]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWG4/PartCorrDep/AliAnaElectron.h
fixing compilation problem
[u/mrichter/AliRoot.git] / PWG4 / PartCorrDep / AliAnaElectron.h
CommitLineData
8a587055 1#ifndef ALIANAELECTRON_H\r
2#define ALIANAELECTRON_H\r
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *\r
4 * See cxx source for full Copyright notice */\r
5/* $Id: $ */\r
6\r
7//_________________________________________________________________________\r
8//\r
9// Class for the electron identification.\r
10// Clusters from EMCAL matched to tracks are selected \r
11// and kept in the AOD. Few histograms produced.\r
12//\r
13\r
14//-- Author: J.L. Klay (Cal Poly)\r
15\r
16// --- ROOT system ---\r
17class TH2F ;\r
18class TString ;\r
19class TNtuple ;\r
20class TH3F;\r
21\r
22// --- ANALYSIS system ---\r
23#include "AliAnaPartCorrBaseClass.h"\r
24\r
25class AliCaloTrackReader;\r
26class AliAODTrack;\r
27class TList ;\r
28\r
29class AliAnaElectron : public AliAnaPartCorrBaseClass {\r
30\r
31public: \r
32\r
33 AliAnaElectron() ; // default ctor\r
34 AliAnaElectron(const AliAnaElectron & g) ; // cpy ctor\r
35 AliAnaElectron & operator = (const AliAnaElectron & g) ;//cpy assignment\r
36 virtual ~AliAnaElectron() ; //virtual dtor\r
4f1b0aa5 37\r
8a587055 38 TList * GetCreateOutputObjects();\r
39\r
40 void Init();\r
41\r
42 void MakeAnalysisFillAOD() ;\r
43 \r
44 void MakeAnalysisFillHistograms() ; \r
45 \r
46 //B-tagging\r
78afcbc6 47 Int_t GetDVMBtag(AliAODTrack * tr); //returns # tracks from secvtx\r
48\r
49 //Temporary local method to get DCA because AliAODTrack is stupid\r
50 Bool_t GetDCA(const AliAODTrack* tr,Double_t imp[2], Double_t cov[3]);\r
8a587055 51\r
4f1b0aa5 52 Bool_t PhotonicPrim(const AliAODPWG4Particle* part); //check with track list\r
53 Bool_t PhotonicV0(Int_t trackId); //check with V0 list\r
78afcbc6 54\r
55 //check if track has been flagged as a non-photonic or DVM electron\r
56 //used with the jet tracks to tag bjets\r
57 Bool_t CheckTrack(const AliAODTrack* track,const char* type); \r
7a8f2aef 58 Bool_t IsMcBJet(Double_t x, Double_t y, AliStack* st);\r
8a587055 59\r
60 void Print(const Option_t * opt)const;\r
61 \r
62 TString GetCalorimeter() const {return fCalorimeter ; }\r
63 Double_t GetpOverEmin() const {return fpOverEmin ; }\r
64 Double_t GetpOverEmax() const {return fpOverEmax ; }\r
65 Bool_t GetWriteNtuple() const {return fWriteNtuple ; }\r
66\r
67 Double_t GetDrCut() const { return fDrCut; }\r
68 Double_t GetPairDcaCut() const { return fPairDcaCut; }\r
69 Double_t GetDecayLenCut() const { return fDecayLenCut; }\r
70 Double_t GetImpactCut() const { return fImpactCut; }\r
71 Double_t GetAssocPtCut() const { return fAssocPtCut; }\r
72 Double_t GetMassCut() const { return fMassCut; }\r
73 Double_t GetSdcaCut() const { return fSdcaCut; }\r
78afcbc6 74 Int_t GetITSCut() const { return fITSCut; }\r
75 Int_t GetNTagTrackCut() const { return fNTagTrkCut; }\r
