]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWG4/PartCorrDep/AliAnaPhoton.h
AliCalorimeterUtils: Fix to be able to use PHOS bad map and geometry matrices
[u/mrichter/AliRoot.git] / PWG4 / PartCorrDep / AliAnaPhoton.h
CommitLineData
1c5acb87 1#ifndef ALIANAPHOTON_H
2#define ALIANAPHOTON_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
5/* $Id: AliAnaPhoton.h 27413 2008-07-18 13:28:12Z gconesab $ */
6
7//_________________________________________________________________________
8//
9// Class for the photon identification.
10// Clusters from calorimeters are identified as photons
11// and kept in the AOD. Few histograms produced.
6175da48 12// Produces input for other analysis classes like AliAnaPi0,
13// AliAnaParticleHadronCorrelation ...
1c5acb87 14//
15
16//-- Author: Gustavo Conesa (INFN-LNF)
17
18// --- ROOT system ---
19class TH2F ;
123fc3bd 20class TH1F;
1c5acb87 21class TString ;
0c1383b5 22class TObjString;
5812a064 23class TList ;
1c5acb87 24
25// --- ANALYSIS system ---
26#include "AliAnaPartCorrBaseClass.h"
1c5acb87 27
28class AliAnaPhoton : public AliAnaPartCorrBaseClass {
29
78219bac 30 public:
5812a064 31 AliAnaPhoton() ; // default ctor
32 virtual ~AliAnaPhoton() { ; } // virtual dtor
0c1383b5 33
6175da48 34 //---------------------------------------
35 // General analysis frame methods
36 //---------------------------------------
c4a7d28a 37
0c1383b5 38 TObjString * GetAnalysisCuts();
6175da48 39
0c1383b5 40 TList * GetCreateOutputObjects();
c4a7d28a 41
6175da48 42 void Init();
6639984f 43
6175da48 44 void InitParameters();
45
46 void MakeAnalysisFillAOD() ;
47
48 void MakeAnalysisFillHistograms() ;
1c5acb87 49
6175da48 50 void Print(const Option_t * opt)const;
521636d2 51
3d5d5078 52
53 // Analysis methods
54
521636d2 55 Bool_t ClusterSelected(AliVCluster* cl, TLorentzVector mom) ;
1c5acb87 56
3d5d5078 57 void FillAcceptanceHistograms();
58
3d5d5078 59 void FillShowerShapeHistograms( AliVCluster* cluster, const Int_t mcTag) ;
60
61 void SwitchOnFillShowerShapeHistograms() { fFillSSHistograms = kTRUE ; }
62 void SwitchOffFillShowerShapeHistograms() { fFillSSHistograms = kFALSE ; }
63
64
6175da48 65 // Analysis parameters setters getters
c4a7d28a 66
521636d2 67 TString GetCalorimeter() const { return fCalorimeter ; }
68 void SetCalorimeter(TString & det) { fCalorimeter = det ; }
69
6175da48 70 // ** Cluster selection methods **
71
c4a7d28a 72 void SetMinDistanceToBadChannel(Float_t m1, Float_t m2, Float_t m3) {
521636d2 73 fMinDist = m1; fMinDist2 = m2; fMinDist3 = m3; }
6175da48 74
c4a7d28a 75 void SetTimeCut(Double_t min, Double_t max) { fTimeCutMin = min;
521636d2 76 fTimeCutMax = max ; }
77 Double_t GetTimeCutMin() const { return fTimeCutMin ; }
78 Double_t GetTimeCutMax() const { return fTimeCutMax ; }
1e86c71e 79
521636d2 80 void SetNCellCut(Int_t n) { fNCellsCut = n ; }
81 Double_t GetNCellCut() const { return fNCellsCut ; }
