]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGGA/CaloTrackCorrelations/AliAnaCalorimeterQA.h
init the pid pointer when accessing checking the track-match, in case it was not...
[u/mrichter/AliRoot.git] / PWGGA / CaloTrackCorrelations / AliAnaCalorimeterQA.h
CommitLineData
9725fd2a 1#ifndef ALIANACALORIMETERQA_H
2#define ALIANACALORIMETERQA_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
9725fd2a 5
6//_________________________________________________________________________
7// Class to check results from simulations or reconstructed real data.
8// Fill few histograms and do some checking plots
9//
2302a644 10//-- Author: Gustavo Conesa (INFN-LNF)
9725fd2a 11
12// --- Root system ---
a5fafd85 13class TH3F;
9725fd2a 14class TH2F;
15class TH1F;
0c1383b5 16class TObjString;
649b825d 17class TObjArray;
9725fd2a 18
19// --- Analysis system ---
649b825d 20class AliVCaloCells;
c8fe2783 21class AliVCaloCluster;
22class AliVTrack;
a5fafd85 23
745913ae 24#include "AliAnaCaloTrackCorrBaseClass.h"
9725fd2a 25
745913ae 26class AliAnaCalorimeterQA : public AliAnaCaloTrackCorrBaseClass {
9725fd2a 27
2302a644 28public:
78219bac 29 AliAnaCalorimeterQA() ; // default ctor
30 virtual ~AliAnaCalorimeterQA() {;} //virtual dtor
c5693f62 31
521636d2 32 // General methods
33
0c1383b5 34 TObjString * GetAnalysisCuts();
521636d2 35
36 TList * GetCreateOutputObjects();
2302a644 37
521636d2 38 void Init();
9725fd2a 39
521636d2 40 void InitParameters();
41
42 void MakeAnalysisFillHistograms() ;
2302a644 43
521636d2 44 void Print(const Option_t * opt) const;
924e319f 45
521636d2 46 // Main methods
9725fd2a 47
c5693f62 48 void BadClusterHistograms(AliVCluster* clus, const TObjArray *caloClusters, AliVCaloCells * cells,
1a83b960 49 const Int_t absIdMax, const Double_t maxCellFraction, const Float_t eCrossFrac,
50 const Double_t tmax, Double_t timeAverages[2]);
1a72f6c5 51
a82b4462 52 void CalculateAverageTime(AliVCluster *clus, AliVCaloCells *cells, Double_t timeAverages[2]);
649b825d 53
54 void CellHistograms(AliVCaloCells * cells);
55
56 void CellInClusterPositionHistograms(AliVCluster* cluster);
57
1a83b960 58 void ClusterAsymmetryHistograms(AliVCluster* clus, const Int_t absIdMax, const Bool_t goodCluster );
649b825d 59
c5693f62 60 void ClusterHistograms(AliVCluster* cluster, const TObjArray *caloClusters, AliVCaloCells * cells,
1a83b960 61 const Int_t absIdMax, const Double_t maxCellFraction, const Float_t eCrossFrac,
62 const Double_t tmax, Double_t timeAverages[2]);
649b825d 63
f3138ecf 64 void ClusterLoopHistograms(const TObjArray * clusters, AliVCaloCells * cells);
649b825d 65
66 Bool_t ClusterMCHistograms(const TLorentzVector mom,const Bool_t matched,
67 const Int_t * labels, const Int_t nLabels, Int_t & pdg );
68
69 void ClusterMatchedWithTrackHistograms(AliVCluster* clus, TLorentzVector mom,
70 const Bool_t mcOK, const Int_t pdg);
71
521636d2 72 void Correlate();
649b825d 73
1a72f6c5 74 Float_t GetECross(const Int_t absId, AliVCaloCells* cells);
75
649b825d 76 void InvariantMassHistograms(const Int_t iclus, const TLorentzVector mom, const Int_t nModule,
c5693f62 77 const TObjArray* caloClusters, AliVCaloCells * cells);
521636d2 78
