]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWG2/FLOW/AliFlowCommon/AliFlowAnalysisWithMixedHarmonics.h
fixed warning
[u/mrichter/AliRoot.git] / PWG2 / FLOW / AliFlowCommon / AliFlowAnalysisWithMixedHarmonics.h
CommitLineData
d66d46f7 1/*
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved.
3 * See cxx source for full Copyright notice
4 * $Id$
5 */
6
7/**********************************************************
8 * In this class azimuthal correlators in mixed harmonics *
9 * are implemented in terms of Q-vectors. This approach *
10 * doesn't require evaluation of nested loops. This class *
11 * can be used to: *
12 * *
13 * a) Extract subdominant harmonics (like v1 and v4); *
14 * b) Study strong parity violation. *
15 * *
16 * Author: Ante Bilandzic (abilandzic@gmail.com) *
17 *********************************************************/
18
19#ifndef ALIFLOWANALYSISWITHMIXEDHARMONICS_H
20#define ALIFLOWANALYSISWITHMIXEDHARMONICS_H
21
22#include "AliFlowCommonConstants.h" // needed as include
23#include "TMatrixD.h"
24
25class TList;
26class TFile;
27class TH1;
28class TH2;
29class TProfile;
30class TProfile2D;
31
32class AliFlowEventSimple;
33class AliFlowCommonHist;
34class AliFlowCommonHistResults;
35
36//================================================================================================================
37
38class AliFlowAnalysisWithMixedHarmonics
39{
40 public:
41 AliFlowAnalysisWithMixedHarmonics();
42 virtual ~AliFlowAnalysisWithMixedHarmonics();
43 // 0.) Methods called in the constructor:
44 // 1.) Method Init() and methods called within Init():
45 virtual void Init();
46 virtual void CrossCheckSettings();
47 virtual void AccessConstants();
48 virtual void BookAndNestAllLists();
49 virtual void BookProfileHoldingSettings();
50 virtual void BookCommonHistograms();
51 virtual void BookAllEventByEventQuantities();
52 virtual void BookAllAllEventQuantities();
53 virtual void BookAndFillWeightsHistograms();
54 // 2.) Method Make() and methods called within Make():
55 virtual void Make(AliFlowEventSimple *anEvent);
56 virtual void CheckPointersUsedInMake();
57 virtual void Calculate3pCorrelator();
58 virtual void CalculateNonIsotropicTerms();
59 virtual void ResetEventByEventQuantities();
60 // 3.) Method Finish() and methods called within Finish():
61 virtual void Finish();
62 virtual void CheckPointersUsedInFinish();
63 virtual void AccessSettings();
64 virtual void FinalizeNonIsotropicTerms();
65 virtual void CorrectForDetectorEffects();
66 virtual void QuantifyBiasFromDetectorEffects();
67 // 4.) Method GetOutputHistograms and method called within it:
68 virtual void GetOutputHistograms(TList *outputListHistos);
69 virtual void GetPointersForCommonHistograms();
70 virtual void GetPointersForResultsHistograms();
71 // 5.) Other methods:
72 virtual void WriteHistograms(TString outputFileName);
73 virtual void WriteHistograms(TDirectoryFile *outputFileName);
74 // 6.) Setters and getters:
75 void SetHistList(TList* const hl) {this->fHistList = hl;}
76 TList* GetHistList() const {return this->fHistList;}
77 void SetHistListName(const char *hln) {this->fHistListName->Append(*hln);};
78 TString *GetHistListName() const {return this->fHistListName;};
79 void SetAnalysisLabel(const char *al) {this->fAnalysisLabel->Append(*al);};
80 TString *GetAnalysisLabel() const {return this->fAnalysisLabel;};
81 void SetAnalysisSettings(TProfile* const as) {this->fAnalysisSettings = as;};
82 TH1D* GetAnalysisSettings() const {return this->fAnalysisSettings;};
83 void SetCorrelatorInteger(Int_t const ci) {this->fCorrelatorInteger = ci;};
84 Int_t GetCorrelatorInteger() const {return this->fCorrelatorInteger;};
85 void SetNoOfMultipicityBins(Int_t const nomb) {this->fNoOfMultipicityBins = nomb;};
86 Int_t GetNoOfMultipicityBins() const {return this->fNoOfMultipicityBins;};
87 void SetMultipicityBinWidth(Double_t const mbw) {this->fMultipicityBinWidth = mbw;};
88 Double_t GetMultipicityBinWidth() const {return this->fMultipicityBinWidth;};