c4a7d28a 82
83 Bool_t IsTrackMatchRejectionOn() const { return fRejectTrackMatch ; }
84 void SwitchOnTrackMatchRejection() { fRejectTrackMatch = kTRUE ; }
85 void SwitchOffTrackMatchRejection() { fRejectTrackMatch = kFALSE ; }
5812a064 86
f66d95af 87 void FillNOriginHistograms(Int_t n) { fNOriginHistograms = n ;
88 if(n > 14) fNOriginHistograms = 14; }
89 void FillNPrimaryHistograms(Int_t n) { fNPrimaryHistograms= n ;
90 if(n > 7) fNPrimaryHistograms = 7; }
91
3d5d5078 92 // For histograms in arrays, index in the array, corresponding to a particle
c5693f62 93 enum mcTypes { kmcPhoton = 0, kmcPi0Decay = 1, kmcOtherDecay = 2,
94 kmcPi0 = 3, kmcEta = 4, kmcElectron = 5,
95 kmcConversion = 6, kmcOther = 7, kmcAntiNeutron = 8,
96 kmcAntiProton = 9, kmcPrompt = 10, kmcFragmentation = 11,
97 kmcISR = 12, kmcString = 13 };
41121cfe 98
c5693f62 99 enum mcPTypes { kmcPPhoton = 0, kmcPPi0Decay = 1, kmcPOtherDecay = 2, kmcPOther = 3,
100 kmcPPrompt = 4, kmcPFragmentation = 5, kmcPISR = 6 };
f66d95af 101
c5693f62 102 enum mcssTypes { kmcssPhoton = 0, kmcssOther = 1, kmcssPi0 = 2,
103 kmcssEta = 3, kmcssConversion = 4, kmcssElectron = 5 };
3d5d5078 104
1c5acb87 105 private:
106
6175da48 107 TString fCalorimeter ; // Calorimeter where the gamma is searched;
108 Float_t fMinDist ; // Minimal distance to bad channel to accept cluster
109 Float_t fMinDist2; // Cuts on Minimal distance to study acceptance evaluation
110 Float_t fMinDist3; // One more cut on distance used for acceptance-efficiency study
111 Bool_t fRejectTrackMatch ; // If PID on, reject clusters which have an associated TPC track
6175da48 112 Double_t fTimeCutMin ; // Remove clusters/cells with time smaller than this value, in ns
113 Double_t fTimeCutMax ; // Remove clusters/cells with time larger than this value, in ns
114 Int_t fNCellsCut ; // Accept for the analysis clusters with more than fNCellsCut cells
c4a7d28a 115 Bool_t fFillSSHistograms ; // Fill shower shape histograms
f66d95af 116 Int_t fNOriginHistograms; // Fill only NOriginHistograms of the 14 defined types
117 Int_t fNPrimaryHistograms; // Fill only NPrimaryHistograms of the 7 defined types
521636d2 118
2244659d 119 //Histograms
c4a7d28a 120 TH2F * fhNCellsE; //! number of cells in cluster vs E
f66d95af 121 TH2F * fhMaxCellDiffClusterE; //! Fraction of energy carried by cell with maximum energy
f15c25da 122 TH2F * fhTimeE; //! time of cluster vs E
123
20218aea 124 TH1F * fhEPhoton ; //! Number of identified photon vs energy
6175da48 125 TH1F * fhPtPhoton ; //! Number of identified photon vs transerse momentum
126 TH2F * fhPhiPhoton ; //! Azimuthal angle of identified photon vs transerse momentum
127 TH2F * fhEtaPhoton ; //! Pseudorapidity of identified photon vs transerse momentum
128 TH2F * fhEtaPhiPhoton ; //! Pseudorapidity vs Phi of identified photon for transerse momentum > 0.5
