]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGGA/CaloTrackCorrelations/AliAnaCalorimeterQA.h
Merge branch 'TPCdev' of https://git.cern.ch/reps/AliRoot into TPCdev
[u/mrichter/AliRoot.git] / PWGGA / CaloTrackCorrelations / AliAnaCalorimeterQA.h
CommitLineData
9725fd2a 1#ifndef ALIANACALORIMETERQA_H
2#define ALIANACALORIMETERQA_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
9725fd2a 5
6//_________________________________________________________________________
7// Class to check results from simulations or reconstructed real data.
8// Fill few histograms and do some checking plots
9//
2302a644 10//-- Author: Gustavo Conesa (INFN-LNF)
9725fd2a 11
12// --- Root system ---
a5fafd85 13class TH3F;
9725fd2a 14class TH2F;
15class TH1F;
0c1383b5 16class TObjString;
649b825d 17class TObjArray;
9725fd2a 18
19// --- Analysis system ---
649b825d 20class AliVCaloCells;
c8fe2783 21class AliVCaloCluster;
22class AliVTrack;
a5fafd85 23
745913ae 24#include "AliAnaCaloTrackCorrBaseClass.h"
9725fd2a 25
745913ae 26class AliAnaCalorimeterQA : public AliAnaCaloTrackCorrBaseClass {
9725fd2a 27
2302a644 28public:
78219bac 29 AliAnaCalorimeterQA() ; // default ctor
30 virtual ~AliAnaCalorimeterQA() {;} //virtual dtor
c5693f62 31
521636d2 32 // General methods
33
0c1383b5 34 TObjString * GetAnalysisCuts();
521636d2 35
36 TList * GetCreateOutputObjects();
2302a644 37
521636d2 38 void Init();
9725fd2a 39
521636d2 40 void InitParameters();
41
42 void MakeAnalysisFillHistograms() ;
2302a644 43
521636d2 44 void Print(const Option_t * opt) const;
924e319f 45
521636d2 46 // Main methods
9725fd2a 47
b94e038e 48 void BadClusterHistograms(AliVCluster* clus, const TObjArray *caloClusters, AliVCaloCells * cells,
45769d5b 49 Int_t absIdMax, Double_t maxCellFraction, Float_t eCrossFrac, Double_t tmax);
1a72f6c5 50
a82b4462 51 void CalculateAverageTime(AliVCluster *clus, AliVCaloCells *cells, Double_t timeAverages[2]);
649b825d 52
53 void CellHistograms(AliVCaloCells * cells);
54
55 void CellInClusterPositionHistograms(AliVCluster* cluster);
56
b94e038e 57 void ClusterAsymmetryHistograms(AliVCluster* clus, Int_t absIdMax, const Bool_t goodCluster );
649b825d 58
c5693f62 59 void ClusterHistograms(AliVCluster* cluster, const TObjArray *caloClusters, AliVCaloCells * cells,
45769d5b 60 Int_t absIdMax, Double_t maxCellFraction, Float_t eCrossFrac, Double_t tmax);
649b825d 61
f3138ecf 62 void ClusterLoopHistograms(const TObjArray * clusters, AliVCaloCells * cells);
649b825d 63
b94e038e 64 Bool_t ClusterMCHistograms(TLorentzVector mom, Bool_t matched,
65 const Int_t * labels, Int_t nLabels, Int_t & pdg );
649b825d 66
67 void ClusterMatchedWithTrackHistograms(AliVCluster* clus, TLorentzVector mom,
b94e038e 68 Bool_t mcOK, Int_t pdg);
649b825d 69
521636d2 70 void Correlate();
649b825d 71
b94e038e 72 void ExoticHistograms(Int_t absIdMax, Float_t ampMax,
f1538a5f 73 AliVCluster *clus, AliVCaloCells* cells);
74
b94e038e 75 Float_t GetECross(Int_t absId, AliVCaloCells* cells,Float_t dtcut = 10000);
1a72f6c5 76
b94e038e 77 void InvariantMassHistograms(Int_t iclus, TLorentzVector mom, Int_t nModule,
c5693f62 78 const TObjArray* caloClusters, AliVCaloCells * cells);
521636d2 79
b94e038e 80 Bool_t IsGoodCluster(Int_t absIdMax, AliVCaloCells *cells);
649b825d 81
82 void MCHistograms();
9e9f04cb 83
b94e038e 84 void MCHistograms(const TLorentzVector mom, Int_t pdg);
