]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGGA/CaloTrackCorrelations/AliAnaPhoton.h
Merge branch 'TPCdev' of https://git.cern.ch/reps/AliRoot into TPCdev
[u/mrichter/AliRoot.git] / PWGGA / CaloTrackCorrelations / AliAnaPhoton.h
CommitLineData
1c5acb87 1#ifndef ALIANAPHOTON_H
2#define ALIANAPHOTON_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
1c5acb87 5
6//_________________________________________________________________________
7//
8// Class for the photon identification.
9// Clusters from calorimeters are identified as photons
10// and kept in the AOD. Few histograms produced.
6175da48 11// Produces input for other analysis classes like AliAnaPi0,
12// AliAnaParticleHadronCorrelation ...
1c5acb87 13//
14
15//-- Author: Gustavo Conesa (INFN-LNF)
16
17// --- ROOT system ---
18class TH2F ;
123fc3bd 19class TH1F;
1c5acb87 20class TString ;
0c1383b5 21class TObjString;
5812a064 22class TList ;
1c5acb87 23
24// --- ANALYSIS system ---
745913ae 25#include "AliAnaCaloTrackCorrBaseClass.h"
1c5acb87 26
745913ae 27class AliAnaPhoton : public AliAnaCaloTrackCorrBaseClass {
1c5acb87 28
78219bac 29 public:
5812a064 30 AliAnaPhoton() ; // default ctor
31 virtual ~AliAnaPhoton() { ; } // virtual dtor
0c1383b5 32
6175da48 33 //---------------------------------------
34 // General analysis frame methods
35 //---------------------------------------
c4a7d28a 36
0c1383b5 37 TObjString * GetAnalysisCuts();
6175da48 38
0c1383b5 39 TList * GetCreateOutputObjects();
c4a7d28a 40
6175da48 41 void Init();
6639984f 42
6175da48 43 void InitParameters();
44
45 void MakeAnalysisFillAOD() ;
46
47 void MakeAnalysisFillHistograms() ;
1c5acb87 48
6175da48 49 void Print(const Option_t * opt)const;
521636d2 50
3d5d5078 51
52 // Analysis methods
53
22ad7981 54 Bool_t ClusterSelected(AliVCluster* cl, TLorentzVector mom, Int_t nlm) ;
1c5acb87 55
3d5d5078 56 void FillAcceptanceHistograms();
57
b94e038e 58 void FillEMCALTriggerClusterBCHistograms(Int_t idcalo, Float_t ecluster, Float_t tofcluster,
59 Float_t etacluster, Float_t phicluster);
b2e375c7 60
22ad7981 61 void FillShowerShapeHistograms( AliVCluster* cluster, Int_t mcTag) ;
3d5d5078 62
c2a62a94 63 void SwitchOnFillShowerShapeHistograms() { fFillSSHistograms = kTRUE ; }
64 void SwitchOffFillShowerShapeHistograms() { fFillSSHistograms = kFALSE ; }
3d5d5078 65
764ab1f4 66 void SwitchOnOnlySimpleSSHistoFill() { fFillOnlySimpleSSHisto = kTRUE ; }
67 void SwitchOffOnlySimpleHistoFill() { fFillOnlySimpleSSHisto = kFALSE ; }
68
22ad7981 69 void FillTrackMatchingResidualHistograms(AliVCluster* calo, Int_t cut);
4bfeae64 70
c2a62a94 71 void SwitchOnTMHistoFill() { fFillTMHisto = kTRUE ; }
72 void SwitchOffTMHistoFill() { fFillTMHisto = kFALSE ; }
4bfeae64 73
b94e038e 74 void FillClusterPileUpHistograms(AliVCluster * calo, Bool_t matched,
75 Float_t ptcluster, Float_t etacluster,
76 Float_t phicluster, Float_t l0cluster);
b2e375c7 77
22ad7981 78 void FillPileUpHistograms(Float_t energy, Float_t pt, Float_t time) ;
0f7e7205 79 void FillPileUpHistogramsPerEvent() ;
acd56ca4 80
c2a62a94 81 void SwitchOnFillPileUpHistograms() { fFillPileUpHistograms = kTRUE ; }
82 void SwitchOffFillPileUpHistograms() { fFillPileUpHistograms = kFALSE ; }