89 void SetMinMultiplicity(Double_t const mm) {this->fMinMultiplicity = mm;};
90 Double_t GetMinMultiplicity() const {return this->fMinMultiplicity;};
91 void SetCorrectForDetectorEffects(Bool_t const cfde) {this->fCorrectForDetectorEffects = cfde;};
92 Bool_t GetCorrectForDetectorEffects() const {return this->fCorrectForDetectorEffects;};
93 void SetCommonHists(AliFlowCommonHist* const ch) {this->fCommonHists = ch;};
94 AliFlowCommonHist* GetCommonHists() const {return this->fCommonHists;};
95 void SetWeightsList(TList* const wl) {this->fWeightsList = (TList*)wl->Clone();}
96 TList* GetWeightsList() const {return this->fWeightsList;}
97 void SetUsePhiWeights(Bool_t const uPhiW) {this->fUsePhiWeights = uPhiW;};
98 Bool_t GetUsePhiWeights() const {return this->fUsePhiWeights;};
99 void SetUsePtWeights(Bool_t const uPtW) {this->fUsePtWeights = uPtW;};
100 Bool_t GetUsePtWeights() const {return this->fUsePtWeights;};
101 void SetUseEtaWeights(Bool_t const uEtaW) {this->fUseEtaWeights = uEtaW;};
102 Bool_t GetUseEtaWeights() const {return this->fUseEtaWeights;};
103 void SetUseParticleWeights(TProfile* const uPW) {this->fUseParticleWeights = uPW;};
104 TProfile* GetUseParticleWeights() const {return this->fUseParticleWeights;};
105 void SetPhiWeights(TH1F* const histPhiWeights) {this->fPhiWeights = histPhiWeights;};
106 TH1F* GetPhiWeights() const {return this->fPhiWeights;};
107 void SetPtWeights(TH1D* const histPtWeights) {this->fPtWeights = histPtWeights;};
108 TH1D* GetPtWeights() const {return this->fPtWeights;};
109 void SetEtaWeights(TH1D* const histEtaWeights) {this->fEtaWeights = histEtaWeights;};
110 TH1D* GetEtaWeights() const {return this->fEtaWeights;};
111 void Set3pCorrelatorPro(TProfile* const s3pPro) {this->f3pCorrelatorPro = s3pPro;};
112 TProfile* Get3pCorrelatorPro() const {return this->f3pCorrelatorPro;};
113 void SetfNonIsotropicTermsPro(TProfile* const nitPro) {this->fNonIsotropicTermsPro = nitPro;};
114 TProfile* GetNonIsotropicTermsPro() const {return this->fNonIsotropicTermsPro;};
115 void Set3pCorrelatoVsMrPro(TProfile* const s3pVsMPro) {this->f3pCorrelatorVsMPro = s3pVsMPro;};
116 TProfile* Get3pCorrelatorVsMPro() const {return this->f3pCorrelatorVsMPro;};
117 void SetfNonIsotropicTermsVsMPro(TProfile2D* const nitVsMPro) {this->fNonIsotropicTermsVsMPro = nitVsMPro;};
118 TProfile2D* GetNonIsotropicTermsVsMPro() const {return this->fNonIsotropicTermsVsMPro;};
119 void SetResultsList(TList* const rlist) {this->fResultsList = rlist;}
120 TList* GetResultsList() const {return this->fResultsList;}
121 void Set3pCorrelatorHist(TH1D* const s3pcHist) {this->f3pCorrelatorHist = s3pcHist;};
122 TH1D* Get3pCorrelatorHist() const {return this->f3pCorrelatorHist;};
123 void SetDetectorBiasHist(TH1D* const dbHist) {this->fDetectorBiasHist = dbHist;};
124 TH1D* GetDetectorBiasHist() const {return this->fDetectorBiasHist;};
125 void SetNonIsotropicTermsHist(TH1D* const nitHist) {this->fNonIsotropicTermsHist = nitHist;};
126 TH1D* GetNonIsotropicTermsHist() const {return this->fNonIsotropicTermsHist;};
127 void Set3pCorrelatorVsMHist(TH1D* const s3pcVsMHist) {this->f3pCorrelatorVsMHist = s3pcVsMHist;};
128 TH1D* Get3pCorrelatorVsMHist() const {return this->f3pCorrelatorVsMHist;};
129 void SetDetectorBiasVsMHist(TH1D* const dbVsMHist) {this->fDetectorBiasVsMHist = dbVsMHist;};
130 TH1D* GetDetectorBiasVsMHist() const {return this->fDetectorBiasVsMHist;};
131 void SetNonIsotropicTermsVsMHist(TH2D* const nitVsMHist) {this->fNonIsotropicTermsVsMHist = nitVsMHist;};
132 TH2D* GetNonIsotropicTermsVsMHist() const {return this->fNonIsotropicTermsVsMHist;};
133
134 private:
135 AliFlowAnalysisWithMixedHarmonics(const AliFlowAnalysisWithMixedHarmonics& afawQc);
136 AliFlowAnalysisWithMixedHarmonics& operator=(const AliFlowAnalysisWithMixedHarmonics& afawQc);
137 // 0.) Base:
138 TList *fHistList; // base list to hold all output objects
139 TString *fHistListName; // name of base list
