetExB(Int_t). The
36// argument is the detector index, if none is specified all will be
37// considered.
38//
39// Two cases are of big importance.
40// - comparison with MC
41// - comparison with Kalman fit. In this case the covariance matrix of the
42// Kalman fit are needed.
43//
44// The functionalities implemented in this class are based on the storage
45// class AliTRDclusterInfo.
46//
47// The Method
48// ----------
49//
50// The method to disentangle s_y and s_x is based on the relation (see also fig.)
51// BEGIN_LATEX
52// #sigma^{2} = #sigma^{2}_{y} + tg^{2}(#alpha_{L})*#sigma^{2}_{x_{d}} + tg^{2}(#phi-#alpha_{L})*(#sigma^{2}_{x_{d}}+#sigma^{2}_{x_{c}})
53// END_LATEX
54// with
55// BEGIN_LATEX
56// #sigma^{2}_{x_{c}} #approx 0
57// END_LATEX
58// we suppose the chamber is well calibrated for t_{0} and aligned in
59// radial direction.
60//
61// Clusters can be radially shifted due to three causes:
62// - globally shifted - due to residual misalignment/miscalibration(t0)
63// - locally shifted - due to different local drift velocity from the mean
64// - randomly shifted - due to neighboring (radial direction) clusters
65// charge induced by asymmetry of the TRF.
66//
67// We estimate this effects by the relations:
68// BEGIN_LATEX
69// #mu_{y} = tg(#alpha_{L})*#Delta x_{d}(...) + tg(#phi-#alpha_{L})*(#Delta x_{c}(...) + #Delta x_{d}(...))
70// END_LATEX
71// where
72// BEGIN_LATEX
73// #Delta x_{d}(...) = (<v_{d}> + #delta v_{d}(x_{d}, d)) * (t + t^{*}(Q))
74// END_LATEX
75// and we specified explicitely the variation of drift velocity parallel
76// with the track (x_{d}) and perpendicular to it due to anisochronity (d).
77//
78// For estimating the contribution from asymmetry of TRF the following
79// parameterization is being used
80// BEGIN_LATEX
81// t^{*}(Q) = #delta_{0} * #frac{Q_{t+1} - Q_{t-1}}{Q_{t-1} + Q_{t} + Q_{t+1}}
82// END_LATEX
83//
84//
85// Clusters can also be r-phi shifted due to:
86// - wrong PRF or wrong cuts at digits level
87//The following correction is applied :
88// BEGIN_LATEX
89// <#Delta y> = a + b * sin(c*y_{pw})
90// END_LATEX
91
92// The Models
93//
94// Parameterization against total charge
95//
96// Obtained for B=0T at phi=0. All other effects integrated out.
97// BEGIN_LATEX
98// #sigma^{2}_{y}(Q) = #sigma^{2}_{y}(...) + b(#frac{1}{Q} - #frac{1}{Q_{0}})
99// END_LATEX
100// For B diff 0T the error of the average ExB correction error has to be subtracted !!
101//
102// Parameterization Sx
103//
104// The parameterization of the error in the x direction can be written as
105// BEGIN_LATEX
106// #sigma_{x} = #sigma_{x}^{||} + #sigma_{x}^{#perp}
107// END_LATEX
108//
109// where the parallel component is given mainly by the TRF width while
110// the perpendicular component by the anisochronity. The model employed for
111// the parallel is gaus(0)+expo(3) with the following parameters
112// 1 C 5.49018e-01 1.23854e+00 3.84540e-04 -8.21084e-06
113// 2 M 7.82999e-01 6.22531e-01 2.71272e-04 -6.88485e-05
114// 3 S 2.74451e-01 1.13815e+00 2.90667e-04 1.13493e-05
115// 4 E1 2.53596e-01 1.08646e+00 9.95591e-05 -2.11625e-05
116// 5 E2 -2.40078e-02 4.26520e-01 4.67153e-05 -2.35392e-04
117//
118// and perpendicular to the track is pol2 with the parameters
119//
120// Par_0 = 0.190676 +/- 0.41785
121// Par_1 = -3.9269 +/- 7.49862
122// Par_2 = 14.7851 +/- 27.8012
123//
124// Parameterization Sy
125//
126// The parameterization of the error in the y direction along track uses
127// BEGIN_LATEX
128// #sigma_{y}^{||} = #sigma_{y}^{0} -a*exp(1/(x-b))
129// END_LATEX
130//
131// with following values for the parameters:
132// 1 sy0 2.60967e-01 2.99652e-03 7.82902e-06 -1.89636e-04
133// 2 a -7.68941e+00 1.87883e+00 3.84539e-04 9.38268e-07
134// 3 b -3.41160e-01 7.72850e-02 1.63231e-05 2.51602e-05
135//
136//==========================================================================
137// Example how to retrive reference plots from the task
138// void steerClErrParam(Int_t fig=0)
139// {
140// gSystem->Load("libANALYSIS.so");
141// gSystem->Load("libTRDqaRec.so");
142//
143// // initialize DB manager
144// AliCDBManager *cdb = AliCDBManager::Instance();
145// cdb->SetDefaultStorage("local://$ALICE_ROOT/OCDB");
146// cdb->SetRun(0);
147// // initialize magnetic field.
148// AliMagFCheb *field=new AliMagFCheb("Maps","Maps", 2, 1., 10., AliMagFCheb::k5kG);
149// AliTracker::SetFieldMap(field, kTRUE);
150//
151// AliTRDclusterResolution *res = new AliTRDclusterResolution();
152// res->SetMCdata();
153// res->Load("TRD.TaskClErrParam.root");
154// res->SetExB();
155// res->SetVisual();
156// //res->SetSaveAs();
157// res->SetProcessCharge(kFALSE);
158// res->SetProcessCenterPad(kFALSE);
159// //res->SetProcessMean(kFALSE);
160// res->SetProcessSigma(kFALSE);
161// if(!res->PostProcess()) return;
162// new TCanvas;
163// res->GetRefFigure(fig);
164// }
165//
166// Authors: //
167// Alexandru Bercuci <A.Bercuci@gsi.de> //
168////////////////////////////////////////////////////////////////////////////
169
170#include "AliTRDclusterResolution.h"
171#include "info/AliTRDclusterInfo.h"
172#include "AliTRDgeometry.h"
173#include "AliTRDcluster.h"
174#include "AliTRDcalibDB.h"
175#include "AliTRDCommonParam.h"
176#include "Cal/AliTRDCalROC.h"
177#include "Cal/AliTRDCalDet.h"
178
179#include "AliLog.h"
180#include "AliTracker.h"
181#include "AliCDBManager.h"
182
183#include "TROOT.h"
184#include "TObjArray.h"
185#include "TAxis.h"
186#include "TF1.h"
187#include "TLegend.h"
188#include "TGraphErrors.h"
189#include "TLine.h"
190#include "TH2I.h"
191#include "TH3S.h"
192#include "TTree.h"
193#include "TMath.h"
194#include "TLinearFitter.h"
195
196#include "TCanvas.h"
197#include "TSystem.h"
198
199ClassImp(AliTRDclusterResolution)
200
201const Float_t AliTRDclusterResolution::fgkTimeBinLength = 1./ AliTRDCommonParam::Instance()->GetSamplingFrequency();
202//_______________________________________________________
f8f46e4d 203AliTRDclusterResolution::AliTRDclusterResolution()
204 : AliTRDrecoTask()
205 ,fCanvas(0x0)
206 ,fInfo(0x0)
207 ,fResults(0x0)
208 ,fAt(0x0)
209 ,fStatus(0)
210 ,fDet(-1)
211 ,fExB(0.)
212 ,fVdrift(0.)
213 ,fLy(0)
214 ,fX(0.)