83
84 void SwitchOnFillEMCALBCHistograms() { fFillEMCALBCHistograms = kTRUE ; }
85 void SwitchOffFillEMCALBCHistograms() { fFillEMCALBCHistograms = kFALSE ; }
86
3d5d5078 87
6175da48 88 // Analysis parameters setters getters
c4a7d28a 89
521636d2 90 TString GetCalorimeter() const { return fCalorimeter ; }
91 void SetCalorimeter(TString & det) { fCalorimeter = det ; }
92
6175da48 93 // ** Cluster selection methods **
94
c4a7d28a 95 void SetMinDistanceToBadChannel(Float_t m1, Float_t m2, Float_t m3) {
521636d2 96 fMinDist = m1; fMinDist2 = m2; fMinDist3 = m3; }
6175da48 97
c4a7d28a 98 void SetTimeCut(Double_t min, Double_t max) { fTimeCutMin = min;
521636d2 99 fTimeCutMax = max ; }
100 Double_t GetTimeCutMin() const { return fTimeCutMin ; }
101 Double_t GetTimeCutMax() const { return fTimeCutMax ; }
1e86c71e 102
521636d2 103 void SetNCellCut(Int_t n) { fNCellsCut = n ; }
104 Double_t GetNCellCut() const { return fNCellsCut ; }
c4a7d28a 105
c2a62a94 106 void SetNLMCut(Int_t min, Int_t max) { fNLMCutMin = min;
9e51e29a 107 fNLMCutMax = max ; }
c2a62a94 108 Int_t GetNLMCutMin() const { return fNLMCutMin ; }
109 Int_t GetNLMCutMax() const { return fNLMCutMax ; }
9e51e29a 110
111
c4a7d28a 112 Bool_t IsTrackMatchRejectionOn() const { return fRejectTrackMatch ; }
113 void SwitchOnTrackMatchRejection() { fRejectTrackMatch = kTRUE ; }
114 void SwitchOffTrackMatchRejection() { fRejectTrackMatch = kFALSE ; }
09273901 115
f66d95af 116 void FillNOriginHistograms(Int_t n) { fNOriginHistograms = n ;
117 if(n > 14) fNOriginHistograms = 14; }
118 void FillNPrimaryHistograms(Int_t n) { fNPrimaryHistograms= n ;
119 if(n > 7) fNPrimaryHistograms = 7; }
120
3d5d5078 121 // For histograms in arrays, index in the array, corresponding to a particle
c5693f62 122 enum mcTypes { kmcPhoton = 0, kmcPi0Decay = 1, kmcOtherDecay = 2,
123 kmcPi0 = 3, kmcEta = 4, kmcElectron = 5,
124 kmcConversion = 6, kmcOther = 7, kmcAntiNeutron = 8,
125 kmcAntiProton = 9, kmcPrompt = 10, kmcFragmentation = 11,
126 kmcISR = 12, kmcString = 13 };
41121cfe 127
c5693f62 128 enum mcPTypes { kmcPPhoton = 0, kmcPPi0Decay = 1, kmcPOtherDecay = 2, kmcPOther = 3,
126b8c62 129 kmcPPrompt = 4, kmcPFragmentation = 5, kmcPISR = 6 };
f66d95af 130
c5693f62 131 enum mcssTypes { kmcssPhoton = 0, kmcssOther = 1, kmcssPi0 = 2,
132 kmcssEta = 3, kmcssConversion = 4, kmcssElectron = 5 };
3d5d5078 133
1c5acb87 134 private:
135
126b8c62 136 TString fCalorimeter ; // Calorimeter where the gamma is searched;
137 Float_t fMinDist ; // Minimal distance to bad channel to accept cluster
138 Float_t fMinDist2; // Cuts on Minimal distance to study acceptance evaluation
139 Float_t fMinDist3; // One more cut on distance used for acceptance-efficiency study
140 Bool_t fRejectTrackMatch ; // If PID on, reject clusters which have an associated TPC track
141 Bool_t fFillTMHisto; // Fill track matching plots
142 Double_t fTimeCutMin ; // Remove clusters/cells with time smaller than this value, in ns
143 Double_t fTimeCutMax ; // Remove clusters/cells with time larger than this value, in ns
144 Int_t fNCellsCut ; // Accept for the analysis clusters with more than fNCellsCut cells