dbba06ca 85
649b825d 86 void WeightHistograms(AliVCluster *clus, AliVCaloCells* cells);
87
521636d2 88 // Setters and Getters
89
55c05f8c 90
521636d2 91 Float_t GetEMCALCellAmpMin() const { return fEMCALCellAmpMin ; }
92 void SetEMCALCellAmpMin(Float_t amp) { fEMCALCellAmpMin = amp ; }
a6f26052 93
521636d2 94 Float_t GetPHOSCellAmpMin() const { return fPHOSCellAmpMin ; }
95 void SetPHOSCellAmpMin (Float_t amp) { fPHOSCellAmpMin = amp ; }
07e4c878 96
97 Float_t GetInvMassMinECut() const { return fMinInvMassECut ; }
98 void SetInvMassMinECut(Float_t cut) { fMinInvMassECut = cut ; }
99
521636d2 100 TString GetCalorimeter() const { return fCalorimeter ; }
101 void SetCalorimeter(TString calo) { fCalorimeter = calo ; }
55c05f8c 102
521636d2 103 Double_t GetTimeCutMin() const { return fTimeCutMin ; }
104 Double_t GetTimeCutMax() const { return fTimeCutMax ; }
105 void SetTimeCut(Double_t min, Double_t max) {
106 fTimeCutMin = min ; fTimeCutMax = max ; }
649b825d 107
521636d2 108 // Histogram Switchs
2302a644 109
e6fec6f5 110 void SwitchOnFillAllCellTimeHisto() { fFillAllCellTimeHisto = kTRUE ; }
111 void SwitchOffFillAllCellTimeHisto() { fFillAllCellTimeHisto = kFALSE ; }
112
521636d2 113 void SwitchOnFillAllPositionHistogram() { fFillAllPosHisto = kTRUE ; }
114 void SwitchOffFillAllPositionHistogram() { fFillAllPosHisto = kFALSE ; }
2302a644 115
521636d2 116 void SwitchOnFillAllPositionHistogram2() { fFillAllPosHisto2 = kTRUE ; }
117 void SwitchOffFillAllPositionHistogram2() { fFillAllPosHisto2 = kFALSE ; }
2302a644 118
521636d2 119 void SwitchOnFillAllTH3Histogram() { fFillAllTH3 = kTRUE ; }
120 void SwitchOffFillAllTH3Histogram() { fFillAllTH3 = kFALSE ; }
2302a644 121
521636d2 122 void SwitchOnFillAllTrackMatchingHistogram() { fFillAllTMHisto = kTRUE ; }
123 void SwitchOffFillAllTrackMatchingHistogram() { fFillAllTMHisto = kFALSE ; }
b8187de4 124
521636d2 125 void SwitchOnFillAllPi0Histogram() { fFillAllPi0Histo = kTRUE ; }
126 void SwitchOffFillAllPi0Histogram() { fFillAllPi0Histo = kFALSE ; }
127
128 void SwitchOnCorrelation() { fCorrelate = kTRUE ; }
129 void SwitchOffCorrelation() { fCorrelate = kFALSE ; }
649b825d 130
131 void SwitchOnStudyBadClusters() { fStudyBadClusters = kTRUE ; }
132 void SwitchOffStudyBadClusters() { fStudyBadClusters = kFALSE ; }
133
134 void SwitchOnStudyClustersAsymmetry() { fStudyClustersAsymmetry = kTRUE ; }
135 void SwitchOffStudyClustersAsymmetry() { fStudyClustersAsymmetry = kFALSE ; }
136
137 void SwitchOnStudyWeight() { fStudyWeight = kTRUE ; }
138 void SwitchOffStudyWeight() { fStudyWeight = kFALSE ; }
f1538a5f 139
140 void SwitchOnStudyExotic() { fStudyExotic = kTRUE ; }
141 void SwitchOffStudyExotic() { fStudyExotic = kFALSE ; }
142
143 void SetNECrossCuts(Int_t n) { fExoNECrossCuts = n ; }
144 void SetNDTimeCuts (Int_t n) { fExoNDTimeCuts = n ; }
145
146 void SetExoECrossCuts (Int_t i, Float_t c) { if (i<fExoNECrossCuts) fExoECrossCuts[i] = c ; }
147 void SetExoDTimeCuts (Int_t i, Float_t c) { if (i<fExoNDTimeCuts ) fExoDTimeCuts [i] = c ; }
649b825d 148
9725fd2a 149 private:
150
521636d2 151 TString fCalorimeter ; // Calorimeter selection
649b825d 152
153 //Switches
e6fec6f5 154 Bool_t fFillAllCellTimeHisto; // Fill all cell time histo
521636d2 155 Bool_t fFillAllPosHisto; // Fill all the position related histograms
