]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWG4/PartCorrDep/AliAnaElectron.h
Add more shower shape long axis histograms for different weights, comment the ones...
[u/mrichter/AliRoot.git] / PWG4 / PartCorrDep / AliAnaElectron.h
CommitLineData
d9105d92 1#ifndef ALIANAELECTRON_H
2#define ALIANAELECTRON_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5/* $Id: AliAnaElectron.h 27413 2008-07-18 13:28:12Z gconesab $ */
6
7//_________________________________________________________________________
8//
9// Class for the electron identification,
10// Clusters from calorimeters are identified as electrons
11// and kept in the AOD. Few histograms produced.
12// Copy of AliAnaPhoton just add electron id.
13//
14
15//-- Author: Gustavo Conesa (LPSC-IN2P3-CNRS)
16
17// --- ROOT system ---
18class TH2F ;
19class TH1F;
20class TH3D;
21class TString ;
22class TObjString;
23
24// --- ANALYSIS system ---
25#include "AliAnaPartCorrBaseClass.h"
26class AliStack;
27class TParticle;
28
29class TList ;
30
31class AliAnaElectron : public AliAnaPartCorrBaseClass {
32
33 public:
34
35 AliAnaElectron() ; // default ctor
36
37 virtual ~AliAnaElectron() { ; } // virtual dtor
38
39 private:
40
41 AliAnaElectron(const AliAnaElectron & g) ; // cpy ctor
42
43 AliAnaElectron & operator = (const AliAnaElectron & g) ; // cpy assignment
44
45 public:
46
47 //---------------------------------------
48 // General analysis frame methods
49 //---------------------------------------
50
51 TObjString * GetAnalysisCuts();
52
53 TList * GetCreateOutputObjects();
54
55 void Init();
56
57 void InitParameters();
58
59 void MakeAnalysisFillAOD() ;
60
61 void MakeAnalysisFillHistograms() ;
62
63 void Print(const Option_t * opt)const;
64
65
66 // Analysis methods
67
68 Bool_t ClusterSelected(AliVCluster* cl, TLorentzVector mom) ;
69
d9105d92 70 void FillShowerShapeHistograms( AliVCluster* cluster, const Int_t mcTag , const Int_t pidTag) ;
71
72 void SwitchOnFillShowerShapeHistograms() { fFillSSHistograms = kTRUE ; }
73 void SwitchOffFillShowerShapeHistograms() { fFillSSHistograms = kFALSE ; }
74
78a28af3 75 void RecalibrateCellAmplitude(Float_t & amp, const Int_t absId);
76
77 void WeightHistograms(AliVCluster *clus);
78
79 void SwitchOnFillWeightHistograms() { fFillWeightHistograms = kTRUE ; }
80 void SwitchOffFillWeightHistograms() { fFillWeightHistograms = kFALSE ; }
81
d9105d92 82 //---------------------------------------
83 // Analysis parameters setters getters
84 //---------------------------------------
85
86 TString GetCalorimeter() const { return fCalorimeter ; }
87 void SetCalorimeter(TString & det) { fCalorimeter = det ; }
88
89 // ** Cluster selection methods **
90
91 void SetdEdxCut(Double_t min, Double_t max) { fdEdxMin = min ;
92 fdEdxMax = max ; }
93
94 void SetEOverP(Double_t min, Double_t max) { fEOverPMin = min ;
95 fEOverPMax = max ; }
96
97
98 void SetMinDistanceToBadChannel(Float_t m1, Float_t m2, Float_t m3) {
99 fMinDist = m1; fMinDist2 = m2; fMinDist3 = m3; }
100
101 void SetTimeCut(Double_t min, Double_t max) { fTimeCutMin = min;
102 fTimeCutMax = max ; }
103 Double_t GetTimeCutMin() const { return fTimeCutMin ; }
104 Double_t GetTimeCutMax() const { return fTimeCutMax ; }
105
106 void SetNCellCut(Int_t n) { fNCellsCut = n ; }
107 Double_t GetNCellCut() const { return fNCellsCut ; }
108
109 void FillNOriginHistograms(Int_t n) { fNOriginHistograms = n ;
110 if(n > 10) fNOriginHistograms = 10; }
111
112 // For histograms in arrays, index in the array, corresponding to a particle
113 enum mcTypes { mcPhoton = 0, mcPi0Decay = 1, mcOtherDecay = 2,
114 mcPi0 = 3, mcEta = 4, mcElectron = 5,
115 mcConversion = 6, mcOther = 7, mcAntiNeutron = 8,
116 mcAntiProton = 9 };
117
118 enum mcssTypes { mcssPhoton = 0, mcssOther = 1, mcssPi0 = 2,
119 mcssEta = 3, mcssConversion = 4, mcssElectron = 5 };
120
121 private:
122
123 TString fCalorimeter ; // Calorimeter where the gamma is searched;
124 Float_t fMinDist ; // Minimal distance to bad channel to accept cluster
125 Float_t fMinDist2; // Cuts on Minimal distance to study acceptance evaluation
126 Float_t fMinDist3; // One more cut on distance used for acceptance-efficiency study
127 Double_t fTimeCutMin ; // Remove clusters/cells with time smaller than this value, in ns
128 Double_t fTimeCutMax ; // Remove clusters/cells with time larger than this value, in ns
129 Int_t fNCellsCut ; // Accept for the analysis clusters with more than fNCellsCut cells
130 Bool_t fFillSSHistograms ; // Fill shower shape histograms
78a28af3 131 Bool_t fFillWeightHistograms ; // Fill weigth histograms
