]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGGA/CaloTrackCorrelations/AliAnaElectron.h
create fill histograms with DCA cut when not applied before in the reader
[u/mrichter/AliRoot.git] / PWGGA / CaloTrackCorrelations / AliAnaElectron.h
CommitLineData
d9105d92 1#ifndef ALIANAELECTRON_H
2#define ALIANAELECTRON_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
d9105d92 5
6//_________________________________________________________________________
7//
8// Class for the electron identification,
9// Clusters from calorimeters are identified as electrons
10// and kept in the AOD. Few histograms produced.
11// Copy of AliAnaPhoton just add electron id.
12//
13
14//-- Author: Gustavo Conesa (LPSC-IN2P3-CNRS)
15
16// --- ROOT system ---
17class TH2F ;
18class TH1F;
19class TH3D;
20class TString ;
21class TObjString;
22
23// --- ANALYSIS system ---
745913ae 24#include "AliAnaCaloTrackCorrBaseClass.h"
d9105d92 25class AliStack;
26class TParticle;
27
28class TList ;
29
745913ae 30class AliAnaElectron : public AliAnaCaloTrackCorrBaseClass {
d9105d92 31
32 public:
33
34 AliAnaElectron() ; // default ctor
35
36 virtual ~AliAnaElectron() { ; } // virtual dtor
d9105d92 37
38 //---------------------------------------
39 // General analysis frame methods
40 //---------------------------------------
41
42 TObjString * GetAnalysisCuts();
43
44 TList * GetCreateOutputObjects();
45
46 void Init();
47
48 void InitParameters();
49
50 void MakeAnalysisFillAOD() ;
51
52 void MakeAnalysisFillHistograms() ;
53
54 void Print(const Option_t * opt)const;
55
56
57 // Analysis methods
58
7e9a1194 59 Bool_t ClusterSelected(AliVCluster* cl, TLorentzVector mom, Int_t nMaxima) ;
d9105d92 60
b94e038e 61 void FillShowerShapeHistograms( AliVCluster* cluster, Int_t mcTag , Int_t pidTag) ;
d9105d92 62
63 void SwitchOnFillShowerShapeHistograms() { fFillSSHistograms = kTRUE ; }
64 void SwitchOffFillShowerShapeHistograms() { fFillSSHistograms = kFALSE ; }
dbba06ca 65
78a28af3 66 void WeightHistograms(AliVCluster *clus);
67
68 void SwitchOnFillWeightHistograms() { fFillWeightHistograms = kTRUE ; }
69 void SwitchOffFillWeightHistograms() { fFillWeightHistograms = kFALSE ; }
70
d9105d92 71 //---------------------------------------
72 // Analysis parameters setters getters
73 //---------------------------------------
74
75 TString GetCalorimeter() const { return fCalorimeter ; }
76 void SetCalorimeter(TString & det) { fCalorimeter = det ; }
77
78 // ** Cluster selection methods **
79
80 void SetdEdxCut(Double_t min, Double_t max) { fdEdxMin = min ;
81 fdEdxMax = max ; }
82
83 void SetEOverP(Double_t min, Double_t max) { fEOverPMin = min ;
84 fEOverPMax = max ; }
85
86
87 void SetMinDistanceToBadChannel(Float_t m1, Float_t m2, Float_t m3) {
88 fMinDist = m1; fMinDist2 = m2; fMinDist3 = m3; }
89
90 void SetTimeCut(Double_t min, Double_t max) { fTimeCutMin = min;
91 fTimeCutMax = max ; }
92 Double_t GetTimeCutMin() const { return fTimeCutMin ; }
93 Double_t GetTimeCutMax() const { return fTimeCutMax ; }
94
95 void SetNCellCut(Int_t n) { fNCellsCut = n ; }
96 Double_t GetNCellCut() const { return fNCellsCut ; }
7e9a1194 97
98 void SetNLMCut(Int_t min, Int_t max) { fNLMCutMin = min;
99 fNLMCutMax = max ; }
100 Int_t GetNLMCutMin() const { return fNLMCutMin ; }
101 Int_t GetNLMCutMax() const { return fNLMCutMax ; }
102
d9105d92 103 void FillNOriginHistograms(Int_t n) { fNOriginHistograms = n ;
764ab1f4 104 if(n > 10) fNOriginHistograms = 10; }