a82b4462 79 Bool_t IsGoodCluster(const Int_t absIdMax, AliVCaloCells *cells);
649b825d 80
81 void MCHistograms();
9e9f04cb 82
521636d2 83 void MCHistograms(const TLorentzVector mom, const Int_t pdg);
dbba06ca 84
649b825d 85 void WeightHistograms(AliVCluster *clus, AliVCaloCells* cells);
86
521636d2 87 // Setters and Getters
88
55c05f8c 89
521636d2 90 Float_t GetEMCALCellAmpMin() const { return fEMCALCellAmpMin ; }
91 void SetEMCALCellAmpMin(Float_t amp) { fEMCALCellAmpMin = amp ; }
a6f26052 92
521636d2 93 Float_t GetPHOSCellAmpMin() const { return fPHOSCellAmpMin ; }
94 void SetPHOSCellAmpMin (Float_t amp) { fPHOSCellAmpMin = amp ; }
95
96 TString GetCalorimeter() const { return fCalorimeter ; }
97 void SetCalorimeter(TString calo) { fCalorimeter = calo ; }
f16a7271 98
521636d2 99 void SetNumberOfModules(Int_t nmod) { fNModules = nmod ; }
55c05f8c 100
521636d2 101 Double_t GetTimeCutMin() const { return fTimeCutMin ; }
102 Double_t GetTimeCutMax() const { return fTimeCutMax ; }
103 void SetTimeCut(Double_t min, Double_t max) {
104 fTimeCutMin = min ; fTimeCutMax = max ; }
649b825d 105
521636d2 106 // Histogram Switchs
2302a644 107
521636d2 108 void SwitchOnFillAllPositionHistogram() { fFillAllPosHisto = kTRUE ; }
109 void SwitchOffFillAllPositionHistogram() { fFillAllPosHisto = kFALSE ; }
2302a644 110
521636d2 111 void SwitchOnFillAllPositionHistogram2() { fFillAllPosHisto2 = kTRUE ; }
112 void SwitchOffFillAllPositionHistogram2() { fFillAllPosHisto2 = kFALSE ; }
2302a644 113
521636d2 114 void SwitchOnFillAllTH12Histogram() { fFillAllTH12 = kTRUE ; }
115 void SwitchOffFillAllTH12Histogram() { fFillAllTH12 = kFALSE ; }
2302a644 116
521636d2 117 void SwitchOnFillAllTH3Histogram() { fFillAllTH3 = kTRUE ; }
118 void SwitchOffFillAllTH3Histogram() { fFillAllTH3 = kFALSE ; }
2302a644 119
521636d2 120 void SwitchOnFillAllTrackMatchingHistogram() { fFillAllTMHisto = kTRUE ; }
121 void SwitchOffFillAllTrackMatchingHistogram() { fFillAllTMHisto = kFALSE ; }
b8187de4 122
521636d2 123 void SwitchOnFillAllPi0Histogram() { fFillAllPi0Histo = kTRUE ; }
124 void SwitchOffFillAllPi0Histogram() { fFillAllPi0Histo = kFALSE ; }
125
126 void SwitchOnCorrelation() { fCorrelate = kTRUE ; }
127 void SwitchOffCorrelation() { fCorrelate = kFALSE ; }
649b825d 128
129 void SwitchOnStudyBadClusters() { fStudyBadClusters = kTRUE ; }
130 void SwitchOffStudyBadClusters() { fStudyBadClusters = kFALSE ; }
131
132 void SwitchOnStudyClustersAsymmetry() { fStudyClustersAsymmetry = kTRUE ; }
133 void SwitchOffStudyClustersAsymmetry() { fStudyClustersAsymmetry = kFALSE ; }
134
135 void SwitchOnStudyWeight() { fStudyWeight = kTRUE ; }
136 void SwitchOffStudyWeight() { fStudyWeight = kFALSE ; }
137
138
9725fd2a 139 private:
140
521636d2 141 TString fCalorimeter ; // Calorimeter selection
649b825d 142
143 //Switches
521636d2 144 Bool_t fFillAllPosHisto; // Fill all the position related histograms
145 Bool_t fFillAllPosHisto2; // Fill all the position related histograms 2
146 Bool_t fFillAllTH12 ; // Fill simple histograms which information is already in TH3 histograms
147 Bool_t fFillAllTH3 ; // Fill TH3 histograms
148 Bool_t fFillAllTMHisto ; // Fill track matching histograms