156 Bool_t fFillAllPosHisto2; // Fill all the position related histograms 2
521636d2 157 Bool_t fFillAllTH3 ; // Fill TH3 histograms
158 Bool_t fFillAllTMHisto ; // Fill track matching histograms
1a83b960 159 Bool_t fFillAllPi0Histo ; // Fill invariant mass histograms
521636d2 160 Bool_t fCorrelate ; // Correlate PHOS/EMCAL cells/clusters, also with V0 and track multiplicity
649b825d 161 Bool_t fStudyBadClusters; // Study bad clusters
162 Bool_t fStudyClustersAsymmetry; // Study asymmetry of clusters
f1538a5f 163 Bool_t fStudyExotic; // Study the exotic cluster for different cuts
649b825d 164 Bool_t fStudyWeight; // Study the energy weight used in different cluster calculations
165
166 // Parameters
35c71d5c 167 Int_t fNModules ; // Number of EMCAL/PHOS modules
168 Int_t fNRCU ; // Number of EMCAL/PHOS RCU
169 Int_t fNMaxCols ; // Number of EMCAL/PHOS rows
170 Int_t fNMaxRows ; // Number of EMCAL/PHOS columns
649b825d 171
172 //Cuts
521636d2 173 Double_t fTimeCutMin ; // Remove clusters/cells with time smaller than this value, in ns
174 Double_t fTimeCutMax ; // Remove clusters/cells with time larger than this value, in ns
701cbf54 175 Float_t fCellAmpMin; // amplitude Threshold on calorimeter cells, set at execution time
521636d2 176 Float_t fEMCALCellAmpMin; // amplitude Threshold on emcal cells
177 Float_t fPHOSCellAmpMin ; // amplitude Threshold on phos cells
2302a644 178
07e4c878 179 Float_t fMinInvMassECut; // Minimum energy cut value for clusters entering the invariant mass calculation
180
f1538a5f 181 // Exotic studies
182 Float_t fExoNECrossCuts ; // Number of ecross cuts
183 Float_t fExoECrossCuts[10]; // List of ecross cuts
184 Float_t fExoNDTimeCuts ; // Number of time cuts
185 Float_t fExoDTimeCuts[5] ; // List of time cuts
186
521636d2 187 //CaloClusters
188 TH1F * fhE ; //! E distribution, Reco
189 TH1F * fhPt ; //! pT distribution, Reco
190 TH1F * fhPhi; //! phi distribution, Reco
191 TH1F * fhEta; //! eta distribution, Reco
192 TH3F * fhEtaPhiE ; //! eta vs phi vs E, Reco
193 TH1F * fhECharged ; //! E distribution, Reco, matched with track
194 TH1F * fhPtCharged ; //! pT distribution, Reco, matched with track
195 TH1F * fhPhiCharged; //! phi distribution, Reco, matched with track
196 TH1F * fhEtaCharged; //! eta distribution, Reco, matched with track
197 TH3F * fhEtaPhiECharged; //! eta vs phi vs E, Reco, matched with track
521636d2 198
199 TH2F * fhIM; //! cluster pairs invariant mass
521636d2 200 TH2F * fhAsym; //! cluster pairs invariant mass
201
3f5990d6 202 TH2F * fhNCellsPerCluster; //! N cells per cluster vs cluster energy vs eta of cluster
715fd81f 203 TH2F * fhNCellsPerClusterNoCut; //! N cells per cluster vs cluster energy vs eta of cluster
a82b4462 204
521636d2 205 TH1F * fhNClusters; //! Number of clusters
206
207 TH2F * fhClusterTimeEnergy; //! Cluster Time vs Energy
924e319f 208 TH2F * fhCellTimeSpreadRespectToCellMax; //! Difference of the time of cell with maximum dep energy and the rest of cells
521636d2 209 TH1F * fhCellIdCellLargeTimeSpread; //! Cells with large time respect to max (diff > 100 ns)
e1e62b89 210 TH2F * fhClusterPairDiffTimeE; //! Pair of clusters time difference vs E
649b825d 211
e1e62b89 212 TH2F * fhClusterMaxCellCloseCellRatio; //! Ratio between max cell energy and cell energy of the same cluster