d9105d92 105
764ab1f4 106
107 void FillAODWithElectrons() { fAODParticle = AliCaloPID::kElectron ; }
108 void FillAODWithHadrons() { fAODParticle = AliCaloPID::kChargedHadron ; }
109 void FillAODWithAny() { fAODParticle = 0 ; }
110
111 void SwitchOnOnlySimpleSSHistoFill() { fFillOnlySimpleSSHisto = kTRUE ; }
112 void SwitchOffOnlySimpleHistoFill() { fFillOnlySimpleSSHisto = kFALSE ; }
113
d9105d92 114 // For histograms in arrays, index in the array, corresponding to a particle
c5693f62 115 enum mcTypes { kmcPhoton = 0, kmcPi0Decay = 1, kmcOtherDecay = 2,
116 kmcPi0 = 3, kmcEta = 4, kmcElectron = 5,
117 kmcConversion = 6, kmcOther = 7, kmcAntiNeutron = 8,
118 kmcAntiProton = 9 };
d9105d92 119
c5693f62 120 enum mcssTypes { kmcssPhoton = 0, kmcssOther = 1, kmcssPi0 = 2,
121 kmcssEta = 3, kmcssConversion = 4, kmcssElectron = 5 };
d9105d92 122
123 private:
124
125 TString fCalorimeter ; // Calorimeter where the gamma is searched;
126 Float_t fMinDist ; // Minimal distance to bad channel to accept cluster
127 Float_t fMinDist2; // Cuts on Minimal distance to study acceptance evaluation
128 Float_t fMinDist3; // One more cut on distance used for acceptance-efficiency study
129 Double_t fTimeCutMin ; // Remove clusters/cells with time smaller than this value, in ns
130 Double_t fTimeCutMax ; // Remove clusters/cells with time larger than this value, in ns
131 Int_t fNCellsCut ; // Accept for the analysis clusters with more than fNCellsCut cells
7e9a1194 132 Int_t fNLMCutMin ; // Remove clusters/cells with number of local maxima smaller than this value
133 Int_t fNLMCutMax ; // Remove clusters/cells with number of local maxima larger than this value
d9105d92 134 Bool_t fFillSSHistograms ; // Fill shower shape histograms
7e9a1194 135 Bool_t fFillOnlySimpleSSHisto; // Fill selected cluster histograms, selected SS histograms
78a28af3 136 Bool_t fFillWeightHistograms ; // Fill weigth histograms
d9105d92 137 Int_t fNOriginHistograms; // Fill only NOriginHistograms of the 14 defined types
138
139 Float_t fdEdxMin; // Max dEdx for electrons
140 Float_t fdEdxMax; // Min dEdx for electrons
141 Float_t fEOverPMin; // Max E/p for electrons, after dEdx cut
142 Float_t fEOverPMax; // Min E/p for electrons, after dEdx cut
143
764ab1f4 144 Int_t fAODParticle; // Select the type of particle to put in AODs for other analysis
145
7e9a1194 146 //Histograms
d9105d92 147 TH2F * fhdEdxvsE; //! matched track dEdx vs cluster E
148 TH2F * fhdEdxvsP; //! matched track dEdx vs track P
149 TH2F * fhEOverPvsE; //! matched track E cluster over P track vs cluster E, after dEdx cut
150 TH2F * fhEOverPvsP; //! matched track E cluster over P track vs track P, after dEdx cut
151
7e9a1194 152 TH2F * fhdEdxvsECutM02; //! matched track dEdx vs cluster E, mild M02 cut
153 TH2F * fhdEdxvsPCutM02; //! matched track dEdx vs track P, mild M02 cut
154 TH2F * fhEOverPvsECutM02; //! matched track E cluster over P track vs cluster E, after dEdx cut, mild M02 cut
155 TH2F * fhEOverPvsPCutM02; //! matched track E cluster over P track vs track P, after dEdx cut, mild M02 cut
156
157 TH2F * fhdEdxvsECutEOverP; //! matched track dEdx vs cluster E , cut on EOverP
158 TH2F * fhdEdxvsPCutEOverP; //! matched track dEdx vs track P, cut on EOverP
159 TH2F * fhEOverPvsECutM02CutdEdx; //! matched track E cluster over P track vs cluster E, after dEdx cut and mild M02 cut
160 TH2F * fhEOverPvsPCutM02CutdEdx; //! matched track E cluster over P track vs track P, after dEdx cut and mild M02 cut