145 Int_t fNLMCutMin ; // Remove clusters/cells with number of local maxima smaller than this value
146 Int_t fNLMCutMax ; // Remove clusters/cells with number of local maxima larger than this value
147 Bool_t fFillSSHistograms ; // Fill shower shape histograms
148 Bool_t fFillOnlySimpleSSHisto; // Fill selected cluster histograms, selected SS histograms
149 Int_t fNOriginHistograms; // Fill only NOriginHistograms of the 14 defined types
150 Int_t fNPrimaryHistograms; // Fill only NPrimaryHistograms of the 7 defined types
151 Bool_t fFillPileUpHistograms; // Fill pile-up related histograms
152 Bool_t fFillEMCALBCHistograms; // Fill eta-phi BC dependent histograms
2ad19c3d 153
2244659d 154 //Histograms
126b8c62 155 TH1F * fhClusterCuts[10]; //! control histogram on the different photon selection cuts
156 TH2F * fhNCellsE; //! number of cells in cluster vs E
157 TH2F * fhCellsE; //! energy of cells in cluster vs E of cluster
158 TH2F * fhMaxCellDiffClusterE; //! Fraction of energy carried by cell with maximum energy
159 TH2F * fhTimePt; //! time of photon cluster vs pt
160
161 TH2F * fhEtaPhi ; //! Pseudorapidity vs Phi of clusters for E > 0.5
162 TH2F * fhEtaPhiEMCALBC0 ; //! Pseudorapidity vs Phi of clusters for E > 0.5
163 TH2F * fhEtaPhiEMCALBC1 ; //! Pseudorapidity vs Phi of clusters for E > 0.5
164 TH2F * fhEtaPhiEMCALBCN ; //! Pseudorapidity vs Phi of clusters for E > 0.5
165
166 TH2F * fhEtaPhiTriggerEMCALBC[11] ; //! Pseudorapidity vs Phi of clusters for E > 2
167 TH2F * fhTimeTriggerEMCALBC [11] ; //! Time distribution of clusters, when trigger is in a given BC
168 TH2F * fhTimeTriggerEMCALBCPileUpSPD[11]; //! Time distribution of clusters, when trigger is in a given BC, tagged as pile-up SPD
169
170 TH2F * fhEtaPhiTriggerEMCALBCUM[11] ; //! Pseudorapidity vs Phi of clusters for E > 2, not matched to trigger
171 TH2F * fhTimeTriggerEMCALBCUM [11] ; //! Time distribution of clusters, when trigger is in a given BC, not matched to trigger
172
173 TH2F * fhEtaPhiTriggerEMCALBCCluster [11] ; //! Pseudorapidity vs Phi of trigger clusters
174 TH2F * fhTimeTriggerEMCALBCCluster ; //! Time distribution of clusters, when trigger cluster is in a given BC
175 TH2F * fhEtaPhiTriggerEMCALBCUMCluster[11] ; //! Pseudorapidity vs Phi of highest E cluster in event, not matched to trigger
176 TH2F * fhTimeTriggerEMCALBCUMCluster ; //! Time distribution of highest energy cluster in event, when trigger is in a given BC, not
177
178 TH2F * fhEtaPhiTriggerEMCALBCClusterOverTh ; //! Pseudorapidity vs Phi of trigger clusters, over nominal threshold
179 TH2F * fhEtaPhiTriggerEMCALBCUMClusterOverTh ; //! Pseudorapidity vs Phi of highest E cluster in event, not matched to trigger, over nominal threshold
180 TH2F * fhEtaPhiTriggerEMCALBCClusterBelowTh1 ; //! Pseudorapidity vs Phi of trigger clusters, 1 GeV below nominal threshold
181 TH2F * fhEtaPhiTriggerEMCALBCUMClusterBelowTh1 ; //! Pseudorapidity vs Phi of highest E cluster in event, not matched to trigger, 2 GeV below nominal threshold
182 TH2F * fhEtaPhiTriggerEMCALBCClusterBelowTh2 ; //! Pseudorapidity vs Phi of trigger clusters, 1 GeV below nominal threshold