1a83b960 149 Bool_t fFillAllPi0Histo ; // Fill invariant mass histograms
521636d2 150 Bool_t fCorrelate ; // Correlate PHOS/EMCAL cells/clusters, also with V0 and track multiplicity
649b825d 151 Bool_t fStudyBadClusters; // Study bad clusters
152 Bool_t fStudyClustersAsymmetry; // Study asymmetry of clusters
153 Bool_t fStudyWeight; // Study the energy weight used in different cluster calculations
154
155 // Parameters
35c71d5c 156 Int_t fNModules ; // Number of EMCAL/PHOS modules
157 Int_t fNRCU ; // Number of EMCAL/PHOS RCU
158 Int_t fNMaxCols ; // Number of EMCAL/PHOS rows
159 Int_t fNMaxRows ; // Number of EMCAL/PHOS columns
649b825d 160
161 //Cuts
521636d2 162 Double_t fTimeCutMin ; // Remove clusters/cells with time smaller than this value, in ns
163 Double_t fTimeCutMax ; // Remove clusters/cells with time larger than this value, in ns
164 Float_t fEMCALCellAmpMin; // amplitude Threshold on emcal cells
165 Float_t fPHOSCellAmpMin ; // amplitude Threshold on phos cells
2302a644 166
521636d2 167 //CaloClusters
168 TH1F * fhE ; //! E distribution, Reco
169 TH1F * fhPt ; //! pT distribution, Reco
170 TH1F * fhPhi; //! phi distribution, Reco
171 TH1F * fhEta; //! eta distribution, Reco
172 TH3F * fhEtaPhiE ; //! eta vs phi vs E, Reco
173 TH1F * fhECharged ; //! E distribution, Reco, matched with track
174 TH1F * fhPtCharged ; //! pT distribution, Reco, matched with track
175 TH1F * fhPhiCharged; //! phi distribution, Reco, matched with track
176 TH1F * fhEtaCharged; //! eta distribution, Reco, matched with track
177 TH3F * fhEtaPhiECharged; //! eta vs phi vs E, Reco, matched with track
521636d2 178
179 TH2F * fhIM; //! cluster pairs invariant mass
521636d2 180 TH2F * fhAsym; //! cluster pairs invariant mass
181
3f5990d6 182 TH2F * fhNCellsPerCluster; //! N cells per cluster vs cluster energy vs eta of cluster
715fd81f 183 TH2F * fhNCellsPerClusterNoCut; //! N cells per cluster vs cluster energy vs eta of cluster
a82b4462 184
521636d2 185 TH1F * fhNClusters; //! Number of clusters
186
187 TH2F * fhClusterTimeEnergy; //! Cluster Time vs Energy
924e319f 188 TH2F * fhCellTimeSpreadRespectToCellMax; //! Difference of the time of cell with maximum dep energy and the rest of cells
521636d2 189 TH1F * fhCellIdCellLargeTimeSpread; //! Cells with large time respect to max (diff > 100 ns)
e1e62b89 190 TH2F * fhClusterPairDiffTimeE; //! Pair of clusters time difference vs E
649b825d 191
e1e62b89 192 TH2F * fhClusterMaxCellCloseCellRatio; //! Ratio between max cell energy and cell energy of the same cluster
649b825d 193 TH2F * fhClusterMaxCellCloseCellDiff; //! Difference between max cell energy and cell energy of the same cluster
715fd81f 194 TH2F * fhClusterMaxCellDiff; //! Difference between cluster energy and energy of cell with more energy, good clusters only
195 TH2F * fhClusterMaxCellDiffNoCut; //! Difference between cluster energy and energy of cell with more energy, no bad cluster rejection
715fd81f 196
649b825d 197 TH2F * fhClusterMaxCellDiffAverageTime; //! Difference between cluster average time and time of cell with more energy
649b825d 198 TH2F * fhClusterMaxCellDiffWeightedTime; //! Difference between cluster weighted time and time of cell with more energy