649b825d 213 TH2F * fhClusterMaxCellCloseCellDiff; //! Difference between max cell energy and cell energy of the same cluster
715fd81f 214 TH2F * fhClusterMaxCellDiff; //! Difference between cluster energy and energy of cell with more energy, good clusters only
215 TH2F * fhClusterMaxCellDiffNoCut; //! Difference between cluster energy and energy of cell with more energy, no bad cluster rejection
715fd81f 216
649b825d 217 TH2F * fhClusterMaxCellDiffAverageTime; //! Difference between cluster average time and time of cell with more energy
649b825d 218 TH2F * fhClusterMaxCellDiffWeightedTime; //! Difference between cluster weighted time and time of cell with more energy
1a72f6c5 219 TH2F * fhClusterMaxCellECross; //! 1 - Energy in cross around max energy cell / max energy cell vs cluster energy, good clusters
e1e62b89 220
649b825d 221 TH2F * fhLambda0; //! cluster Lambda0 vs Energy
222 TH2F * fhLambda1; //! cluster Lambda1 vs Energy
223 TH2F * fhDispersion; //! cluster Dispersion vs Energy
224
225 // Bad clusters histograms
e1e62b89 226 TH1F * fhBadClusterEnergy; //! energy of bad cluster
227 TH2F * fhBadClusterTimeEnergy; //! Time Max cell of bad cluster
228 TH2F * fhBadClusterPairDiffTimeE; //! Pair of clusters time difference vs E, bad cluster
649b825d 229 TH2F * fhBadCellTimeSpreadRespectToCellMax; //! Difference of the time of cell with maximum dep energy and the rest of cells for bad clusters
230
521636d2 231 TH2F * fhBadClusterMaxCellCloseCellRatio; //! Ratio between max cell energy and cell energy of the same cluster for bad clusters
4c8f7c2e 232 TH2F * fhBadClusterMaxCellCloseCellDiff ; //! Difference between max cell energy and cell energy of the same cluster for bad clusters
e1e62b89 233 TH2F * fhBadClusterMaxCellDiff; //! Difference between cluster energy and energy of cell with more energy
649b825d 234
235 TH2F * fhBadClusterMaxCellDiffAverageTime; //! Difference between cluster average time and time of cell with more energy
649b825d 236 TH2F * fhBadClusterMaxCellDiffWeightedTime; //! Difference between cluster weighted time and time of cell with more energy
1a72f6c5 237 TH2F * fhBadClusterMaxCellECross; //! 1 - Energy in cross around max energy cell / max energy cell vs cluster energy, bad clusters
4c8f7c2e 238
39de6caa 239 // Cluster cell size
649b825d 240 TH2F * fhDeltaIEtaDeltaIPhiE0[2]; //! Difference between max cell index and farthest cell, eta vs phi, E < 2 GeV, with and without matching;
241 TH2F * fhDeltaIEtaDeltaIPhiE2[2]; //! Difference between max cell index and farthest cell, eta vs phi, 2 < E < 6 GeV, with and without matching;
242 TH2F * fhDeltaIEtaDeltaIPhiE6[2]; //! Difference between max cell index and farthest cell, eta vs phi, E > 6 GeV, with and without matching;
243 TH2F * fhDeltaIA[2]; //! Cluster "asymmetry" in cell terms vs E, with and without matching
244 TH2F * fhDeltaIAL0[2]; //! Cluster "asymmetry" in cell units vs Lambda0 for E > 0.5 GeV, n cells in cluster > 3, with and without matching
245 TH2F * fhDeltaIAL1[2]; //! Cluster "asymmetry" in cell units vs Lambda1 for E > 0.5 GeV, n cells in cluster > 3, with and without matching
246 TH2F * fhDeltaIANCells[2] ; //! Cluster "asymmetry" in cell units vs number of cells in cluster for E > 0.5, with and without matching
1a83b960 247 TH2F * fhDeltaIAMC[4]; //! Cluster "asymmetry" in cell terms vs E, from MC photon, electron, conversion or hadron.