76 Double_t GetIPSigCut() const { return fIPSigCut; }\r
8a587055 77\r
78 void SetCalorimeter(TString det) {fCalorimeter = det ; }\r
79 void SetpOverEmin(Double_t min) {fpOverEmin = min ; }\r
80 void SetpOverEmax(Double_t max) {fpOverEmax = max ; }\r
81 void SetResidualCut(Double_t cut) {fResidualCut = cut ; }\r
82 void SetWriteNtuple(Bool_t val) {fWriteNtuple = val ; }\r
83\r
84 void SetDrCut(Double_t dr) { fDrCut = dr; }\r
85 void SetPairDcaCut(Double_t pdca) { fPairDcaCut = pdca; }\r
86 void SetDecayLenCut(Double_t dlen) { fDecayLenCut = dlen; }\r
87 void SetImpactCut(Double_t imp) { fImpactCut = imp; }\r
88 void SetAssocPtCut(Double_t pt) { fAssocPtCut = pt; }\r
89 void SetMassCut(Double_t mass) { fMassCut = mass; }\r
90 void SetSdcaCut(Double_t sdca) { fSdcaCut = sdca; }\r
91 void SetITSCut(Int_t its) { fITSCut = its; }\r
78afcbc6 92 void SetNTagTrackCut(Int_t ntr) { fNTagTrkCut = ntr; }\r
93 void SetIPSigCut(Double_t ips) { fIPSigCut = ips; }\r
8a587055 94\r
95 void InitParameters();\r
96\r
97 void Terminate(TList * outputList);\r
98 void ReadHistograms(TList * outputList); //Fill histograms with\r
99 //histograms in ouput list,\r
100 //needed in Terminate. \r
78afcbc6 101 private:\r
102 //For DVM B-tag method\r
103 Double_t ComputeSignDca(AliAODTrack *track, AliAODTrack *track2 , float cut1);\r
104 //the 2 following functions are internal methods of the b-tagging\r
105 //based on transverse impact parameter\r
106 Double_t GetIPSignificance(AliAODTrack *tr, Double_t jetPhi);\r
107 void GetImpactParamVect(Double_t Pxy[2], Double_t t[2], Double_t Vxy[2], Double_t ip[2]);\r
4f1b0aa5 108 //For determining origin of electron\r
109 Int_t GetMCSource(Int_t mctag);\r
8a587055 110\r
111 private:\r
112 TString fCalorimeter; //! Which detector? EMCAL or PHOS\r
113 Double_t fpOverEmin; //! Minimum p/E value for Electrons\r
114 Double_t fpOverEmax; //! Maximum p/E value for Electrons\r
115 Double_t fResidualCut; //! Track-cluster matching distance\r
116\r
78afcbc6 117 //DVM B-tagging\r
8a587055 118 Double_t fDrCut; //max dR\r
119 Double_t fPairDcaCut; //max pair-DCA\r
120 Double_t fDecayLenCut; //max 3d-decaylength\r
121 Double_t fImpactCut; //max track impact param\r
122 Double_t fAssocPtCut; //min associated pt\r
123 Double_t fMassCut; //min Minv cut\r
124 Double_t fSdcaCut; //min signDca\r
125 Int_t fITSCut; //min ITS hits (both)\r
78afcbc6 126 //IP Sig B-tagging\r
127 Int_t fNTagTrkCut; //min number of tracks required for IP sig tag\r
128 Double_t fIPSigCut; //min IP significance cut\r
8a587055 129\r
4f1b0aa5 130 Double_t fJetEtaCut; //max eta for jets\r
131 Double_t fJetPhiMin; //min phi for jets\r
132 Double_t fJetPhiMax; //max phi for jets\r
133\r
8a587055 134 Bool_t fWriteNtuple; //flag for filling ntuple or not\r
135\r
4f1b0aa5 136 ///////////////////////////////////////\r
137 //Output histograms and Ntuples\r
138\r
139 ///////////////////////////////////////\r
140 //RC = RECO only - these histos will be filled using only reco\r