215 ,fY(0.)
216 ,fZ(0.)
217{
218// Constructor
219}
220
1ee39b3a 221AliTRDclusterResolution::AliTRDclusterResolution(const char *name, const char *title)
222 : AliTRDrecoTask(name, title)
4226db3e 223 ,fCanvas(NULL)
224 ,fInfo(NULL)
225 ,fResults(NULL)
226 ,fAt(NULL)
1ee39b3a 227 ,fStatus(0)
228 ,fDet(-1)
229 ,fExB(0.)
230 ,fVdrift(0.)
231 ,fLy(0)
232 ,fX(0.)
233 ,fY(0.)
234 ,fZ(0.)
235{
236// Constructor
237
238 memset(fR, 0, 4*sizeof(Float_t));
239 memset(fP, 0, 4*sizeof(Float_t));
240 // time drift axis
241 fAt = new TAxis(kNTB, 0., kNTB*fgkTimeBinLength);
242
243 // By default register all analysis
244 // The user can switch them off in his steering macro
245 SetProcess(kQRes);
246 SetProcess(kCenter);
247 SetProcess(kMean);
248 SetProcess(kSigm);
249}
250
251//_______________________________________________________
252AliTRDclusterResolution::~AliTRDclusterResolution()
253{
254// Destructor
255
256 if(fCanvas) delete fCanvas;
257 if(fAt) delete fAt;
258 if(fResults){
259 fResults->Delete();
260 delete fResults;
261 }
262}
263
264//_______________________________________________________
265void AliTRDclusterResolution::ConnectInputData(Option_t *)
266{
f8f46e4d 267 AliAnalysisTaskSE::ConnectInputData();
268 fInfo = dynamic_cast<TObjArray *>(GetInputData(0));
1ee39b3a 269}
270
271//_______________________________________________________
f8f46e4d 272void AliTRDclusterResolution::UserCreateOutputObjects()
1ee39b3a 273{
f8f46e4d 274 OpenFile(1, "RECREATE");
1ee39b3a 275 fContainer = Histos();
276}
277
278//_______________________________________________________
279Bool_t AliTRDclusterResolution::GetRefFigure(Int_t ifig)
280{
281// Steering function to retrieve performance plots
282
283 if(!fResults) return kFALSE;
4226db3e 284 TLegend *leg = NULL;
285 TList *l = NULL;
286 TObjArray *arr = NULL;
287 TTree *t = NULL;
288 TH2 *h2 = NULL;TH1 *h1 = NULL;
289 TGraphErrors *gm(NULL), *gs(NULL), *gp(NULL);
1ee39b3a 290 switch(ifig){
291 case kQRes:
292 if(!(arr = (TObjArray*)fResults->At(kQRes))) break;
293 if(!(gm = (TGraphErrors*)arr->At(0))) break;
294 if(!(gs = (TGraphErrors*)arr->At(1))) break;
295 if(!(gp = (TGraphErrors*)arr->At(2))) break;
296 gs->Draw("apl");
297 gs->GetHistogram()->GetYaxis()->SetRangeUser(-50., 700.);
298 gs->GetHistogram()->SetXTitle("Q [a.u.]");
299 gs->GetHistogram()->SetYTitle("#sigma_{y} / #mu_{y} [#mum] / freq");
300 gm->Draw("pl");
301 gp->Draw("pl");
302 return kTRUE;
303 case kCenter:
304 if(!(arr = (TObjArray*)fResults->At(kCenter))) break;
305 gPad->Divide(2, 1); l = gPad->GetListOfPrimitives();
306 ((TVirtualPad*)l->At(0))->cd();
307 ((TTree*)arr->At(0))->Draw("y:x>>h(23, 0.1, 2.4, 51, -.51, .51)",
308 "m[0]*(ly==0&&abs(m[0])<1.e-1)", "colz");
309 ((TVirtualPad*)l->At(1))->cd();
310 leg= new TLegend(.7, .7, .9, .95);
311 leg->SetBorderSize(0); leg->SetFillColor(0); leg->SetFillStyle(0);
312 leg->SetHeader("TRD Plane");
313 for(Int_t il = 1; il<=AliTRDgeometry::kNlayer; il++){
314 if(!(gm = (TGraphErrors*)arr->At(il))) return kFALSE;
315 gm->Draw(il>1?"pc":"apc"); leg->AddEntry(gm, Form("%d", il-1), "pl");
316 if(il>1) continue;
317 gm->GetHistogram()->SetXTitle("t_{drift} [#mus]");
318 gm->GetHistogram()->SetYTitle("#sigma_{y}(x|cen=0) [#mum]");
319 gm->GetHistogram()->GetYaxis()->SetRangeUser(150., 500.);
320 }
321 leg->Draw();
322 return kTRUE;
323 case kSigm:
324 if(!(t = (TTree*)fResults->At(kSigm))) break;
325 t->Draw("z:t>>h2x(23, 0.1, 2.4, 25, 0., 2.5)","sx*(1)", "lego2fb");
326 h2 = (TH2F*)gROOT->FindObject("h2x");
327 printf(" const Double_t sx[24][25]={\n");
328 for(Int_t ix=1; ix<=h2->GetNbinsX(); ix++){
329 printf(" {");
330 for(Int_t iy=1; iy<h2->GetNbinsY(); iy++){
331 printf("%6.4f ", h2->GetBinContent(ix, iy));
332 }
333 printf("%6.4f},\n", h2->GetBinContent(ix, h2->GetNbinsY()));
334 }
335 printf(" };\n");
336 gPad->Divide(2, 1, 1.e-5, 1.e-5); l = gPad->GetListOfPrimitives();
337 ((TVirtualPad*)l->At(0))->cd();
338 h1 = h2->ProjectionX("hsx_pxx"); h1->Scale(1.e4/kND); h1->SetMarkerStyle(24);
339 h1->SetYTitle("<#sigma_{x}> [#mum]");
340 h1->SetXTitle("t_{drift} [#mus]");
341 h1->GetXaxis()->SetRange(2, kNTB-1); h1->Draw("pc");
342
343 t->Draw("z:t>>h2y(23, 0.1, 2.4, 25, 0., 2.5)","sy*(1)", "lego2fb");
344 h2 = (TH2F*)gROOT->FindObject("h2y");
345 printf(" const Double_t sy[24][25]={\n");
346 for(Int_t ix=1; ix<=h2->GetNbinsX(); ix++){
347 printf(" {");
348 for(Int_t iy=1; iy<h2->GetNbinsY(); iy++){
349 printf("%6.4f ", h2->GetBinContent(ix, iy));
350 }
351 printf("%6.4f},\n", h2->GetBinContent(ix, h2->GetNbinsY()));
352 }
353 printf(" };\n");
354 ((TVirtualPad*)l->At(1))->cd();
355 h1 = h2->ProjectionX("hsy_pxx"); h1->Scale(1.e4/kND); h1->SetMarkerStyle(24);
356 h1->SetYTitle("<#sigma_{y}> [#mum]");
357 h1->SetXTitle("t_{drift} [#mus]");
358 h1->GetXaxis()->SetRange(2, kNTB-1); h1->Draw("pc");
359 return kTRUE;
360 case kMean:
361 if(!(t = (TTree*)fResults->At(kMean))) break;
362 t->Draw("z:t>>h2x(23, 0.1, 2.4, 25, 0., 2.5)","dx*(1)", "goff");
363 h2 = (TH2F*)gROOT->FindObject("h2x");
364 printf(" const Double_t dx[24][25]={\n");
365 for(Int_t ix=1; ix<=h2->GetNbinsX(); ix++){
366 printf(" {");
367 for(Int_t iy=1; iy<h2->GetNbinsY(); iy++){
368 printf("%6.4f ", h2->GetBinContent(ix, iy));
369 }
370 printf("%6.4f},\n", h2->GetBinContent(ix, h2->GetNbinsY()));
371 }
372 printf(" };\n");
373 gPad->Divide(2, 1, 1.e-5, 1.e-5); l = gPad->GetListOfPrimitives();