140 TString *fAnalysisLabel; // analysis label
141 TProfile *fAnalysisSettings; // profile to hold analysis settings
142 Int_t fCorrelatorInteger; // integer n in cos[n(2phi1-phi2-phi3)]
143 Int_t fNoOfMultipicityBins; // number of multiplicity bins
144 Double_t fMultipicityBinWidth; // width of multiplicity bin
145 Double_t fMinMultiplicity; // minimal multiplicity
146 Bool_t fCorrectForDetectorEffects; // correct 3-p correlator for detector effects
147 // 1.) Common:
148 AliFlowCommonHist *fCommonHists; // common control histograms (filled only with events with 3 or more tracks for 3-p correlators)
149 Int_t fnBinsPhi; // number of phi bins
150 Double_t fPhiMin; // minimum phi
151 Double_t fPhiMax; // maximum phi
152 Double_t fPhiBinWidth; // bin width for phi histograms
153 Int_t fnBinsPt; // number of pt bins
154 Double_t fPtMin; // minimum pt
155 Double_t fPtMax; // maximum pt
156 Double_t fPtBinWidth; // bin width for pt histograms
157 Int_t fnBinsEta; // number of eta bins
158 Double_t fEtaMin; // minimum eta
159 Double_t fEtaMax; // maximum eta
160 Double_t fEtaBinWidth; // bin width for eta histograms
161 // 2a.) Particle weights:
162 TList *fWeightsList; // list to hold all histograms with particle weights: fUseParticleWeights, fPhiWeights, fPtWeights and fEtaWeights
163 Bool_t fUsePhiWeights; // use phi weights
164 Bool_t fUsePtWeights; // use pt weights
165 Bool_t fUseEtaWeights; // use eta weights
166 TProfile *fUseParticleWeights; // profile with three bins to hold values of fUsePhiWeights, fUsePtWeights and fUseEtaWeights
167 TH1F *fPhiWeights; // histogram holding phi weights
168 TH1D *fPtWeights; // histogram holding phi weights
169 TH1D *fEtaWeights; // histogram holding phi weights
170 // 3.) Event-by-event quantities:
171 TMatrixD *fReQnk; // fReQ[n][k] = Re[Q_{n,k}] = sum_{i=1}^{M} w_{i}^{k} cos(n*phi_{i})
172 TMatrixD *fImQnk; // fImQ[n][k] = Im[Q_{n,k}] = sum_{i=1}^{M} w_{i}^{k} sin(n*phi_{i})
173 TMatrixD *fSpk; // fS[p][k] = S_{p,k} = (sum_{i=1}^{M} w_{i}^{k})^{p+1} // note p+1 in the power to use 0th index in p in non-trivial way
174 TH1D *f3pCorrelatorEBE; // 3-p correlator <cos[n(2phi1-phi2-phi3)]> for single event
175 TH1D *fNonIsotropicTermsEBE; // correction terms to 3-p correlator <cos[n(2phi1-phi2-phi3)]> for single event
176 // 4.) Profiles:
177 TProfile *f3pCorrelatorPro; // 3-p correlator <<cos[n(2phi1-phi2-phi3)]>> for all events (with wrong errors)
178 TProfile *fNonIsotropicTermsPro; // correction terms to 3-p correlator <cos[n(2phi1-phi2-phi3)]> for all events (with wrong errors)
179 TProfile *f3pCorrelatorVsMPro; // 3-p correlator <<cos[n(2phi1-phi2-phi3)]>> for all events (with wrong errors) versus multiplicity
180 TProfile2D *fNonIsotropicTermsVsMPro; // correction terms to <cos[n(2phi1-phi2-phi3)]> for all events (with wrong errors) versus multiplicity
181 // 5.) Final results:
182 TList *fResultsList; // list holding objects with final results
183 TH1D *f3pCorrelatorHist; // 3-p correlator <<cos[n(2phi1-phi2-phi3)]>> for all events (with correct errors)
184 TH1D *fDetectorBiasHist; // bias comming from detector inefficiencies to 3-p correlator <<cos[n(2phi1-phi2-phi3)]>> (in %)
185 TH1D *fNonIsotropicTermsHist; // correction terms to 3-p correlator <cos[n(2phi1-phi2-phi3)]> for all events (with correct errors)
186 TH1D *f3pCorrelatorVsMHist; // 3-p correlator <<cos[n(2phi1-phi2-phi3)]>> for all events (with correct errors) versus multiplicity
187 TH1D *fDetectorBiasVsMHist; // bias comming from detector inefficiencies to 3-p correlator <<cos[n(2phi1-phi2-phi3)]>> (in %) versus multiplicity
188 TH2D *fNonIsotropicTermsVsMHist; // correction terms to <cos[n(2phi1-phi2-phi3)]> for all events (with correct errors) versus multiplicity
189
190 ClassDef(AliFlowAnalysisWithMixedHarmonics, 0);
191
192};
193
194//================================================================================================================
195
196#endif
197
198
199
200
201