248 TH2F * fhBadClusterDeltaIEtaDeltaIPhiE0; //! Difference between max cell index and farthest cell, eta vs phi, E < 2 GeV, with and without matching; bad clusters.
249 TH2F * fhBadClusterDeltaIEtaDeltaIPhiE2; //! Difference between max cell index and farthest cell, eta vs phi, 2 < E < 6 GeV, with and without matching; bad clusters.
250 TH2F * fhBadClusterDeltaIEtaDeltaIPhiE6; //! Difference between max cell index and farthest cell, eta vs phi, E > 6 GeV, with and without matching; bad clusters.
251 TH2F * fhBadClusterDeltaIA; //! Cluster "asymmetry" in cell terms vs E, with and without matching; bad clusters.
252
39de6caa 253 //Cluster/cell Position
521636d2 254 TH2F * fhRNCells ; //! R=sqrt(x^2+y^2) (cm) cluster distribution vs N cells in cluster
255 TH2F * fhXNCells ; //! X (cm) cluster distribution vs N cells in cluster
256 TH2F * fhYNCells ; //! Y (cm) cluster distribution vs N cells in cluster
257 TH2F * fhZNCells ; //! Z (cm) cluster distribution vs N cells in cluster
0866d83a 258
521636d2 259 TH2F * fhRE ; //! R=sqrt(x^2+y^2) (cm) cluster distribution vs cluster energy
260 TH2F * fhXE ; //! X (cm) cluster distribution vs cluster energy
261 TH2F * fhYE ; //! Y (cm) cluster distribution vs cluster energy
262 TH2F * fhZE ; //! Z (cm) cluster distribution vs cluster energy
263 TH3F * fhXYZ; //! cluster X vs Y vs Z (cm)
0866d83a 264
521636d2 265 TH2F * fhRCellE ; //! R=sqrt(x^2+y^2) (cm) cell distribution vs cell energy
266 TH2F * fhXCellE ; //! X (cm) cell distribution vs cell energy
267 TH2F * fhYCellE ; //! Y (cm) cell distribution vs cell energy
268 TH2F * fhZCellE ; //! Z (cm) cell distribution vs cell energy
269 TH3F * fhXYZCell; //! cell X vs Y vs Z (cm)
270
271 TH2F * fhDeltaCellClusterRNCells ; //! R cluster - R cell distribution (cm) vs N cells in cluster
272 TH2F * fhDeltaCellClusterXNCells ; //! X cluster - X cell distribution (cm) vs N cells in cluster
273 TH2F * fhDeltaCellClusterYNCells ; //! Y cluster - Y cell distribution (cm) vs N cells in cluster
274 TH2F * fhDeltaCellClusterZNCells ; //! Z cluster - Z cell distribution (cm) vs N cells in cluster
0866d83a 275
521636d2 276 TH2F * fhDeltaCellClusterRE ; //! R cluster - R cell distribution (cm) vs cluster energy
277 TH2F * fhDeltaCellClusterXE ; //! X cluster - X cell distribution (cm) vs cluster energy
278 TH2F * fhDeltaCellClusterYE ; //! Y cluster - Y cell distribution (cm) vs cluster energy
279 TH2F * fhDeltaCellClusterZE ; //! Z cluster - Z cell distribution (cm) vs cluster energy
0866d83a 280
9725fd2a 281 //Calo Cells
521636d2 282 TH1F * fhNCells; //! Number of towers/crystals with signal
701cbf54 283 TH1F * fhNCellsCutAmpMin; //! Number of towers/crystals with signal, with min amplitude