129 TH2F * fhEtaPhi05Photon ; //! Pseudorapidity vs Phi of identified photon for transerse momentum < 0.5
123fc3bd 130
521636d2 131 //Shower shape
f66d95af 132
521636d2 133 TH2F * fhDispE; //! cluster dispersion vs E
134 TH2F * fhLam0E; //! cluster lambda0 vs E
135 TH2F * fhLam1E; //! cluster lambda1 vs E
7c65ad18 136
521636d2 137 TH2F * fhDispETRD; //! cluster dispersion vs E, SM covered by TRD
138 TH2F * fhLam0ETRD; //! cluster lambda0 vs E, SM covered by TRD
139 TH2F * fhLam1ETRD; //! cluster lambda1 vs E, SM covered by TRD
7c65ad18 140
521636d2 141 TH2F * fhNCellsLam0LowE; //! number of cells in cluster vs lambda0
142 TH2F * fhNCellsLam1LowE; //! number of cells in cluster vs lambda1
143 TH2F * fhNCellsDispLowE; //! number of cells in cluster vs dispersion
144 TH2F * fhNCellsLam0HighE; //! number of cells in cluster vs lambda0, E>2
145 TH2F * fhNCellsLam1HighE; //! number of cells in cluster vs lambda1, E>2
146 TH2F * fhNCellsDispHighE; //! number of cells in cluster vs dispersion, E>2
147
521636d2 148 TH2F * fhEtaLam0LowE; //! cluster eta vs lambda0, E<2
149 TH2F * fhPhiLam0LowE; //! cluster phi vs lambda0, E<2
150 TH2F * fhEtaLam0HighE; //! cluster eta vs lambda0, E>2
151 TH2F * fhPhiLam0HighE; //! cluster phi vs lambda0, E>2
152 TH2F * fhLam0DispLowE; //! cluster lambda0 vs dispersion, E<2
153 TH2F * fhLam0DispHighE; //! cluster lambda0 vs dispersion, E>2
154 TH2F * fhLam1Lam0LowE; //! cluster lambda1 vs lambda0, E<2
155 TH2F * fhLam1Lam0HighE; //! cluster lambda1 vs lambda0, E>2
156 TH2F * fhDispLam1LowE; //! cluster disp vs lambda1, E<2
157 TH2F * fhDispLam1HighE; //! cluster disp vs lambda1, E>2
7c65ad18 158
4c8f7c2e 159 //Fill MC dependent histograms, Origin of this cluster is ...
160
5812a064 161 TH2F * fhMCDeltaE[14] ; //! MC-Reco E distribution coming from MC particle
162 TH2F * fhMCDeltaPt[14] ; //! MC-Reco pT distribution coming from MC particle
163 TH2F * fhMC2E[14] ; //! E distribution, Reco vs MC coming from MC particle
164 TH2F * fhMC2Pt[14] ; //! pT distribution, Reco vs MC coming from MC particle
4c8f7c2e 165
5812a064 166 TH1F * fhMCE[14]; //! Number of identified photon vs cluster energy coming from MC particle
167 TH1F * fhMCPt[14]; //! Number of identified photon vs cluster pT coming from MC particle
168 TH2F * fhMCPhi[14]; //! Phi of identified photon coming from MC particle
169 TH2F * fhMCEta[14]; //! eta of identified photon coming from MC particle
3d5d5078 170
5812a064 171 TH1F * fhEPrimMC[7]; //! Number of generated photon vs energy
172 TH1F * fhPtPrimMC[7]; //! Number of generated photon vs pT
173 TH2F * fhPhiPrimMC[7]; //! Phi of generted photon
174 TH2F * fhYPrimMC[7]; //! Rapidity of generated photon
3d5d5078 175
5812a064 176 TH1F * fhEPrimMCAcc[7]; //! Number of generated photon vs energy, in calorimeter acceptance
177 TH1F * fhPtPrimMCAcc[7]; //! Number of generated photon vs pT, in calorimeter acceptance