183 TH2F * fhEtaPhiTriggerEMCALBCUMClusterBelowTh2 ; //! Pseudorapidity vs Phi of highest E cluster in event, not matched to trigger, 2 GeV below nominal threshold
184
185 TH2F * fhEtaPhiTriggerEMCALBCExotic ; //! Pseudorapidity vs Phi of trigger exotic clusters
186 TH2F * fhTimeTriggerEMCALBCExotic ; //! Time distribution of clusters, when trigger exotic cluster
187 TH2F * fhEtaPhiTriggerEMCALBCUMExotic ; //! Pseudorapidity vs Phi of highest E exotic cluster in event, not matched to trigger
188 TH2F * fhTimeTriggerEMCALBCUMExotic ; //! Time distribution of highest energy exotic cluster in event, not matched to trigger
189
190 TH2F * fhEtaPhiTriggerEMCALBCBad ; //! Pseudorapidity vs Phi of trigger exotic clusters
191 TH2F * fhTimeTriggerEMCALBCBad ; //! Time distribution of clusters, when trigger exotic
192 TH2F * fhEtaPhiTriggerEMCALBCUMBad ; //! Pseudorapidity vs Phi of highest E exotic cluster in event, not matched to trigger
193 TH2F * fhTimeTriggerEMCALBCUMBad ; //! Time distribution of highest energy exotic cluster in event, not matched to trigger
194
195 TH2F * fhEtaPhiTriggerEMCALBCBadExotic ; //! Pseudorapidity vs Phi of trigger exotic and bad clusters
196 TH2F * fhTimeTriggerEMCALBCBadExotic ; //! Time distribution of clusters, when trigger exotic and bad cluster
197 TH2F * fhEtaPhiTriggerEMCALBCUMBadExotic ; //! Pseudorapidity vs Phi of highest E exotic cluster in event, not matched to trigger
198 TH2F * fhTimeTriggerEMCALBCUMBadExotic ; //! Time distribution of highest energy exotic cluster in event, not matched to trigger
199
200 TH2F * fhEtaPhiTriggerEMCALBCExoticCluster ; //! Pseudorapidity vs Phi of trigger exotic clusters
201 TH2F * fhTimeTriggerEMCALBCExoticCluster ; //! Time distribution of clusters, when trigger exotic cluster
202 TH2F * fhEtaPhiTriggerEMCALBCUMExoticCluster ; //! Pseudorapidity vs Phi of highest E exotic cluster in event, not matched to trigger
203 TH2F * fhTimeTriggerEMCALBCUMExoticCluster ; //! Time distribution of highest energy exotic cluster in event, not matched to trigger
204
205 TH2F * fhEtaPhiTriggerEMCALBCBadCluster ; //! Pseudorapidity vs Phi of trigger bad clusters
206 TH2F * fhTimeTriggerEMCALBCBadCluster ; //! Time distribution of clusters, when trigger bad cluster is in a given BC
207 TH2F * fhEtaPhiTriggerEMCALBCUMBadCluster ; //! Pseudorapidity vs Phi of highest E bad cluster in event, not matched to trigger
208 TH2F * fhTimeTriggerEMCALBCUMBadCluster ; //! Time distribution of highest energy bad cluster in event, when trigger is in a given BC, not
209
210 TH2F * fhEtaPhiTriggerEMCALBCBadExoticCluster ; //! Pseudorapidity vs Phi of trigger exotic and bad clusters
211 TH2F * fhTimeTriggerEMCALBCBadExoticCluster ; //! Time distribution of clusters, when trigger exotic and bad cluster
212 TH2F * fhEtaPhiTriggerEMCALBCUMBadExoticCluster; //! Pseudorapidity vs Phi of highest E exotic and bad cluster in event, not matched to trigger
213 TH2F * fhTimeTriggerEMCALBCUMBadExoticCluster ; //! Time distribution of highest energy exotic and bad cluster in event, not matched to trigger
214
215 TH2F * fhTimeTriggerEMCALBCBadMaxCell ; //! Time distribution of trigger clusters, when trigger bad max cell