521636d2 284 TH1F * fhAmplitude; //! Amplitude measured in towers/crystals
285 TH2F * fhAmpId; //! Amplitude measured in towers/crystals vs id of tower.
286 TH3F * fhEtaPhiAmp; //! eta vs phi vs amplitude, cells
a82b4462 287
521636d2 288 TH1F * fhTime; //! Time measured in towers/crystals
1a72f6c5 289 TH2F * fhTimeVz; //! Time measured in towers/crystals vs vertex z component, for E > 0.5
521636d2 290 TH2F * fhTimeId; //! Time vs Absolute cell Id
291 TH2F * fhTimeAmp; //! Time vs Amplitude
2302a644 292
1a72f6c5 293 TH2F * fhCellECross; //! 1 - Energy in cross around cell / cell energy
294
a0bb4dc0 295 //Calorimeters Correlation
521636d2 296 TH2F * fhCaloCorrNClusters; //! EMCAL vs PHOS, number of clusters
297 TH2F * fhCaloCorrEClusters; //! EMCAL vs PHOS, total measured cluster energy
298 TH2F * fhCaloCorrNCells; //! EMCAL vs PHOS, number of cells
299 TH2F * fhCaloCorrECells; //! EMCAL vs PHOS, total measured cell energy
a0bb4dc0 300
798a9b04 301 //V0 Correlation
521636d2 302 TH2F * fhCaloV0SCorrNClusters; //! Calo vs V0 signal , number of clusters
303 TH2F * fhCaloV0SCorrEClusters; //! Calo vs V0 signal, total measured cluster energy
304 TH2F * fhCaloV0SCorrNCells; //! Calo vs V0 signal, number of cells
305 TH2F * fhCaloV0SCorrECells; //! Calo vs V0 signal, total measured cell energy
306 TH2F * fhCaloV0MCorrNClusters; //! Calo vs V0 multiplicity , number of clusters
307 TH2F * fhCaloV0MCorrEClusters; //! Calo vs V0 multiplicity, total measured cluster energy
308 TH2F * fhCaloV0MCorrNCells; //! Calo vs V0 multiplicity, number of cells
309 TH2F * fhCaloV0MCorrECells; //! Calo vs V0 multiplicity, total measured cell energy
798a9b04 310
311 //Track Correlation
521636d2 312 TH2F * fhCaloTrackMCorrNClusters; //! Calo vs Track Multiplicity, number of clusters
313 TH2F * fhCaloTrackMCorrEClusters; //! Calo vs Track Multiplicity, total measured cluster energy
314 TH2F * fhCaloTrackMCorrNCells; //! Calo vs V0 Track Multiplicity, number of cells
315 TH2F * fhCaloTrackMCorrECells; //! Calo vs V0 Track Multipliticy, total measured cell energy
798a9b04 316
653aed3c 317 // Centrality
318 TH2F * fhCaloCenNClusters; //! Calo vs centrality, number of clusters
319 TH2F * fhCaloCenEClusters; //! Calo vs centrality, total measured cluster energy
320 TH2F * fhCaloCenNCells; //! Calo vs centrality, number of cells
321 TH2F * fhCaloCenECells; //! Calo vs centrality, total measured cell energy
322
323 // Event plane
324 TH2F * fhCaloEvPNClusters; //! Calo vs event plane angle, number of clusters
325 TH2F * fhCaloEvPEClusters; //! Calo vs event plane angle, total measured cluster energy
326 TH2F * fhCaloEvPNCells; //! Calo vs event plane angle, number of cells
327 TH2F * fhCaloEvPECells; //! Calo vs event plane angle, total measured cell energy
328
a5fafd85 329 //Module histograms
649b825d 330 TH2F * fhEMod ; //! cluster E distribution for different module, Reco
331 TH2F * fhAmpMod ; //! cell amplitude distribution for different module, Reco
332 TH2F * fhTimeMod ; //! cell time distribution for different module, Reco
35c71d5c 333 TH2F * fhNClustersMod ; //! Number of clusters for different module, Reco
649b825d 334 TH2F * fhNCellsMod ; //! Number of towers/crystals with signal different module, Reco
521636d2 335 TH2F ** fhNCellsPerClusterMod ; //! N cells per clusters different module, Reco
715fd81f 336 TH2F ** fhNCellsPerClusterModNoCut ; //! N cells per clusters different module, Reco, No cut