161
162 TH2F * fhMCdEdxvsE[10]; //! matched track dEdx vs cluster E, coming from MC particle
163 TH2F * fhMCdEdxvsP[10]; //! matched track dEdx vs track P, coming from MC particle
164 TH2F * fhMCEOverPvsE[10]; //! matched track E cluster over P track vs cluster E, after dEdx cut, coming from MC particle
165 TH2F * fhMCEOverPvsP[10]; //! matched track E cluster over P track vs track P, after dEdx cut, coming from MC particle
166
167 TH2F * fhNCellsE[2]; //! number of cells in cluster vs E
168 TH2F * fhNLME[2]; //! number of local maxima in cluster vs E
d9105d92 169 TH2F * fhMaxCellDiffClusterE[2]; //! Fraction of energy carried by cell with maximum energy
42d47cb7 170 TH2F * fhTimeE[2]; //! E vs Time of selected cluster
171
d9105d92 172 TH1F * fhE[2] ; //! Number of identified electron vs energy
173 TH1F * fhPt[2] ; //! Number of identified electron vs transerse momentum
174 TH2F * fhPhi[2] ; //! Azimuthal angle of identified electron vs transerse momentum
175 TH2F * fhEta[2] ; //! Pseudorapidity of identified electron vs transerse momentum
176 TH2F * fhEtaPhi[2] ; //! Pseudorapidity vs Phi of identified electron for transerse momentum > 0.5
177 TH2F * fhEtaPhi05[2] ; //! Pseudorapidity vs Phi of identified electron for transerse momentum < 0.5
178
179 //Shower shape
180
181 TH2F * fhDispE[2]; //! cluster dispersion vs E
182 TH2F * fhLam0E[2]; //! cluster lambda0 vs E
183 TH2F * fhLam1E[2]; //! cluster lambda1 vs E
184
185 TH2F * fhDispETRD[2]; //! cluster dispersion vs E, SM covered by TRD
186 TH2F * fhLam0ETRD[2]; //! cluster lambda0 vs E, SM covered by TRD
187 TH2F * fhLam1ETRD[2]; //! cluster lambda1 vs E, SM covered by TRD
188
189 TH2F * fhNCellsLam0LowE[2]; //! cluster N cells vs lambda0, E<2
190 TH2F * fhNCellsLam0HighE[2]; //! cluster N Cells vs lambda0, E>2
191
192 TH2F * fhEtaLam0LowE[2]; //! cluster eta vs lambda0, E<2
193 TH2F * fhPhiLam0LowE[2]; //! cluster phi vs lambda0, E<2
194 TH2F * fhEtaLam0HighE[2]; //! cluster eta vs lambda0, E>2
195 TH2F * fhPhiLam0HighE[2]; //! cluster phi vs lambda0, E>2
196
34c16486 197 TH2F * fhDispEtaE[2] ; //! shower dispersion in eta direction
198 TH2F * fhDispPhiE[2] ; //! shower dispersion in phi direction
199 TH2F * fhSumEtaE[2] ; //! shower dispersion in eta direction
200 TH2F * fhSumPhiE[2] ; //! shower dispersion in phi direction
201 TH2F * fhSumEtaPhiE[2] ; //! shower dispersion in eta and phi direction
202 TH2F * fhDispEtaPhiDiffE[2] ; //! shower dispersion eta - phi
203 TH2F * fhSphericityE[2] ; //! shower sphericity in eta vs phi
204 TH2F * fhDispEtaDispPhiEBin[2][5] ; //! shower dispersion in eta direction vs phi direction for 5 E bins [0-2],[2-4],[4-6],[6-10],[> 10]
205
78a28af3 206 // Weight studies
207
208 TH2F * fhECellClusterRatio; //! e cell / e cluster vs e cluster for selected electrons
209 TH2F * fhECellClusterLogRatio; //! log (e cell / e cluster) vs e cluster for selected electrons
210 TH2F * fhEMaxCellClusterRatio; //! e max cell / e cluster vs e cluster for selected electrons
211 TH2F * fhEMaxCellClusterLogRatio; //! log (e max cell / e cluster) vs e cluster for selected electrons
34c16486 212 TH2F * fhLambda0ForW0[14]; //! L0 for 7 defined w0= 3, 3.5 ... 6 for selected electrons
1a72f6c5 213 //TH2F * fhLambda1ForW0[14]; //! L1 for 7 defined w0= 3, 3.5 ... 6 for selected electrons
78a28af3 214
d9105d92 215 //Fill MC dependent histograms, Origin of this cluster is ...