374 ((TVirtualPad*)l->At(0))->cd();
375 h1 = h2->ProjectionX("hdx_pxx"); h1->Scale(1.e4/kND); h1->SetMarkerStyle(24);
376 h1->SetYTitle("<dx> [#mum]");
377 h1->SetXTitle("t_{drift} [#mus]");
378 h1->GetXaxis()->SetRange(2, kNTB-1); h1->Draw("pc");
379
380 t->Draw("z:t>>h2y(23, 0.1, 2.4, 25, 0., 2.5)","dy*(1)", "goff");
381 h2 = (TH2F*)gROOT->FindObject("h2y");
382 printf(" const Double_t dy[24][25]={\n");
383 for(Int_t ix=1; ix<=h2->GetNbinsX(); ix++){
384 printf(" {");
385 for(Int_t iy=1; iy<h2->GetNbinsY(); iy++){
386 printf("%6.4f ", h2->GetBinContent(ix, iy));
387 }
388 printf("%6.4f},\n", h2->GetBinContent(ix, h2->GetNbinsY()));
389 }
390 printf(" };\n");
391 ((TVirtualPad*)l->At(1))->cd();
392 h1 = h2->ProjectionX("hdy_pxx"); h1->Scale(1.e4/kND); h1->SetMarkerStyle(24);
393 h1->SetYTitle("<dy> [#mum]");
394 h1->SetXTitle("t_{drift} [#mus]");
395 h1->GetXaxis()->SetRange(2, kNTB-1); h1->Draw("pc");
396
397 return kTRUE;
398 default:
399 break;
400 }
401 AliWarning("No container/data found.");
402 return kFALSE;
403}
404
405//_______________________________________________________
406TObjArray* AliTRDclusterResolution::Histos()
407{
408// Retrieve histograms array if already build or build it
409
410 if(fContainer) return fContainer;
411 fContainer = new TObjArray(kNtasks);
412 //fContainer->SetOwner(kTRUE);
413
4226db3e 414 TH3S *h3 = NULL;
415 TObjArray *arr = NULL;
1ee39b3a 416
417 fContainer->AddAt(arr = new TObjArray(2*AliTRDgeometry::kNlayer), kCenter);
418 arr->SetName("Center");
419 for(Int_t il=0; il<AliTRDgeometry::kNlayer; il++){
420 // add resolution plot for each layer
421 if(!(h3=(TH3S*)gROOT->FindObject(Form("hCenResLy%d", il)))){
422 h3 = new TH3S(
423 Form("hCenResLy%d", il),
424 Form(" ly [%d]", il),
425 kNTB, fAt->GetBinLowEdge(1), fAt->GetBinUpEdge(kNTB), // x
426 51, -.51, .51, // y
427 60, -.3, .3); // dy
428 h3->SetXTitle("x [#mus]");
429 h3->SetYTitle("y [pw]");
430 h3->SetZTitle("#Delta y[cm]");
431 } h3->Reset();
432 arr->AddAt(h3, il);
433 // add Pull plot for each layer
434 if(!(h3=(TH3S*)gROOT->FindObject(Form("hCenPullLy%d", il)))){
435 h3 = new TH3S(
436 Form("hCenPullLy%d", il),
437 Form(" ly [%d]", il),
438 kNTB, fAt->GetBinLowEdge(1), fAt->GetBinUpEdge(kNTB), // x
439 51, -.51, .51, // y
440 60, -4., 4.); // dy
441 h3->SetXTitle("x [#mus]");
442 h3->SetYTitle("y [pw]");
443 h3->SetZTitle("#Delta y/#sigma_{y}");
444 } h3->Reset();
445 arr->AddAt(h3, AliTRDgeometry::kNlayer+il);
446 }
447
448 if(!(h3 = (TH3S*)gROOT->FindObject("Charge"))){
449 h3 = new TH3S("Charge", "dy=f(q)", 50, 2.2, 7.5, 60, -.3, .3, 60, -4., 4.);
450 h3->SetXTitle("log(q) [a.u.]");
451 h3->SetYTitle("#Delta y[cm]");
452 h3->SetZTitle("#Delta y/#sigma_{y}");
453 }
454 fContainer->AddAt(h3, kQRes);
455
456 fContainer->AddAt(arr = new TObjArray(kNTB), kSigm);
457 arr->SetName("Resolution");
458 for(Int_t ix=0; ix<kNTB; ix++){
459 if(!(h3=(TH3S*)gROOT->FindObject(Form("hr_x%02d", ix)))){
460 h3 = new TH3S(
461 Form("hr_x%02d", ix),
462 Form(" t_{drift}(%3.1f-%3.1f)[#mus]", fAt->GetBinLowEdge(ix+1), fAt->GetBinUpEdge(ix+1)),
463 kND, 0., 2.5, // z
464 35, -.35, .35, // tgp
465 60, -.3, .3); // dy
466 h3->SetXTitle("z [mm]");
467 h3->SetYTitle("tg#phi");
468 h3->SetZTitle("#Delta y[cm]");
469 }
470 arr->AddAt(h3, ix);
471 }
472
473 fContainer->AddAt(arr = new TObjArray(kNTB), kMean);
474 arr->SetName("Systematics");
475 for(Int_t ix=0; ix<kNTB; ix++){
476 if(!(h3=(TH3S*)gROOT->FindObject(Form("hs_x%02d", ix)))){
477 h3 = new TH3S(
478 Form("hs_x%02d", ix),
479 Form(" t_{drift}(%3.1f-%3.1f)[#mus]", fAt->GetBinLowEdge(ix+1), fAt->GetBinUpEdge(ix+1)),
480 kND, 0., 2.5, // z
481 35, -.35, .35, // tgp-h tgt
482 60, -.3, .3); // dy
483 h3->SetXTitle("z [mm]");
484 h3->SetYTitle("tg(#phi) - h*tg(#theta)");
485 h3->SetZTitle("#Delta y[cm]");
486 }
487 arr->AddAt(h3, ix);
488 }
489
490 return fContainer;
491}
492
493//_______________________________________________________
f8f46e4d 494void AliTRDclusterResolution::UserExec(Option_t *)
1ee39b3a 495{
496// Fill container histograms
497
498 if(!HasExB()) AliWarning("ExB was not set. Call SetExB() before running the task.");
499
500 Int_t det, t;
501 Float_t x, y, z, q, dy, dydx, dzdx, cov[3], covcl[3];
4226db3e 502 TH3S *h3 = NULL;
1ee39b3a 503
504 // define limits around ExB for which x contribution is negligible
505 const Float_t kDtgPhi = 3.5e-2; //(+- 2 deg)
506
507 TObjArray *arr0 = (TObjArray*)fContainer->At(kCenter);
508 TObjArray *arr1 = (TObjArray*)fContainer->At(kSigm);
509 TObjArray *arr2 = (TObjArray*)fContainer->At(kMean);
510
4226db3e 511 const AliTRDclusterInfo *cli = NULL;
1ee39b3a 512 TIterator *iter=fInfo->MakeIterator();
513 while((cli=dynamic_cast<AliTRDclusterInfo*>((*iter)()))){
514 cli->GetCluster(det, x, y, z, q, t, covcl);
515 if(fDet>=0 && fDet!=det) continue;
516
517 dy = cli->GetResolution();
518 cli->GetGlobalPosition(y, z, dydx, dzdx, &cov[0]);
519
520 // resolution as a function of cluster charge
521 // only for phi equal exB
522 if(TMath::Abs(dydx-fExB) < kDtgPhi){
523 h3 = (TH3S*)fContainer->At(kQRes);
524 h3->Fill(TMath::Log(q), dy, dy/TMath::Sqrt(covcl[0]));
525
4226db3e 526 AliDebug(4, Form("q=%4.0f Log(q)=%6.4f dy[um]=%7.2f pull=%5.2f",q, TMath::Log(q), 1.e4*dy, dy/TMath::Sqrt(covcl[0])));
1ee39b3a 527 }
528
529 // do not use problematic clusters in resolution analysis
530 // TODO define limits as calibration aware (gain) !!