141 //information\r
142\r
143 //event QA\r
144 TH1F * fhImpactXY; //! XY impact parameter of all tracks to primary vertex\r
145 TH1F * fhRefMult; //! refmult (tracks with |eta| < 0.5)\r
146 TH1F * fhRefMult2; //! refmult2 (tracks with |eta| < 0.5 & impXY,impZ < 1.0)\r
8a587055 147\r
148 //matching checks \r
149 TH1F *fh1pOverE; //! p/E for track-cluster matches\r
4f1b0aa5 150 TH1F *fh1EOverp; //! E/p for track-cluster matches (For PMJ)\r
8a587055 151 TH1F *fh1dR; //! distance between projected track and cluster\r
152 TH2F *fh2EledEdx; //! dE/dx vs. momentum for electron candidates\r
153 TH2F *fh2MatchdEdx; //! dE/dx vs. momentum for all matches\r
4f1b0aa5 154 TH2F *fh2dEtadPhi; //! DeltaEta vs. DeltaPhi of all track/cluster pairs\r
155 TH2F *fh2dEtadPhiMatched; //! DeltaEta vs. DeltaPhi of matched track/cluster pairs\r
8a587055 156 TH2F *fh2dEtadPhiUnmatched; //! DeltaEta vs. DeltaPhi of unmatched track/cluster pairs\r
157\r
158 TH2F* fh2TrackPVsClusterE; //!track momentum vs. cluster energy\r
159 TH2F* fh2TrackPtVsClusterE; //!track pt vs. cluster energy\r
160 TH2F* fh2TrackPhiVsClusterPhi; //!track phi vs. cluster phi\r
161 TH2F* fh2TrackEtaVsClusterEta; //!track eta vs. cluster eta\r
162\r
163 //Photonic Electron checks\r
164 TH1F* fh1OpeningAngle; //!opening angle between pairs of photon candidates\r
165 TH1F* fh1MinvPhoton; //!invariant mass distribution of electron pairs\r
166\r
4f1b0aa5 167 //Reconstructed electrons\r
8a587055 168 TH1F * fhPtElectron; //! Number of identified electron vs transverse momentum \r
169 TH2F * fhPhiElectron; //! Azimuthal angle of identified electron vs transverse momentum \r
170 TH2F * fhEtaElectron; //! Pseudorapidity of identified electron vs tranvserse momentum \r
171\r
172 TH1F * fhPtNPE; //! Number of non-photonic electron vs transverse momentum \r
173 TH2F * fhPhiNPE; //! Azimuthal angle of non-photonic electron vs transverse momentum \r
174 TH2F * fhEtaNPE; //! Pseudorapidity of non-photonic electron vs tranvserse momentum \r
175\r
176 TH1F * fhPtPE; //! Number of photonic electron vs transverse momentum \r
177 TH2F * fhPhiPE; //! Azimuthal angle of photonic electron vs transverse momentum \r
178 TH2F * fhEtaPE; //! Pseudorapidity of photonic electron vs tranvserse momentum \r
179\r
78afcbc6 180 //DVM B-tagging\r
181 TH2F * fhDVMBtagCut1; //! DVM B-tagging result for cut1 (minv>1.0)\r
182 TH2F * fhDVMBtagCut2; //! DVM B-tagging result for cut2 (minv>1.5)\r
183 TH2F * fhDVMBtagCut3; //! DVM B-tagging result for cut3 (minv>1.8)\r
184 TH2F * fhDVMBtagQA1; //! DVM B-tagging : QA of pairDca vs decaylength\r
185 TH2F * fhDVMBtagQA2; //! DVM B-tagging : QA of signDca vs mass\r
4f1b0aa5 186 TH1F * fhDVMBtagQA3; //! DVM B-tagging : QA number of ITS clusters\r
187 TH1F * fhDVMBtagQA4; //! DVM B-tagging : QA prim vtx impXY\r
188 TH1F * fhDVMBtagQA5; //! DVM B-tagging : QA prim vtx impZ\r
78afcbc6 189 //IPSig B-tagging\r