d9105d92 132 Int_t fNOriginHistograms; // Fill only NOriginHistograms of the 14 defined types
133
134 Float_t fdEdxMin; // Max dEdx for electrons
135 Float_t fdEdxMax; // Min dEdx for electrons
136 Float_t fEOverPMin; // Max E/p for electrons, after dEdx cut
137 Float_t fEOverPMax; // Min E/p for electrons, after dEdx cut
138
139 //Histograms
140 TH2F * fhdEdxvsE; //! matched track dEdx vs cluster E
141 TH2F * fhdEdxvsP; //! matched track dEdx vs track P
142 TH2F * fhEOverPvsE; //! matched track E cluster over P track vs cluster E, after dEdx cut
143 TH2F * fhEOverPvsP; //! matched track E cluster over P track vs track P, after dEdx cut
144
145 TH2F * fhNCellsE[2]; //! number of cells in cluster vs E
146 TH2F * fhMaxCellDiffClusterE[2]; //! Fraction of energy carried by cell with maximum energy
42d47cb7 147 TH2F * fhTimeE[2]; //! E vs Time of selected cluster
148
d9105d92 149 TH1F * fhE[2] ; //! Number of identified electron vs energy
150 TH1F * fhPt[2] ; //! Number of identified electron vs transerse momentum
151 TH2F * fhPhi[2] ; //! Azimuthal angle of identified electron vs transerse momentum
152 TH2F * fhEta[2] ; //! Pseudorapidity of identified electron vs transerse momentum
153 TH2F * fhEtaPhi[2] ; //! Pseudorapidity vs Phi of identified electron for transerse momentum > 0.5
154 TH2F * fhEtaPhi05[2] ; //! Pseudorapidity vs Phi of identified electron for transerse momentum < 0.5
155
156 //Shower shape
157
158 TH2F * fhDispE[2]; //! cluster dispersion vs E
159 TH2F * fhLam0E[2]; //! cluster lambda0 vs E
160 TH2F * fhLam1E[2]; //! cluster lambda1 vs E
161
162 TH2F * fhDispETRD[2]; //! cluster dispersion vs E, SM covered by TRD
163 TH2F * fhLam0ETRD[2]; //! cluster lambda0 vs E, SM covered by TRD
164 TH2F * fhLam1ETRD[2]; //! cluster lambda1 vs E, SM covered by TRD
165
166 TH2F * fhNCellsLam0LowE[2]; //! cluster N cells vs lambda0, E<2
167 TH2F * fhNCellsLam0HighE[2]; //! cluster N Cells vs lambda0, E>2
168
169 TH2F * fhEtaLam0LowE[2]; //! cluster eta vs lambda0, E<2
170 TH2F * fhPhiLam0LowE[2]; //! cluster phi vs lambda0, E<2
171 TH2F * fhEtaLam0HighE[2]; //! cluster eta vs lambda0, E>2
172 TH2F * fhPhiLam0HighE[2]; //! cluster phi vs lambda0, E>2
173
78a28af3 174 // Weight studies
175
176 TH2F * fhECellClusterRatio; //! e cell / e cluster vs e cluster for selected electrons
177 TH2F * fhECellClusterLogRatio; //! log (e cell / e cluster) vs e cluster for selected electrons
178 TH2F * fhEMaxCellClusterRatio; //! e max cell / e cluster vs e cluster for selected electrons
179 TH2F * fhEMaxCellClusterLogRatio; //! log (e max cell / e cluster) vs e cluster for selected electrons
1a72f6c5 180 TH2F * fhLambda0ForW0[14]; //! L0 for 7 defined w0= 3, 3.5 ... 6 for selected electrons
181 //TH2F * fhLambda1ForW0[14]; //! L1 for 7 defined w0= 3, 3.5 ... 6 for selected electrons
78a28af3 182
d9105d92 183 //Fill MC dependent histograms, Origin of this cluster is ...
184
185 TH2F * fhMCDeltaE[2][10] ; //! MC-Reco E distribution coming from MC particle
186 TH2F * fhMC2E[2][10] ; //! E distribution, Reco vs MC coming from MC particle
187
188 TH1F * fhMCE[2][10]; //! Number of identified electron vs cluster energy coming from MC particle
189 TH1F * fhMCPt[2][10]; //! Number of identified electron vs cluster energy coming from MC particle
190 TH2F * fhMCPhi[2][10]; //! Phi of identified electron coming from MC particle
191 TH2F * fhMCEta[2][10]; //! eta of identified electron coming from MC particle
192
193 // Shower Shape MC
194
195 TH2F * fhMCELambda0[2][6] ; //! E vs Lambda0 from MC particle
196
197 TH2F * fhMCElectronELambda0NoOverlap ; //! E vs Lambda0 from MC electrons, no overlap
198 TH2F * fhMCElectronELambda0TwoOverlap ; //! E vs Lambda0 from MC electrons, 2 particles overlap
199 TH2F * fhMCElectronELambda0NOverlap ; //! E vs Lambda0 from MC electrons, N particles overlap
200
201 //Embedding
202 TH2F * fhEmbeddedSignalFractionEnergy ; //! Fraction of electron energy of embedded signal vs cluster energy
203
204 TH2F * fhEmbedElectronELambda0FullSignal ; //! Lambda0 vs E for embedded electrons with more than 90% of the cluster energy
205 TH2F * fhEmbedElectronELambda0MostlySignal ; //! Lambda0 vs E for embedded electrons with 90%<fraction<50%
206 TH2F * fhEmbedElectronELambda0MostlyBkg ; //! Lambda0 vs E for embedded electrons with 50%<fraction<10%
207 TH2F * fhEmbedElectronELambda0FullBkg ; //! Lambda0 vs E for embedded electrons with less than 10% of the cluster energy
208
78a28af3 209 ClassDef(AliAnaElectron,2)
d9105d92 210
211} ;
212
213
214#endif//ALIANAELECTRON_H
215
216
217