531 if(q<20. || q>250.) continue;
532
533 x = (t+.5)*fgkTimeBinLength; // conservative approach !!
534
535 // resolution as a function of y displacement from pad center
536 // only for phi equal exB
537 if(TMath::Abs(dydx-fExB) < kDtgPhi/* &&
538 TMath::Abs(x-0.675)<0.225*/){
539 Int_t ly(AliTRDgeometry::GetLayer(det));
540 h3 = (TH3S*)arr0->At(ly);
541 h3->Fill(x, cli->GetYDisplacement(), dy);
542 h3 = (TH3S*)arr0->At(AliTRDgeometry::kNlayer+ly);
543 h3->Fill(x, cli->GetYDisplacement(), dy/TMath::Sqrt(covcl[0]));
544 }
545
546 Int_t ix = fAt->FindBin(x);
547 if(ix==0 || ix == fAt->GetNbins()+1){
548 AliWarning(Form("Drift time %3.1f outside allowed range", x));
549 continue;
550 }
551
552 // fill histo for resolution (sigma)
553 ((TH3S*)arr1->At(ix-1))->Fill(10.*cli->GetAnisochronity(), dydx, dy);
554
555 // fill histo for systematic (mean)
556 ((TH3S*)arr2->At(ix-1))->Fill(10.*cli->GetAnisochronity(), dydx-cli->GetTilt()*dzdx, dy);
557 }
f8f46e4d 558 PostData(1, fContainer);
1ee39b3a 559}
560
561
562//_______________________________________________________
563Bool_t AliTRDclusterResolution::PostProcess()
564{
565 if(!fContainer) return kFALSE;
566 if(!HasExB()) AliWarning("ExB was not set. Call SetExB() before running the post processing.");
567
4226db3e 568 TObjArray *arr = NULL;
569 TTree *t=NULL;
1ee39b3a 570 if(!fResults){
4226db3e 571 TGraphErrors *g = NULL;
1ee39b3a 572 fResults = new TObjArray(kNtasks);
573 fResults->SetOwner();
574 fResults->AddAt(arr = new TObjArray(3), kQRes);
575 arr->SetOwner();
576 arr->AddAt(g = new TGraphErrors(), 0);
577 g->SetLineColor(kBlue); g->SetMarkerColor(kBlue);
578 g->SetMarkerStyle(7);
579 arr->AddAt(g = new TGraphErrors(), 1);
580 g->SetLineColor(kRed); g->SetMarkerColor(kRed);
581 g->SetMarkerStyle(23);
582 arr->AddAt(g = new TGraphErrors(), 2);
583 g->SetLineColor(kGreen); g->SetMarkerColor(kGreen);
584 g->SetMarkerStyle(7);
585
586 // pad center dependence
587 fResults->AddAt(arr = new TObjArray(AliTRDgeometry::kNlayer+1), kCenter);
588 arr->SetOwner();
589 arr->AddAt(
590 t = new TTree("cent", "dy=f(y,x,ly)"), 0);
591 t->Branch("ly", &fLy, "ly/B");
592 t->Branch("x", &fX, "x/F");
593 t->Branch("y", &fY, "y/F");
594 t->Branch("m", &fR[0], "m[2]/F");
595 t->Branch("s", &fR[2], "s[2]/F");
596 t->Branch("pm", &fP[0], "pm[2]/F");
597 t->Branch("ps", &fP[2], "ps[2]/F");
598 for(Int_t il=1; il<=AliTRDgeometry::kNlayer; il++){
599 arr->AddAt(g = new TGraphErrors(), il);
600 g->SetLineColor(il); g->SetLineStyle(il);
601 g->SetMarkerColor(il);g->SetMarkerStyle(4);
602 }
603
604
605 fResults->AddAt(t = new TTree("sigm", "dy=f(dw,x,dydx)"), kSigm);
606 t->Branch("t", &fX, "t/F");
607 t->Branch("z", &fZ, "z/F");
608 t->Branch("sx", &fR[0], "sx[2]/F");
609 t->Branch("sy", &fR[2], "sy[2]/F");
610
611
612 fResults->AddAt(t = new TTree("mean", "dy=f(dw,x,dydx - h dzdx)"), kMean);
613 t->Branch("t", &fX, "t/F");
614 t->Branch("z", &fZ, "z/F");
615 t->Branch("dx", &fR[0], "dx[2]/F");
616 t->Branch("dy", &fR[2], "dy[2]/F");
617 } else {
4226db3e 618 TObject *o = NULL;
1ee39b3a 619 TIterator *iter=fResults->MakeIterator();
620 while((o=((*iter)()))) o->Clear(); // maybe it is wrong but we should never reach this point
621 }
622
623 // precalculated value of tg^2(alpha_L)
624 Double_t exb2 = fExB*fExB;
625 // square of the mean value of sigma drift length.
626 // has to come from previous calibration
627 //Double_t sxd2 = 1.;// [mm^2]
628
629 printf("ExB[%e] ExB2[%e]\n", fExB, exb2);
630
631 // process resolution dependency on charge
632 if(HasProcess(kQRes)) ProcessCharge();
633
634 // process resolution dependency on y displacement
635 if(HasProcess(kCenter)) ProcessCenterPad();
636
637 // process resolution dependency on drift legth and drift cell width
638 if(HasProcess(kSigm)) ProcessSigma();
639
640 // process systematic shift on drift legth and drift cell width
641 if(HasProcess(kMean)) ProcessMean();
642
643 return kTRUE;
644}
645
646//_______________________________________________________
647Bool_t AliTRDclusterResolution::SetExB(Int_t det, Int_t col, Int_t row)
648{
649 // check OCDB
650 AliCDBManager *cdb = AliCDBManager::Instance();
651 if(cdb->GetRun() < 0){
652 AliError("OCDB manager not properly initialized");
653 return kFALSE;
654 }
655
656 // check magnetic field
657 if(TMath::Abs(AliTracker::GetBz()) < 1.e-10){
658 AliWarning("B=0. Magnetic field may not be initialized. Continue if you know what you are doing !");
659 }
660
661 // set reference detector if any
662 if(det>=0 && det<AliTRDgeometry::kNdet) fDet = det;
663 else det = 0;
664
665 AliTRDcalibDB *fCalibration = AliTRDcalibDB::Instance();
666 AliTRDCalROC *fCalVdriftROC = fCalibration->GetVdriftROC(det);
667 const AliTRDCalDet *fCalVdriftDet = fCalibration->GetVdriftDet();
668
669 fVdrift = fCalVdriftDet->GetValue(det) * fCalVdriftROC->GetValue(col, row);
670 fExB = AliTRDCommonParam::Instance()->GetOmegaTau(fVdrift);
671 SetBit(kExB);
672 return kTRUE;
673}
674
675//_______________________________________________________
676void AliTRDclusterResolution::SetVisual()
677{
678 if(fCanvas) return;
679 fCanvas = new TCanvas("clResCanvas", "Cluster Resolution Visualization", 10, 10, 600, 600);
680}
681
682//_______________________________________________________
683void AliTRDclusterResolution::ProcessCharge()
684{
685// Resolution as a function of cluster charge.