1a72f6c5 199 TH2F * fhClusterMaxCellECross; //! 1 - Energy in cross around max energy cell / max energy cell vs cluster energy, good clusters
e1e62b89 200
649b825d 201 TH2F * fhLambda0; //! cluster Lambda0 vs Energy
202 TH2F * fhLambda1; //! cluster Lambda1 vs Energy
203 TH2F * fhDispersion; //! cluster Dispersion vs Energy
204
205 // Bad clusters histograms
e1e62b89 206 TH1F * fhBadClusterEnergy; //! energy of bad cluster
207 TH2F * fhBadClusterTimeEnergy; //! Time Max cell of bad cluster
208 TH2F * fhBadClusterPairDiffTimeE; //! Pair of clusters time difference vs E, bad cluster
649b825d 209 TH2F * fhBadCellTimeSpreadRespectToCellMax; //! Difference of the time of cell with maximum dep energy and the rest of cells for bad clusters
210
521636d2 211 TH2F * fhBadClusterMaxCellCloseCellRatio; //! Ratio between max cell energy and cell energy of the same cluster for bad clusters
4c8f7c2e 212 TH2F * fhBadClusterMaxCellCloseCellDiff ; //! Difference between max cell energy and cell energy of the same cluster for bad clusters
e1e62b89 213 TH2F * fhBadClusterMaxCellDiff; //! Difference between cluster energy and energy of cell with more energy
649b825d 214
215 TH2F * fhBadClusterMaxCellDiffAverageTime; //! Difference between cluster average time and time of cell with more energy
649b825d 216 TH2F * fhBadClusterMaxCellDiffWeightedTime; //! Difference between cluster weighted time and time of cell with more energy
1a72f6c5 217 TH2F * fhBadClusterMaxCellECross; //! 1 - Energy in cross around max energy cell / max energy cell vs cluster energy, bad clusters
4c8f7c2e 218
39de6caa 219 // Cluster cell size
649b825d 220 TH2F * fhDeltaIEtaDeltaIPhiE0[2]; //! Difference between max cell index and farthest cell, eta vs phi, E < 2 GeV, with and without matching;
221 TH2F * fhDeltaIEtaDeltaIPhiE2[2]; //! Difference between max cell index and farthest cell, eta vs phi, 2 < E < 6 GeV, with and without matching;
222 TH2F * fhDeltaIEtaDeltaIPhiE6[2]; //! Difference between max cell index and farthest cell, eta vs phi, E > 6 GeV, with and without matching;
223 TH2F * fhDeltaIA[2]; //! Cluster "asymmetry" in cell terms vs E, with and without matching
224 TH2F * fhDeltaIAL0[2]; //! Cluster "asymmetry" in cell units vs Lambda0 for E > 0.5 GeV, n cells in cluster > 3, with and without matching
225 TH2F * fhDeltaIAL1[2]; //! Cluster "asymmetry" in cell units vs Lambda1 for E > 0.5 GeV, n cells in cluster > 3, with and without matching
226 TH2F * fhDeltaIANCells[2] ; //! Cluster "asymmetry" in cell units vs number of cells in cluster for E > 0.5, with and without matching
1a83b960 227 TH2F * fhDeltaIAMC[4]; //! Cluster "asymmetry" in cell terms vs E, from MC photon, electron, conversion or hadron.
228 TH2F * fhBadClusterDeltaIEtaDeltaIPhiE0; //! Difference between max cell index and farthest cell, eta vs phi, E < 2 GeV, with and without matching; bad clusters.
229 TH2F * fhBadClusterDeltaIEtaDeltaIPhiE2; //! Difference between max cell index and farthest cell, eta vs phi, 2 < E < 6 GeV, with and without matching; bad clusters.
230 TH2F * fhBadClusterDeltaIEtaDeltaIPhiE6; //! Difference between max cell index and farthest cell, eta vs phi, E > 6 GeV, with and without matching; bad clusters.