178 TH2F * fhPhiPrimMCAcc[7]; //! Phi of generted photon, in calorimeter acceptance
179 TH2F * fhYPrimMCAcc[7]; //! Rapidity of generated photon, in calorimeter acceptance
f66d95af 180
521636d2 181 // Shower Shape MC
182
5812a064 183 TH2F * fhMCELambda0[6] ; //! E vs Lambda0 from MC particle
184 TH2F * fhMCELambda1[6] ; //! E vs Lambda1 from MC particle
185 TH2F * fhMCEDispersion[6] ; //! E vs Dispersion from MC particle
f66d95af 186
5812a064 187 TH2F * fhMCPhotonELambda0NoOverlap ; //! E vs Lambda0 from MC photons, no overlap
188 TH2F * fhMCPhotonELambda0TwoOverlap ; //! E vs Lambda0 from MC photons, 2 particles overlap
189 TH2F * fhMCPhotonELambda0NOverlap ; //! E vs Lambda0 from MC photons, N particles overlap
f66d95af 190
191 TH2F * fhMCLambda0vsClusterMaxCellDiffE0[6]; //! Lambda0 vs fraction of energy of max cell for E < 2 GeV
192 TH2F * fhMCLambda0vsClusterMaxCellDiffE2[6]; //! Lambda0 vs fraction of energy of max cell for 2< E < 6 GeV
193 TH2F * fhMCLambda0vsClusterMaxCellDiffE6[6]; //! Lambda0 vs fraction of energy of max cell for E > 6 GeV
194 TH2F * fhMCNCellsvsClusterMaxCellDiffE0[6]; //! NCells vs fraction of energy of max cell for E < 2
195 TH2F * fhMCNCellsvsClusterMaxCellDiffE2[6]; //! NCells vs fraction of energy of max cell for 2 < E < 6 GeV
196 TH2F * fhMCNCellsvsClusterMaxCellDiffE6[6]; //! NCells vs fraction of energy of max cell for E > 6
197 TH2F * fhMCNCellsE[6]; //! NCells per cluster vs energy
198 TH2F * fhMCMaxCellDiffClusterE[6]; //! Fraction of energy carried by cell with maximum energy
199
3d5d5078 200 //Embedding
5812a064 201 TH2F * fhEmbeddedSignalFractionEnergy ; //! Fraction of photon energy of embedded signal vs cluster energy
3d5d5078 202
5812a064 203 TH2F * fhEmbedPhotonELambda0FullSignal ; //! Lambda0 vs E for embedded photons with more than 90% of the cluster energy
204 TH2F * fhEmbedPhotonELambda0MostlySignal ; //! Lambda0 vs E for embedded photons with 90%<fraction<50%
205 TH2F * fhEmbedPhotonELambda0MostlyBkg ; //! Lambda0 vs E for embedded photons with 50%<fraction<10%
206 TH2F * fhEmbedPhotonELambda0FullBkg ; //! Lambda0 vs E for embedded photons with less than 10% of the cluster energy
3d5d5078 207
5812a064 208 TH2F * fhEmbedPi0ELambda0FullSignal ; //! Lambda0 vs E for embedded photons with more than 90% of the cluster energy
209 TH2F * fhEmbedPi0ELambda0MostlySignal ; //! Lambda0 vs E for embedded photons with 90%<fraction<50%
210 TH2F * fhEmbedPi0ELambda0MostlyBkg ; //! Lambda0 vs E for embedded photons with 50%<fraction<10%
211 TH2F * fhEmbedPi0ELambda0FullBkg ; //! Lambda0 vs E for embedded photons with less than 10% of the cluster energy
3d5d5078 212
c5693f62 213 AliAnaPhoton(const AliAnaPhoton & g) ; // cpy ctor
214 AliAnaPhoton & operator = (const AliAnaPhoton & g) ; // cpy assignment
215
216 ClassDef(AliAnaPhoton,19)
6639984f 217
1c5acb87 218} ;
219
1c5acb87 220#endif//ALIANAPHOTON_H
221
222
223