686//
687// As described in the function ProcessCenterPad() the error parameterization for clusters for phi = a_L can be
688// written as:
689// BEGIN_LATEX
690// #sigma_{y}^{2} = #sigma_{y}^{2}|_{B=0} + tg^{2}(#alpha_{L})*#sigma_{x}^{2}
691// END_LATEX
692// with the contribution in case of B=0 given by:
693// BEGIN_LATEX
694// #sigma_{y}|_{B=0} = #sigma_{diff}*Gauss(0, s_{ly}) + #delta_{#sigma}(q)
695// END_LATEX
696// which further can be simplified to:
697// BEGIN_LATEX
698// <#sigma_{y}|_{B=0}>(q) = <#sigma_{y}> + #delta_{#sigma}(q)
699// <#sigma_{y}> = #int{f(q)#sigma_{y}dq}
700// END_LATEX
701// The results for s_y and f(q) are displayed below:
702//Begin_Html
703//<img src="TRD/clusterQerror.gif">
704//End_Html
705// The function has to extended to accomodate gain calibration scalling and errors.
706//
707// Author
708// Alexandru Bercuci <A.Bercuci@gsi.de>
709
4226db3e 710 TH2I *h2 = NULL;
1ee39b3a 711 if(!(h2 = (TH2I*)fContainer->At(kQRes))) {
712 AliWarning("Missing dy=f(Q) histo");
713 return;
714 }
715 TF1 f("f", "gaus", -.5, .5);
4226db3e 716 TAxis *ax = NULL;
717 TH1D *h1 = NULL;
1ee39b3a 718
719 // compute mean error on x
720 Double_t s2x = 0.;
721 for(Int_t ix=5; ix<kNTB; ix++){
722 // retrieve error on the drift length
723 s2x += AliTRDcluster::GetSX(ix);
724 }
725 s2x /= (kNTB-5); s2x *= s2x;
726 Double_t exb2 = fExB*fExB;
727
728 TObjArray *arr = (TObjArray*)fResults->At(kQRes);
729 TGraphErrors *gqm = (TGraphErrors*)arr->At(0);
730 TGraphErrors *gqs = (TGraphErrors*)arr->At(1);
731 TGraphErrors *gqp = (TGraphErrors*)arr->At(2);
732 Double_t q, n = 0., entries;
733 ax = h2->GetXaxis();
734 for(Int_t ix=1; ix<=ax->GetNbins(); ix++){
735 q = TMath::Exp(ax->GetBinCenter(ix));
736 if(q<20. || q>250.) continue; // ?!
737
738 h1 = h2->ProjectionY("py", ix, ix);
739 entries = h1->GetEntries();
740 if(entries < 50) continue;
741 Adjust(&f, h1);
742 h1->Fit(&f, "Q");
743
744 // Fill sy^2 = f(q)
745 Int_t ip = gqm->GetN();
746 gqm->SetPoint(ip, q, 1.e4*f.GetParameter(1));
747 gqm->SetPointError(ip, 0., 1.e4*f.GetParError(1));
748
749 // correct sigma for ExB effect
750 gqs->SetPoint(ip, q, 1.e4*(f.GetParameter(2)*f.GetParameter(2)-exb2*s2x));
751 gqs->SetPointError(ip, 0., 1.e4*f.GetParError(2)*f.GetParameter(2));
752
753 // save probability
754 n += entries;
755 gqp->SetPoint(ip, q, entries);
756 gqp->SetPointError(ip, 0., 0./*TMath::Sqrt(entries)*/);
757 }
758
759 // normalize probability and get mean sy
760 Double_t sm = 0., sy;
761 for(Int_t ip=gqp->GetN(); ip--;){
762 gqp->GetPoint(ip, q, entries);
763 entries/=n;
764 gqp->SetPoint(ip, q, 1.e3*entries);
765 gqs->GetPoint(ip, q, sy);
766 sm += entries*sy;
767 }
768
769 // error parametrization s(q) = <sy> + b(1/q-1/q0)
770 TF1 fq("fq", "[0] + [1]/x", 20., 250.);
771 gqs->Fit(&fq/*, "W"*/);
772 printf("sm=%f [0]=%f [1]=%f\n", 1.e-4*sm, fq.GetParameter(0), fq.GetParameter(1));
773 printf(" const Float_t sq0inv = %f; // [1/q0]\n", (sm-fq.GetParameter(0))/fq.GetParameter(1));
774 printf(" const Float_t sqb = %f; // [cm]\n", 1.e-4*fq.GetParameter(1));
775}
776
777//_______________________________________________________
778void AliTRDclusterResolution::ProcessCenterPad()
779{
780// Resolution as a function of y displacement from pad center and drift length.
781//
782// Since the error parameterization of cluster r-phi position can be written as (see AliTRDcluster::SetSigmaY2()):
783// BEGIN_LATEX
784// #sigma_{y}^{2} = (#sigma_{diff}*Gauss(0, s_{ly}) + #delta_{#sigma}(q))^{2} + tg^{2}(#alpha_{L})*#sigma_{x}^{2} + tg^{2}(#phi-#alpha_{L})*#sigma_{x}^{2}+[tg(#phi-#alpha_{L})*tg(#alpha_{L})*x]^{2}/12
785// END_LATEX
786// one can see that for phi = a_L one gets the following expression:
787// BEGIN_LATEX
788// #sigma_{y}^{2} = #sigma_{y}^{2}|_{B=0} + tg^{2}(#alpha_{L})*#sigma_{x}^{2}
789// END_LATEX
790// where we have explicitely marked the remaining term in case of absence of magnetic field. Thus one can use the
791// previous equation to estimate s_y for B=0 and than by comparing in magnetic field conditions one can get the s_x.
792// This is a simplified method to determine the error parameterization for s_x and s_y as compared to the one
793// implemented in ProcessSigma(). For more details on cluster error parameterization please see also
794// AliTRDcluster::SetSigmaY2()
795//
796// The representation of dy=f(y_cen, x_drift| layer) can be also used to estimate the systematic shift in the r-phi
797// coordinate resulting from imperfection in the cluster shape parameterization. From the expresion of the shift derived
798// in ProcessMean() with phi=exb one gets:
799// BEGIN_LATEX
800// <#Delta y>= <#delta x> * (tg(#alpha_{L})-h*dz/dx) + <#delta y - #delta x * tg(#alpha_{L})>
801// <#Delta y>(y_{cen})= -h*<#delta x>(x_{drift}, q_{cl}) * dz/dx + #delta y(y_{cen}, ...)
802// END_LATEX
803// where all dependences are made explicit. This last expression can be used in two ways:
804// - by average on the dz/dx we can determine directly dy (the method implemented here)
805// - by plotting as a function of dzdx one can determine both dx and dy components in an independent method.