190 TH1F * fhIPSigBtagQA1; //! IPSig B-tagging : QA of # tag tracks\r
191 TH1F * fhIPSigBtagQA2; //! IPSig B-tagging : QA of IP sig\r
4f1b0aa5 192 TH1F * fhTagJetPt1x4; //! IPSig B-tagging : result for (1 track, ipSignif>4)\r
193 TH1F * fhTagJetPt2x3; //! IPSig B-tagging : result for (2 track, ipSignif>3)\r
194 TH1F * fhTagJetPt3x2; //! IPSig B-tagging : result for (3 track, ipSignif>2)\r
8a587055 195\r
196 //B-Jet histograms\r
78afcbc6 197 TH2F* fhJetType; //! How many of each tag were found vs jet pt\r
8a587055 198 TH2F* fhBJetXsiFF; //! B-tagged jet FF with xsi = log(pt_Jet/pt_Track)\r
199 TH2F* fhBJetPtFF; //! B-tagged jet FF with pt_Track\r
200 TH2F* fhBJetEtaPhi; //! B-tagged jet eta-phi distribution\r
201 TH2F* fhNonBJetXsiFF; //! Non b-tagged jet FF with xsi = log(pt_Jet/pt_Track)\r
202 TH2F* fhNonBJetPtFF; //! Non b-tagged jet FF with pt_Track\r
203 TH2F* fhNonBJetEtaPhi; //! Non b-tagged jet eta-phi distribution\r
204\r
4f1b0aa5 205 ///////////////////////////////////////////////////////////////////\r
206 //MC = From here down, the histograms use MC information, so they will\r
207 //only be filled in simulations\r
208 TNtuple* fEleNtuple; //! testing ntuple\r
209\r
210 TH2F * fhPhiConversion; //! Azimuthal angle of conversion electron vs transverse momentum \r
211 TH2F * fhEtaConversion; //! Pseudorapidity of conversion electron vs tranvserse momentum \r
212\r
213 //Histograms for comparison to tracking detectors\r
214 TH2F* fhPtHadron; //!Pt distribution of reco charged hadrons\r
215 //!(pi,k,p) in EMCAL acceptance\r
216 TH2F* fhPtNPEleTPC; //!Pt distribution of non-photonic reco electrons using\r
217 //!just TPC dEdx info in EMCAL acceptance\r
218 TH2F* fhPtNPEleTPCTRD; //!Pt distribution of non-photonic reco electrons using\r
219 //!pid info from tracking detectors only in EMCAL acceptance\r
220 TH2F* fhPtNPEleTTE; //!Pt distribution of non-photonic reco\r
221 //!electrons using pid info from TPC+TRD+EMCAL\r
222 //!in EMCAL acceptance\r
223\r
224 //For computing efficiency of IPSIG tag\r
225 //these require that an MC b-Ancestor is present in the jet\r
226 TH1F * fhBJetPt1x4; //! IPSig B-tagging : result for (1 track, ipSignif>4)\r
227 TH1F * fhBJetPt2x3; //! IPSig B-tagging : result for (2 track, ipSignif>3)\r
228 TH1F * fhBJetPt3x2; //! IPSig B-tagging : result for (3 track, ipSignif>2)\r
229\r
7a8f2aef 230 TH2F* fhDVMJet; //! DVM jet algo check\r
231\r
4f1b0aa5 232 ////////////////////////////\r
233 //MC Only Rate histograms\r
234\r
8a587055 235 TNtuple *fMCEleNtuple; //! Ntuple of MC electrons\r
4f1b0aa5 236\r
237 TH2F* fhMCBJetElePt; //! Pt of B-Jet vs pt of electron\r
8a587055 238 TH1F* fhPtMCHadron; //! Pt distribution of MC charged hadrons (pi,k,p) in EMCAL acceptance\r
4f1b0aa5 239 TH2F* fhPtMCElectron; //! Pt distribution of MC electrons from various sources in EMCAL\r
240\r
7a8f2aef 241 ClassDef(AliAnaElectron,8)\r
8a587055 242\r
243} ;\r
244 \r
245\r
246#endif//ALIANAELECTRON_H\r
247\r
248\r
249\r