216
217 TH2F * fhMCDeltaE[2][10] ; //! MC-Reco E distribution coming from MC particle
218 TH2F * fhMC2E[2][10] ; //! E distribution, Reco vs MC coming from MC particle
219
220 TH1F * fhMCE[2][10]; //! Number of identified electron vs cluster energy coming from MC particle
221 TH1F * fhMCPt[2][10]; //! Number of identified electron vs cluster energy coming from MC particle
222 TH2F * fhMCPhi[2][10]; //! Phi of identified electron coming from MC particle
223 TH2F * fhMCEta[2][10]; //! eta of identified electron coming from MC particle
224
225 // Shower Shape MC
226
34c16486 227 TH2F * fhMCELambda0[2][6] ; //! E vs Lambda0 from MC particle
d9105d92 228
34c16486 229 TH2F * fhMCEDispEta[2][6] ; //! shower dispersion in eta direction from MC particle
230 TH2F * fhMCEDispPhi[2][6] ; //! shower dispersion in phi direction from MC particle
231 TH2F * fhMCESumEtaPhi[2][6] ; //! shower dispersion in eta vs phi direction from MC particle
232 TH2F * fhMCEDispEtaPhiDiff[2][6] ; //! shower dispersion in eta -phi direction from MC particle
233 TH2F * fhMCESphericity[2][6] ; //! shower sphericity, eta vs phi from MC particle
34c16486 234
235 TH2F * fhMCElectronELambda0NoOverlap ; //! E vs Lambda0 from MC electrons, no overlap
236 TH2F * fhMCElectronELambda0TwoOverlap ; //! E vs Lambda0 from MC electrons, 2 particles overlap
237 TH2F * fhMCElectronELambda0NOverlap ; //! E vs Lambda0 from MC electrons, N particles overlap
d9105d92 238
239 //Embedding
240 TH2F * fhEmbeddedSignalFractionEnergy ; //! Fraction of electron energy of embedded signal vs cluster energy
241
242 TH2F * fhEmbedElectronELambda0FullSignal ; //! Lambda0 vs E for embedded electrons with more than 90% of the cluster energy
243 TH2F * fhEmbedElectronELambda0MostlySignal ; //! Lambda0 vs E for embedded electrons with 90%<fraction<50%
244 TH2F * fhEmbedElectronELambda0MostlyBkg ; //! Lambda0 vs E for embedded electrons with 50%<fraction<10%
245 TH2F * fhEmbedElectronELambda0FullBkg ; //! Lambda0 vs E for embedded electrons with less than 10% of the cluster energy
246
764ab1f4 247 AliAnaElectron( const AliAnaElectron & el) ; // cpy ctor
248 AliAnaElectron & operator = (const AliAnaElectron & el) ; // cpy assignment
c5693f62 249
7e9a1194 250 ClassDef(AliAnaElectron,5)
d9105d92 251
252} ;
253
254
255#endif//ALIANAELECTRON_H
256
257
258