231 TH2F * fhBadClusterDeltaIA; //! Cluster "asymmetry" in cell terms vs E, with and without matching; bad clusters.
232
39de6caa 233 //Cluster/cell Position
521636d2 234 TH2F * fhRNCells ; //! R=sqrt(x^2+y^2) (cm) cluster distribution vs N cells in cluster
235 TH2F * fhXNCells ; //! X (cm) cluster distribution vs N cells in cluster
236 TH2F * fhYNCells ; //! Y (cm) cluster distribution vs N cells in cluster
237 TH2F * fhZNCells ; //! Z (cm) cluster distribution vs N cells in cluster
0866d83a 238
521636d2 239 TH2F * fhRE ; //! R=sqrt(x^2+y^2) (cm) cluster distribution vs cluster energy
240 TH2F * fhXE ; //! X (cm) cluster distribution vs cluster energy
241 TH2F * fhYE ; //! Y (cm) cluster distribution vs cluster energy
242 TH2F * fhZE ; //! Z (cm) cluster distribution vs cluster energy
243 TH3F * fhXYZ; //! cluster X vs Y vs Z (cm)
0866d83a 244
521636d2 245 TH2F * fhRCellE ; //! R=sqrt(x^2+y^2) (cm) cell distribution vs cell energy
246 TH2F * fhXCellE ; //! X (cm) cell distribution vs cell energy
247 TH2F * fhYCellE ; //! Y (cm) cell distribution vs cell energy
248 TH2F * fhZCellE ; //! Z (cm) cell distribution vs cell energy
249 TH3F * fhXYZCell; //! cell X vs Y vs Z (cm)
250
251 TH2F * fhDeltaCellClusterRNCells ; //! R cluster - R cell distribution (cm) vs N cells in cluster
252 TH2F * fhDeltaCellClusterXNCells ; //! X cluster - X cell distribution (cm) vs N cells in cluster
253 TH2F * fhDeltaCellClusterYNCells ; //! Y cluster - Y cell distribution (cm) vs N cells in cluster
254 TH2F * fhDeltaCellClusterZNCells ; //! Z cluster - Z cell distribution (cm) vs N cells in cluster
0866d83a 255
521636d2 256 TH2F * fhDeltaCellClusterRE ; //! R cluster - R cell distribution (cm) vs cluster energy