649b825d 337 TH2F * fhGridCells ; //! Cells ordered in column/row for different module, Reco
338 TH2F * fhGridCellsE ; //! Cells ordered in column/row for different module, weighted with energy, Reco
339 TH2F * fhGridCellsTime ; //! Cells ordered in column/row for different module, weighted with time, Reco
521636d2 340 TH2F ** fhTimeAmpPerRCU; //! Time vs Amplitude measured in towers/crystals different RCU
35c71d5c 341 TH2F ** fhIMMod; //! cluster pairs invariant mass, different module,
c1ac3823 342
649b825d 343 // Weight studies
344
f1538a5f 345 TH2F * fhECellClusterRatio; //! e cell / e cluster vs e cluster
346 TH2F * fhECellClusterLogRatio; //! log (e cell / e cluster) vs e cluster
347 TH2F * fhEMaxCellClusterRatio; //! e max cell / e cluster vs e cluster
348 TH2F * fhEMaxCellClusterLogRatio; //! log (e max cell / e cluster) vs e cluster
649b825d 349
f1538a5f 350 TH2F * fhLambda0ForW0[14]; //! L0 for 7 defined w0= 3, 3.5 ... 6
351 //TH2F * fhLambda1ForW0[7]; //! L1 for 7 defined w0= 3, 3.5 ... 6
649b825d 352
f1538a5f 353 TH2F * fhLambda0ForW0MC[14][5]; //! L0 for 7 defined w0= 3, 3.5 ... 6, depending on the particle of origin
354 //TH2F * fhLambda1ForW0MC[7][5]; //! L1 for 7 defined w0= 3, 3.5 ... 6, depending on the particle of origin
355
701cbf54 356 TH2F * fhECellTotalRatio; //! e cell / e total vs e total
357 TH2F * fhECellTotalLogRatio; //! log (e cell / e total) vs e total
358 TH2F ** fhECellTotalRatioMod; //! e cell / e total vs e total, per SM
359 TH2F ** fhECellTotalLogRatioMod; //! log (e cell / e total) vs e total, per SM
360
f1538a5f 361 // Exotic studies
362
765206a5 363 TH2F * fhExoNCell [10][5] ; //! Number of cells per cluster for different cuts
364 TH2F * fhExoL0 [10][5] ; //! Long shower shape axis for exotic
365 TH2F * fhExoL1 [10][5] ; //! Short shower shape axis for exotic
366 TH2F * fhExoECross [10][5] ; //! E cross for max cell in cluster, for different cuts
367 TH2F * fhExoTime [10][5] ; //! Time of exotic cluster, for different cuts
368 TH2F * fhExoDTime [10] ; //! Difference in time between cell with max energy and rest of cells for exotic
369 TH2F * fhExoL0NCell[10][5] ; //! Lambda0 vs n cells in cluster for several E cross cuts and cluster with E > 5
370 TH2F * fhExoL0ECross ; //! Lambda0 vs E cross fraction for clusters with E > 5 GeV
371 TH2F * fhExoL1NCell[10][5] ; //! Lambda1 vs n cells in cluster for several E cross cuts and cluster with E > 5
372 TH2F * fhExoL1ECross ; //! Lambda1 vs E cross fraction for clusters with E > 5 GeV
649b825d 373
715fd81f 374 //Pure MC
35c71d5c 375
c5693f62 376 enum mcTypes {kmcPhoton = 0, kmcPi0 = 1, kmcEta = 2, kmcElectron = 3, kmcNeHadron = 4, kmcChHadron = 5 };
35c71d5c 377
378 TH2F * fhRecoMCE[6][2] ; //! E generated particle vs reconstructed E
649b825d 379 TH2F * fhRecoMCPhi[6][2] ; //! phi generated particle vs reconstructed phi
380 TH2F * fhRecoMCEta[6][2] ; //! eta generated particle vs reconstructed Eta
35c71d5c 381 TH2F * fhRecoMCDeltaE[6][2] ; //! Gen-Reco E generated particle vs reconstructed E
649b825d 382 TH2F * fhRecoMCRatioE[6][2] ; //! Reco/Gen E generated particle vs reconstructed E
35c71d5c 383 TH2F * fhRecoMCDeltaPhi[6][2]; //! Gen-Reco phi generated particle vs reconstructed E
384 TH2F * fhRecoMCDeltaEta[6][2]; //! Gen-Reco eta generated particle vs reconstructed E
385
386 TH1F * fhGenMCE[4] ; //! pt of primary particle