806//Begin_Html
807//<img src="TRD/clusterYcorr.gif">
808//End_Html
809// Author
810// Alexandru Bercuci <A.Bercuci@gsi.de>
811
812 TObjArray *arr = (TObjArray*)fContainer->At(kCenter);
813 if(!arr) {
814 AliWarning("Missing dy=f(y | x, ly) container");
815 return;
816 }
817 Double_t exb2 = fExB*fExB;
818 Float_t s[AliTRDgeometry::kNlayer];
819 TF1 f("f", "gaus", -.5, .5);
820 TF1 fp("fp", "gaus", -3.5, 3.5);
821
4226db3e 822 TH1D *h1 = NULL; TH2F *h2 = NULL; TH3S *h3r=NULL, *h3p=NULL;
1ee39b3a 823 TObjArray *arrRes = (TObjArray*)fResults->At(kCenter);
824 TTree *t = (TTree*)arrRes->At(0);
4226db3e 825 TGraphErrors *gs = NULL;
826 TAxis *ax = NULL;
1ee39b3a 827
828 printf(" const Float_t lSy[6][24] = {\n {");
829 const Int_t nl = AliTRDgeometry::kNlayer;
830 for(Int_t il=0; il<nl; il++){
831 if(!(h3r = (TH3S*)arr->At(il))) continue;
832 if(!(h3p = (TH3S*)arr->At(nl+il))) continue;
833 gs = (TGraphErrors*)arrRes->At(il+1);
834 fLy = il;
835// printf("Ly[%d]\n", il);
836 for(Int_t ix=1; ix<=h3r->GetXaxis()->GetNbins(); ix++){
837 ax = h3r->GetXaxis(); ax->SetRange(ix, ix);
838 ax = h3p->GetXaxis(); ax->SetRange(ix, ix);
839 fX = ax->GetBinCenter(ix);
840// printf(" x[%2d]=%4.2f\n", ix, fX);
841 for(Int_t iy=1; iy<=h3r->GetYaxis()->GetNbins(); iy++){
842 ax = h3r->GetYaxis(); ax->SetRange(iy, iy);
843 ax = h3p->GetYaxis(); ax->SetRange(iy, iy);
844 fY = ax->GetBinCenter(iy);
845// printf(" y[%2d]=%5.2f\n", iy, fY);
846 // finish navigation in the HnSparse
847
848 h1 = (TH1D*)h3r->Project3D("z");
849 Int_t entries = (Int_t)h1->Integral();
850 if(entries < 50) continue;
851 //Adjust(&f, h1);
852 h1->Fit(&f, "QN");
853
854 // Fill sy,my=f(y_w,x,ly)
855 fR[0] = f.GetParameter(1); fR[1] = f.GetParError(1);
856 fR[2] = f.GetParameter(2); fR[3] = f.GetParError(2);
857
858 h1 = (TH1D*)h3p->Project3D("z");
859 h1->Fit(&fp, "QN");
860 fP[0] = fp.GetParameter(1); fP[1] = fp.GetParError(1);
861 fP[2] = fp.GetParameter(2); fP[3] = fp.GetParError(2);
862
863 //printf("ly[%d] x[%3.1f] y[%+5.2f] m[%5.3f] s[%5.3f] \n", fLy, fX, fY, fR[0], fR[2]);
864 t->Fill();
865
866
867 }
868 }
869 t->Draw("y:x>>h(24, 0., 2.4, 51, -.51, .51)",
870 Form("s[0]*(ly==%d&&abs(m[0])<1.e-1)", fLy),
871 "goff");
872 h2=(TH2F*)gROOT->FindObject("h");
873 f.FixParameter(1, 0.);
874 Int_t n = h2->GetXaxis()->GetNbins(), nn(0); s[il]=0.;
875 printf(" {");
876 for(Int_t ix=1; ix<=n; ix++){
877 ax = h2->GetXaxis();
878 fX = ax->GetBinCenter(ix);
879 h1 = h2->ProjectionY("hCenPy", ix, ix);
880 //if((Int_t)h1->Integral() < 1.e-10) continue;
881
882 // Apply lorentz angle correction
883 // retrieve error on the drift length
884 Double_t s2x = AliTRDcluster::GetSX(ix-1); s2x *= s2x;
885 Int_t nnn = 0;
886 for(Int_t iy=1; iy<=h1->GetNbinsX(); iy++){
887 Double_t s2 = h1->GetBinContent(iy); s2*= s2;
888 // sigma square corrected for Lorentz angle
889 // s2 = s2_y(y_w,x)+exb2*s2_x
890 Double_t sy = TMath::Sqrt(TMath::Max(s2 - exb2*s2x, Double_t(0.)));
891 if(sy<1.e-20) continue;
892 h1->SetBinContent(iy, sy); nnn++;
893 printf("s[%6.2f] sx[%6.2f] sy[%6.2f]\n",
894 1.e4*TMath::Sqrt(s2), 1.e4*TMath::Abs(fExB*AliTRDcluster::GetSX(ix-1)),
895 1.e4*h1->GetBinContent(iy));
896 }
897 // do fit only if enough data
898 Double_t sPRF = 0.;
899 if(nnn>5){
900 h1->Fit(&f, "QN");
901 sPRF = f.GetParameter(2);
902 nn++;
903 }
904 s[il]+=sPRF;
905 printf("%6.4f,%s", sPRF, ix%6?" ":"\n ");
906 Int_t jx = gs->GetN();
907 gs->SetPoint(jx, fX, 1.e4*sPRF);
908 gs->SetPointError(jx, 0., 0./*f.GetParError(0)*/);
909 }
910 printf("\b},\n");
911 s[il]/=nn;
912
913 f.ReleaseParameter(2);
914
915
916 if(!fCanvas) continue;
917 h2->Draw("lego2fb");
918 fCanvas->Modified(); fCanvas->Update();
919 if(IsSaveAs()) fCanvas->SaveAs(Form("Figures/ProcessCenter_ly[%d].gif", fLy));
920 else gSystem->Sleep(100);
921 }
922 printf(" };\n");
923 printf(" const Float_t lPRF[] = {"
924 "%5.3f, %5.3f, %5.3f, %5.3f, %5.3f, %5.3f};\n",
925 s[0], s[1], s[2], s[3], s[4], s[5]);
926}
927
928//_______________________________________________________
929void AliTRDclusterResolution::ProcessSigma()
930{
931// As the r-phi coordinate is the only one which is measured by the TRD detector we have to rely on it to
932// estimate both the radial (x) and r-phi (y) errors. This method is based on the following assumptions.
933// The measured error in the y direction is the sum of the intrinsic contribution of the r-phi measurement
934// with the contribution of the radial measurement - because x is not a parameter of Alice track model (Kalman).
935// BEGIN_LATEX
936// #sigma^{2}|_{y} = #sigma^{2}_{y*} + #sigma^{2}_{x*}
937// END_LATEX
938// In the general case
939// BEGIN_LATEX
940// #sigma^{2}_{y*} = #sigma^{2}_{y} + tg^{2}(#alpha_{L})#sigma^{2}_{x_{drift}}
941// #sigma^{2}_{x*} = tg^{2}(#phi - #alpha_{L})*(#sigma^{2}_{x_{drift}} + #sigma^{2}_{x_{0}} + tg^{2}(#alpha_{L})*x^{2}/12)
942// END_LATEX
943// where we have explicitely show the lorentz angle correction on y and the projection of radial component on the y
944// direction through the track angle in the bending plane (phi). Also we have shown that the radial component in the
945// last equation has twp terms, the drift and the misalignment (x_0). For ideal geometry or known misalignment one
946// can solve the equation
947// BEGIN_LATEX
948// #sigma^{2}|_{y} = tg^{2}(#phi - #alpha_{L})*(#sigma^{2}_{x} + tg^{2}(#alpha_{L})*x^{2}/12)+ [#sigma^{2}_{y} + tg^{2}(#alpha_{L})#sigma^{2}_{x}]
949// END_LATEX
950// by fitting a straight line:
951// BEGIN_LATEX
952// #sigma^{2}|_{y} = a(x_{cl}, z_{cl}) * tg^{2}(#phi - #alpha_{L}) + b(x_{cl}, z_{cl})
953// END_LATEX
954// the error parameterization will be given by:
955// BEGIN_LATEX
956// #sigma_{x} (x_{cl}, z_{cl}) = #sqrt{a(x_{cl}, z_{cl}) - tg^{2}(#alpha_{L})*x^{2}/12}
957// #sigma_{y} (x_{cl}, z_{cl}) = #sqrt{b(x_{cl}, z_{cl}) - #sigma^{2}_{x} (x_{cl}, z_{cl}) * tg^{2}(#alpha_{L})}
958// END_LATEX
959// Below there is an example of such dependency.