257 TH2F * fhDeltaCellClusterXE ; //! X cluster - X cell distribution (cm) vs cluster energy
258 TH2F * fhDeltaCellClusterYE ; //! Y cluster - Y cell distribution (cm) vs cluster energy
259 TH2F * fhDeltaCellClusterZE ; //! Z cluster - Z cell distribution (cm) vs cluster energy
0866d83a 260
9725fd2a 261 //Calo Cells
521636d2 262 TH1F * fhNCells; //! Number of towers/crystals with signal
263 TH1F * fhAmplitude; //! Amplitude measured in towers/crystals
264 TH2F * fhAmpId; //! Amplitude measured in towers/crystals vs id of tower.
265 TH3F * fhEtaPhiAmp; //! eta vs phi vs amplitude, cells
a82b4462 266
521636d2 267 TH1F * fhTime; //! Time measured in towers/crystals
1a72f6c5 268 TH2F * fhTimeVz; //! Time measured in towers/crystals vs vertex z component, for E > 0.5
521636d2 269 TH2F * fhTimeId; //! Time vs Absolute cell Id
270 TH2F * fhTimeAmp; //! Time vs Amplitude
2302a644 271
1a72f6c5 272 TH2F * fhCellECross; //! 1 - Energy in cross around cell / cell energy
273
a0bb4dc0 274 //Calorimeters Correlation
521636d2 275 TH2F * fhCaloCorrNClusters; //! EMCAL vs PHOS, number of clusters
276 TH2F * fhCaloCorrEClusters; //! EMCAL vs PHOS, total measured cluster energy
277 TH2F * fhCaloCorrNCells; //! EMCAL vs PHOS, number of cells
278 TH2F * fhCaloCorrECells; //! EMCAL vs PHOS, total measured cell energy
a0bb4dc0 279
798a9b04 280 //V0 Correlation
521636d2 281 TH2F * fhCaloV0SCorrNClusters; //! Calo vs V0 signal , number of clusters
282 TH2F * fhCaloV0SCorrEClusters; //! Calo vs V0 signal, total measured cluster energy
283 TH2F * fhCaloV0SCorrNCells; //! Calo vs V0 signal, number of cells
284 TH2F * fhCaloV0SCorrECells; //! Calo vs V0 signal, total measured cell energy
285 TH2F * fhCaloV0MCorrNClusters; //! Calo vs V0 multiplicity , number of clusters
286 TH2F * fhCaloV0MCorrEClusters; //! Calo vs V0 multiplicity, total measured cluster energy
287 TH2F * fhCaloV0MCorrNCells; //! Calo vs V0 multiplicity, number of cells
288 TH2F * fhCaloV0MCorrECells; //! Calo vs V0 multiplicity, total measured cell energy
798a9b04 289
290 //Track Correlation
521636d2 291 TH2F * fhCaloTrackMCorrNClusters; //! Calo vs Track Multiplicity, number of clusters
292 TH2F * fhCaloTrackMCorrEClusters; //! Calo vs Track Multiplicity, total measured cluster energy
293 TH2F * fhCaloTrackMCorrNCells; //! Calo vs V0 Track Multiplicity, number of cells
294 TH2F * fhCaloTrackMCorrECells; //! Calo vs V0 Track Multipliticy, total measured cell energy
798a9b04 295
a5fafd85 296 //Module histograms
649b825d 297 TH2F * fhEMod ; //! cluster E distribution for different module, Reco
298 TH2F * fhAmpMod ; //! cell amplitude distribution for different module, Reco
299 TH2F * fhTimeMod ; //! cell time distribution for different module, Reco
35c71d5c 300 TH2F * fhNClustersMod ; //! Number of clusters for different module, Reco
649b825d 301 TH2F * fhNCellsMod ; //! Number of towers/crystals with signal different module, Reco
521636d2 302 TH2F ** fhNCellsPerClusterMod ; //! N cells per clusters different module, Reco
715fd81f 303 TH2F ** fhNCellsPerClusterModNoCut ; //! N cells per clusters different module, Reco, No cut
649b825d 304 TH2F * fhGridCells ; //! Cells ordered in column/row for different module, Reco
305 TH2F * fhGridCellsE ; //! Cells ordered in column/row for different module, weighted with energy, Reco
306 TH2F * fhGridCellsTime ; //! Cells ordered in column/row for different module, weighted with time, Reco
521636d2 307 TH2F ** fhTimeAmpPerRCU; //! Time vs Amplitude measured in towers/crystals different RCU
35c71d5c 308 TH2F ** fhIMMod; //! cluster pairs invariant mass, different module,
c1ac3823 309
649b825d 310 // Weight studies
311
312 TH2F* fhECellClusterRatio; //! e cell / e cluster vs e cluster