387 TH2F * fhGenMCEtaPhi[4] ; //! eta vs phi of primary particle
388 TH1F * fhGenMCAccE[4] ; //! pt of primary particle, in acceptance
389 TH2F * fhGenMCAccEtaPhi[4] ; //! eta vs phi of primary particle, in acceptance
390
521636d2 391 TH2F * fhEMVxyz ; //! Electromagnetic particle production vertex
392 TH2F * fhEMR ; //! Electromagnetic distance to vertex vs rec energy
393 TH2F * fhHaVxyz ; //! Hadron production vertex
394 TH2F * fhHaR ; //! Hadron distance to vertex vs rec energy
9725fd2a 395
521636d2 396 //Histograms for MC track-matching
d55bb5e1 397 TH2F * fh1EOverP; //! p/E for track-cluster matches
a87e069d 398 TH2F * fh2dR; //! distance between projected track and cluster (eta-phi units)
3bfc4732 399 TH2F * fh2EledEdx; //! dE/dx vs. momentum for electron candidates
400 TH2F * fh2MatchdEdx; //! dE/dx vs. momentum for all matches
401
d55bb5e1 402 TH2F * fhMCEle1EOverP; //! p/E for track-cluster matches, MC electrons
3bfc4732 403 TH1F * fhMCEle1dR; //! distance between projected track and cluster, MC electrons
404 TH2F * fhMCEle2MatchdEdx; //! dE/dx vs. momentum for all matches, MC electrons
405
d55bb5e1 406 TH2F * fhMCChHad1EOverP; //! p/E for track-cluster matches, MC charged hadrons
3bfc4732 407 TH1F * fhMCChHad1dR; //! distance between projected track and cluster, MC charged hadrons
408 TH2F * fhMCChHad2MatchdEdx; //! dE/dx vs. momentum for all matches, MC charged
409
d55bb5e1 410 TH2F * fhMCNeutral1EOverP; //! p/E for track-cluster matches, MC neutral
3bfc4732 411 TH1F * fhMCNeutral1dR; //! distance between projected track and cluster, MC neutral
412 TH2F * fhMCNeutral2MatchdEdx; //! dE/dx vs. momentum for all matches, MC neutral
413
a054a582 414 TH2F * fh1EOverPR02; //! p/E for track-cluster matches, dR < 0.2
415 TH2F * fhMCEle1EOverPR02; //! p/E for track-cluster matches, dR < 0.2, MC electrons
416 TH2F * fhMCChHad1EOverPR02; //! p/E for track-cluster matches, dR < 0.2, MC charged hadrons
417 TH2F * fhMCNeutral1EOverPR02; //! p/E for track-cluster matches, dR < 0.2, MC neutral
418
419 TH2F * fh1EleEOverP; //! p/E for track-cluster matches, dR < 0.2, 60 < dEdx < 100
420 TH2F * fhMCEle1EleEOverP; //! p/E for track-cluster matches, dR < 0.2, 60 < dEdx < 100, MC electrons
421 TH2F * fhMCChHad1EleEOverP; //! p/E for track-cluster matches, dR < 0.2, 60 < dEdx < 100, MC charged hadrons
422 TH2F * fhMCNeutral1EleEOverP; //! p/E for track-cluster matches, dR < 0.2, 60 < dEdx < 100, MC neutral
423
653aed3c 424 TH2F * fhTrackMatchedDEta ; //! Eta distance between track and cluster vs cluster E, after and before photon cuts
425 TH2F * fhTrackMatchedDPhi ; //! Phi distance between track and cluster vs cluster E, after and before photon cuts
426 TH2F * fhTrackMatchedDEtaDPhi; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV, after and before
427
428 TH2F * fhTrackMatchedDEtaPos; //! Eta distance between track and cluster vs cluster E, after and before photon cuts
429 TH2F * fhTrackMatchedDPhiPos; //! Phi distance between track and cluster vs cluster E, after and before photon cuts
430 TH2F * fhTrackMatchedDEtaDPhiPos; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV, after and before
431
1a83b960 432 AliAnaCalorimeterQA & operator = (const AliAnaCalorimeterQA & qa) ;//cpy assignment
433 AliAnaCalorimeterQA( const AliAnaCalorimeterQA & qa) ; // cpy ctor
c5693f62 434
45769d5b 435 ClassDef(AliAnaCalorimeterQA,28)
9725fd2a 436} ;
437
438
439#endif //ALIANACALORIMETERQA_H
440
441
442