960//Begin_Html
961//<img src="TRD/clusterSigmaMethod.gif">
962//End_Html
963//
964// The error parameterization obtained by this method are implemented in the functions AliTRDcluster::GetSX() and
965// AliTRDcluster::GetSYdrift(). For an independent method to determine s_y as a function of drift length check the
966// function ProcessCenterPad(). One has to keep in mind that while this method return the mean s_y over the distance
967// to pad center distribution the other method returns the *STANDARD* value at center=0 (maximum). To recover the
968// standard value one has to solve the obvious equation:
969// BEGIN_LATEX
970// #sigma_{y}^{STANDARD} = #frac{<#sigma_{y}>}{#int{s exp(s^{2}/#sigma) ds}}
971// END_LATEX
972// with "<s_y>" being the value calculated here and "sigma" the width of the s_y distribution calculated in
973// ProcessCenterPad().
974//
975// Author
976// Alexandru Bercuci <A.Bercuci@gsi.de>
977
978 TObjArray *arr = (TObjArray*)fContainer->At(kSigm);
979 if(!arr){
980 AliWarning("Missing dy=f(x_d, d_w) container");
981 return;
982 }
983
984 // init visualization
4226db3e 985 TGraphErrors *ggs = NULL;
986 TGraph *line = NULL;
1ee39b3a 987 if(fCanvas){
988 ggs = new TGraphErrors();
989 line = new TGraph();
990 line->SetLineColor(kRed);line->SetLineWidth(2);
991 }
992
993 // init logistic support
994 TF1 f("f", "gaus", -.5, .5);
995 TLinearFitter gs(1,"pol1");
4226db3e 996 TH1 *hFrame=NULL;
997 TH1D *h1 = NULL; TH3S *h3=NULL;
998 TAxis *ax = NULL;
1ee39b3a 999 Double_t exb2 = fExB*fExB, x;
1000 AliTRDcluster c;
1001 TTree *t = (TTree*)fResults->At(kSigm);
1002 for(Int_t ix=0; ix<kNTB; ix++){
1003 if(!(h3=(TH3S*)arr->At(ix))) continue;
1004 c.SetPadTime(ix);
1005 x = c.GetXloc(0., 1.5);
1006 fX= fAt->GetBinCenter(ix+1);
1007 for(Int_t iz=1; iz<=h3->GetXaxis()->GetNbins(); iz++){
1008 ax = h3->GetXaxis();
1009 ax->SetRange(iz, iz);
1010 fZ = ax->GetBinCenter(iz);
1011
1012 // reset visualization
1013 if(fCanvas){
1014 new(ggs) TGraphErrors();
1015 ggs->SetMarkerStyle(7);
1016 }
1017 gs.ClearPoints();
1018
1019 for(Int_t ip=1; ip<=h3->GetYaxis()->GetNbins(); ip++){
1020 ax = h3->GetYaxis();
1021 ax->SetRange(ip, ip);
1022 Double_t tgl = ax->GetBinCenter(ip);
1023 // finish navigation in the HnSparse
1024
1025 //if(TMath::Abs(dydx)>0.18) continue;
1026 Double_t tgg = (tgl-fExB)/(1.+tgl*fExB);
1027 Double_t tgg2 = tgg*tgg;
1028
1029 h1 = (TH1D*)h3->Project3D("z");
1030 Int_t entries = (Int_t)h1->Integral();
1031 if(entries < 50) continue;
1032 //Adjust(&f, h1);
1033 h1->Fit(&f, "QN");
1034
1035 Double_t s2 = f.GetParameter(2)*f.GetParameter(2);
1036 Double_t s2e = 2.*f.GetParameter(2)*f.GetParError(2);
1037 // Fill sy^2 = f(tg^2(phi-a_L))
1038 gs.AddPoint(&tgg2, s2, s2e);
1039
1040 if(!ggs) continue;
1041 Int_t jp = ggs->GetN();
1042 ggs->SetPoint(jp, tgg2, s2);
1043 ggs->SetPointError(jp, 0., s2e);
1044 }
1045 // TODO here a more robust fit method has to be provided
1046 // for which lower boundaries on the parameters have to
1047 // be imposed. Unfortunately the Minuit fit does not work
1048 // for the TGraph in the case of B not 0.
1049 if(gs.Eval()) continue;
1050
1051 fR[0] = gs.GetParameter(1) - x*x*exb2/12.;
1052 printf("s2x+x2=%f ang=%f s2x=%f\n", gs.GetParameter(1), x*x*exb2/12., fR[0]);
1053 fR[0] = TMath::Max(fR[0], Float_t(4.e-4));
1054
1055 // s^2_y = s0^2_y + tg^2(a_L) * s^2_x
1056 // s0^2_y = f(D_L)*x + s_PRF^2
1057 fR[2]= gs.GetParameter(0)-exb2*fR[0];
1058 printf("s2y+s2x=%f s2y=%f\n", fR[0], fR[2]);
1059 fR[2] = TMath::Max(fR[2], Float_t(2.5e-5));
1060 fR[0] = TMath::Sqrt(fR[0]);
1061 fR[1] = .5*gs.GetParError(1)/fR[0];
1062 fR[2] = TMath::Sqrt(fR[2]);
1063 fR[3] = gs.GetParError(0)+exb2*exb2*gs.GetParError(1);
1064 t->Fill();
1065 printf(" xd=%4.2f[cm] sx=%6.1f[um] sy=%5.1f[um]\n", x, 1.e4*fR[0], 1.e4*fR[2]);
1066
1067 if(!fCanvas) continue;
1068 fCanvas->cd(); fCanvas->SetLogx(); //fCanvas->SetLogy();
1069 if(!hFrame){
1070 fCanvas->SetMargin(0.15, 0.01, 0.1, 0.01);
1071 hFrame=new TH1I("hFrame", "", 100, 0., .3);
1072 hFrame->SetMinimum(0.);hFrame->SetMaximum(.005);
1073 hFrame->SetXTitle("tg^{2}(#phi-#alpha_{L})");
1074 hFrame->SetYTitle("#sigma^{2}y[cm^{2}]");
1075 hFrame->GetYaxis()->SetTitleOffset(2.);
1076 hFrame->SetLineColor(1);hFrame->SetLineWidth(1);
1077 hFrame->Draw();
1078 } else hFrame->Reset();
1079 Double_t xx = 0., dxx=.2/50;
1080 for(Int_t ip=0;ip<50;ip++){
1081 line->SetPoint(ip, xx, gs.GetParameter(0)+xx*gs.GetParameter(1));
1082 xx+=dxx;
1083 }
1084 ggs->Draw("pl"); line->Draw("l");
1085 fCanvas->Modified(); fCanvas->Update();
1086 if(IsSaveAs()) fCanvas->SaveAs(Form("Figures/ProcessSigma_z[%5.3f]_x[%5.3f].gif", fZ, fX));
1087 else gSystem->Sleep(100);
1088 }
1089 }
1090 return;
1091}
1092
1093//_______________________________________________________
1094void AliTRDclusterResolution::ProcessMean()
1095{
1096// By this method the cluster shift in r-phi and radial directions can be estimated by comparing with the MC.