313 TH2F* fhECellClusterLogRatio; //! log (e cell / e cluster) vs e cluster
314 TH2F* fhEMaxCellClusterRatio; //! e max cell / e cluster vs e cluster
315 TH2F* fhEMaxCellClusterLogRatio; //! log (e max cell / e cluster) vs e cluster
316
1a72f6c5 317 TH2F* fhLambda0ForW0[14]; //! L0 for 7 defined w0= 3, 3.5 ... 6
318 //TH2F* fhLambda1ForW0[7]; //! L1 for 7 defined w0= 3, 3.5 ... 6
649b825d 319
1a72f6c5 320 TH2F* fhLambda0ForW0MC[14][5]; //! L0 for 7 defined w0= 3, 3.5 ... 6, depending on the particle of origin
321 //TH2F* fhLambda1ForW0MC[7][5]; //! L1 for 7 defined w0= 3, 3.5 ... 6, depending on the particle of origin
649b825d 322
715fd81f 323 //Pure MC
35c71d5c 324
c5693f62 325 enum mcTypes {kmcPhoton = 0, kmcPi0 = 1, kmcEta = 2, kmcElectron = 3, kmcNeHadron = 4, kmcChHadron = 5 };
35c71d5c 326
327 TH2F * fhRecoMCE[6][2] ; //! E generated particle vs reconstructed E
649b825d 328 TH2F * fhRecoMCPhi[6][2] ; //! phi generated particle vs reconstructed phi
329 TH2F * fhRecoMCEta[6][2] ; //! eta generated particle vs reconstructed Eta
35c71d5c 330 TH2F * fhRecoMCDeltaE[6][2] ; //! Gen-Reco E generated particle vs reconstructed E
649b825d 331 TH2F * fhRecoMCRatioE[6][2] ; //! Reco/Gen E generated particle vs reconstructed E
35c71d5c 332 TH2F * fhRecoMCDeltaPhi[6][2]; //! Gen-Reco phi generated particle vs reconstructed E
333 TH2F * fhRecoMCDeltaEta[6][2]; //! Gen-Reco eta generated particle vs reconstructed E
334
335 TH1F * fhGenMCE[4] ; //! pt of primary particle
336 TH2F * fhGenMCEtaPhi[4] ; //! eta vs phi of primary particle
337 TH1F * fhGenMCAccE[4] ; //! pt of primary particle, in acceptance
338 TH2F * fhGenMCAccEtaPhi[4] ; //! eta vs phi of primary particle, in acceptance
339
521636d2 340 TH2F * fhEMVxyz ; //! Electromagnetic particle production vertex
341 TH2F * fhEMR ; //! Electromagnetic distance to vertex vs rec energy
342 TH2F * fhHaVxyz ; //! Hadron production vertex
343 TH2F * fhHaR ; //! Hadron distance to vertex vs rec energy
9725fd2a 344
521636d2 345 //Histograms for MC track-matching
3bfc4732 346 TH2F * fh1pOverE; //! p/E for track-cluster matches
347 TH1F * fh1dR; //! distance between projected track and cluster
348 TH2F * fh2EledEdx; //! dE/dx vs. momentum for electron candidates
349 TH2F * fh2MatchdEdx; //! dE/dx vs. momentum for all matches
350
351 TH2F * fhMCEle1pOverE; //! p/E for track-cluster matches, MC electrons
352 TH1F * fhMCEle1dR; //! distance between projected track and cluster, MC electrons
353 TH2F * fhMCEle2MatchdEdx; //! dE/dx vs. momentum for all matches, MC electrons
354
355 TH2F * fhMCChHad1pOverE; //! p/E for track-cluster matches, MC charged hadrons
356 TH1F * fhMCChHad1dR; //! distance between projected track and cluster, MC charged hadrons
357 TH2F * fhMCChHad2MatchdEdx; //! dE/dx vs. momentum for all matches, MC charged
358
359 TH2F * fhMCNeutral1pOverE; //! p/E for track-cluster matches, MC neutral
360 TH1F * fhMCNeutral1dR; //! distance between projected track and cluster, MC neutral
361 TH2F * fhMCNeutral2MatchdEdx; //! dE/dx vs. momentum for all matches, MC neutral
362
363 TH2F * fh1pOverER02; //! p/E for track-cluster matches, dR > 0.2
364 TH2F * fhMCEle1pOverER02; //! p/E for track-cluster matches, dR > 0.2, MC electrons
365 TH2F * fhMCChHad1pOverER02; //! p/E for track-cluster matches, dR > 0.2, MC charged hadrons
366 TH2F * fhMCNeutral1pOverER02; //! p/E for track-cluster matches, dR > 0.2, MC neutral
06e5656a 367
1a83b960 368 AliAnaCalorimeterQA & operator = (const AliAnaCalorimeterQA & qa) ;//cpy assignment
369 AliAnaCalorimeterQA( const AliAnaCalorimeterQA & qa) ; // cpy ctor
c5693f62 370
1a83b960 371 ClassDef(AliAnaCalorimeterQA,22)
9725fd2a 372} ;
373
374
375#endif //ALIANACALORIMETERQA_H
376
377
378