1097// The resolution of the cluster corrected for pad tilt with respect to MC in the r-phi (measuring) plane can be
1098// expressed by:
1099// BEGIN_LATEX
1100// #Delta y=w - y_{MC}(x_{cl})
1101// w = y_{cl}^{'} + h*(z_{MC}(x_{cl})-z_{cl})
1102// y_{MC}(x_{cl}) = y_{0} - dy/dx*x_{cl}
1103// z_{MC}(x_{cl}) = z_{0} - dz/dx*x_{cl}
1104// y_{cl}^{'} = y_{cl}-x_{cl}*tg(#alpha_{L})
1105// END_LATEX
1106// where x_cl is the drift length attached to a cluster, y_cl is the r-phi coordinate of the cluster measured by
1107// charge sharing on adjacent pads and y_0 and z_0 are MC reference points (as example the track references at
1108// entrance/exit of a chamber). If we suppose that both r-phi (y) and radial (x) coordinate of the clusters are
1109// affected by errors we can write
1110// BEGIN_LATEX
1111// x_{cl} = x_{cl}^{*} + #delta x
1112// y_{cl} = y_{cl}^{*} + #delta y
1113// END_LATEX
1114// where the starred components are the corrected values. Thus by definition the following quantity
1115// BEGIN_LATEX
1116// #Delta y^{*}= w^{*} - y_{MC}(x_{cl}^{*})
1117// END_LATEX
1118// has 0 average over all dependency. Using this decomposition we can write:
1119// BEGIN_LATEX
1120// <#Delta y>=<#Delta y^{*}> + <#delta x * (dy/dx-h*dz/dx) + #delta y - #delta x * tg(#alpha_{L})>
1121// END_LATEX
1122// which can be transformed to the following linear dependence:
1123// BEGIN_LATEX
1124// <#Delta y>= <#delta x> * (dy/dx-h*dz/dx) + <#delta y - #delta x * tg(#alpha_{L})>
1125// END_LATEX
1126// if expressed as function of dy/dx-h*dz/dx. Furtheremore this expression can be plotted for various clusters
1127// i.e. we can explicitely introduce the diffusion (x_cl) and drift cell - anisochronity (z_cl) dependences. From
1128// plotting this dependence and linear fitting it with:
1129// BEGIN_LATEX
1130// <#Delta y>= a(x_{cl}, z_{cl}) * (dy/dx-h*dz/dx) + b(x_{cl}, z_{cl})
1131// END_LATEX
1132// the systematic shifts will be given by:
1133// BEGIN_LATEX
1134// #delta x (x_{cl}, z_{cl}) = a(x_{cl}, z_{cl})
1135// #delta y (x_{cl}, z_{cl}) = b(x_{cl}, z_{cl}) + a(x_{cl}, z_{cl}) * tg(#alpha_{L})
1136// END_LATEX
1137// Below there is an example of such dependency.
1138//Begin_Html
1139//<img src="TRD/clusterShiftMethod.gif">
1140//End_Html
1141//
1142// The occurance of the radial shift is due to the following conditions
1143// - the approximation of a constant drift velocity over the drift length (larger drift velocities close to
1144// cathode wire plane)
1145// - the superposition of charge tails in the amplification region (first clusters appear to be located at the
1146// anode wire)
1147// - the superposition of charge tails in the drift region (shift towards anode wire)
1148// - diffusion effects which convolute with the TRF thus enlarging it
1149// - approximate knowledge of the TRF (approximate measuring in test beam conditions)
1150//
1151// The occurance of the r-phi shift is due to the following conditions
1152// - approximate model for cluster shape (LUT)
1153// - rounding-up problems
1154//
1155// The numerical results for ideal simulations for the radial and r-phi shifts are displayed below and used
1156// for the cluster reconstruction (see the functions AliTRDcluster::GetXcorr() and AliTRDcluster::GetYcorr()).
1157//Begin_Html
1158//<img src="TRD/clusterShiftX.gif">
1159//<img src="TRD/clusterShiftY.gif">
1160//End_Html
1161// More details can be found in the presentation given during the TRD
1162// software meeting at the end of 2008 and beginning of year 2009, published on indico.cern.ch.
1163//
1164// Author
1165// Alexandru Bercuci <A.Bercuci@gsi.de>
1166
1167
1168
1169 TObjArray *arr = (TObjArray*)fContainer->At(kMean);
1170 if(!arr){
1171 AliWarning("Missing dy=f(x_d, d_w) container");
1172 return;
1173 }
1174
1175 // init logistic support
1176 TF1 f("f", "gaus", -.5, .5);
1177 TF1 line("l", "[0]+[1]*x", -.15, .15);
1178 TGraphErrors *gm = new TGraphErrors();
4226db3e 1179 TH1 *hFrame=NULL;
1180 TH1D *h1 = NULL; TH3S *h3 =NULL;
1181 TAxis *ax = NULL;
1ee39b3a 1182 Double_t x;
1183
1184 AliTRDcluster c;
1185 TTree *t = (TTree*)fResults->At(kMean);
1186 for(Int_t ix=0; ix<kNTB; ix++){
1187 if(!(h3=(TH3S*)arr->At(ix))) continue;
1188 c.SetPadTime(ix);
1189 x = c.GetXloc(0., 1.5);
1190 fX= fAt->GetBinCenter(ix+1);
1191 for(Int_t iz=1; iz<=h3->GetXaxis()->GetNbins(); iz++){
1192 ax = h3->GetXaxis();
1193 ax->SetRange(iz, iz);
1194 fZ = ax->GetBinCenter(iz);
1195
1196 // reset fitter
1197 new(gm) TGraphErrors();
1198 gm->SetMarkerStyle(7);
1199
1200 for(Int_t ip=1; ip<=h3->GetYaxis()->GetNbins(); ip++){
1201 ax = h3->GetYaxis();
1202 ax->SetRange(ip, ip);
1203 Double_t tgl = ax->GetBinCenter(ip);
1204 // finish navigation in the HnSparse
1205
1206 h1 = (TH1D*)h3->Project3D("z");
1207 Int_t entries = (Int_t)h1->Integral();
1208 if(entries < 50) continue;
1209 //Adjust(&f, h1);
1210 h1->Fit(&f, "QN");
1211
1212 // Fill <Dy> = f(dydx - h*dzdx)
1213 Int_t jp = gm->GetN();
1214 gm->SetPoint(jp, tgl, f.GetParameter(1));
1215 gm->SetPointError(jp, 0., f.GetParError(1));
1216 }
1217 if(gm->GetN()<4) continue;
1218
1219 gm->Fit(&line, "QN");
1220 fR[0] = line.GetParameter(1); // dx
1221 fR[1] = line.GetParError(1);
1222 fR[2] = line.GetParameter(0) + fExB*fR[0]; // xs = dy - tg(a_L)*dx
1223 t->Fill();
1224 printf(" xd=%4.2f[cm] dx=%6.2f[um] dy=%6.2f[um]\n", x, 1.e4*fR[0], 1.e4*fR[2]);
1225
1226 if(!fCanvas) continue;
1227 fCanvas->cd();
1228 if(!hFrame){
1229 fCanvas->SetMargin(0.1, 0.02, 0.1, 0.01);
1230 hFrame=new TH1I("hFrame", "", 100, -.3, .3);
1231 hFrame->SetMinimum(-.1);hFrame->SetMaximum(.1);
1232 hFrame->SetXTitle("tg#phi-htg#theta");
1233 hFrame->SetYTitle("#Delta y[cm]");
1234 hFrame->GetYaxis()->SetTitleOffset(1.5);
1235 hFrame->SetLineColor(1);hFrame->SetLineWidth(1);
1236 hFrame->Draw();
1237 } else hFrame->Reset();
1238 gm->Draw("pl"); line.Draw("same");
1239 fCanvas->Modified(); fCanvas->Update();
1240 if(IsSaveAs()) fCanvas->SaveAs(Form("Figures/ProcessMean_Z[%5.3f]_X[%5.3f].gif", fZ, fX));
1241 else gSystem->Sleep(100);
1242 }
1243 }
1244}