216 TH2F * fhTimeTriggerEMCALBCUMBadMaxCell ; //! Time distribution of highest energy bad max cell cluster in event, when trigger is not found
217 TH2F * fhTimeTriggerEMCALBCBadMaxCellExotic ; //! Time distribution of trigger clusters, when trigger exotic cluster with bad max cell
218 TH2F * fhTimeTriggerEMCALBCUMBadMaxCellExotic ; //! Time distribution of highest energy exotic with bad max cell cluster in event, when trigger is not found
219
220 TH2F * fhEtaPhiTriggerEMCALBCUMReMatchOpenTimeCluster ; //! Pseudorapidity vs Phi of highest E bad cluster in event, not matched to trigger, rematched open time trigger
221 TH2F * fhTimeTriggerEMCALBCUMReMatchOpenTimeCluster ; //! Time distribution of highest energy bad max cell cluster in event, when trigger is not found, rematched open time trigger
222 TH2F * fhEtaPhiTriggerEMCALBCUMReMatchCheckNeighCluster; //! Pseudorapidity vs Phi of highest E bad cluster in event, not matched to trigger, rematched with neigbour patchs
223 TH2F * fhTimeTriggerEMCALBCUMReMatchCheckNeighCluster ; //! Time distribution of highest energy bad max cell cluster in event, when trigger is not found, rematched with neigbour patchs
224 TH2F * fhEtaPhiTriggerEMCALBCUMReMatchBothCluster;//! Pseudorapidity vs Phi of highest E bad cluster in event, not matched to trigger, rematched open both
225 TH2F * fhTimeTriggerEMCALBCUMReMatchBothCluster ; //! Time distribution of highest energy bad max cell cluster in event, when trigger is not found, rematched open both
226
227 TH2F * fhTimeTriggerEMCALBC0UMReMatchOpenTime ; //! Time distribution of clusters, not matched to trigger, rematched open time trigger
228 TH2F * fhTimeTriggerEMCALBC0UMReMatchCheckNeigh ; //! Time distribution of clusters, not matched to trigger, rematched with neighbour patchs
229 TH2F * fhTimeTriggerEMCALBC0UMReMatchBoth ; //! Time distribution of clusters, not matched to trigger, rematched open both
230
231 TH2F * fhEtaPhiNoTrigger ; //! Pseudorapidity vs Phi of highest E exotic cluster in event, no trigger at all
232 TH2F * fhTimeNoTrigger ; //! Time distribution of highest energy exotic cluster in event, no trigger at all
233
234 TH1F * fhEPhoton ; //! Number of identified photon vs energy
235 TH1F * fhPtPhoton ; //! Number of identified photon vs transerse momentum
236 TH2F * fhPhiPhoton ; //! Azimuthal angle of identified photon vs transerse momentum
237 TH2F * fhEtaPhoton ; //! Pseudorapidity of identified photon vs transerse momentum
238 TH2F * fhEtaPhiPhoton ; //! Pseudorapidity vs Phi of identified photon for E > 0.5
239 TH2F * fhEtaPhi05Photon ; //! Pseudorapidity vs Phi of identified photon for E < 0.5
240 TH2F * fhEtaPhiPhotonEMCALBC0 ; //! Pseudorapidity vs Phi of identified photon for E > 0.5
241 TH2F * fhEtaPhiPhotonEMCALBC1 ; //! Pseudorapidity vs Phi of identified photon for E > 0.5
242 TH2F * fhEtaPhiPhotonEMCALBCN ; //! Pseudorapidity vs Phi of identified photon for E > 0.5
243 TH2F * fhEtaPhiPhotonTriggerEMCALBC[11]; //! Pseudorapidity vs Phi of photons for E > 0.5
244 TH2F * fhTimePhotonTriggerEMCALBC [11]; //! Time distribution of photons, when trigger is in a given BC
245 TH2F * fhTimePhotonTriggerEMCALBCPileUpSPD[11] ; //! Time distribution of photons, when trigger is in a given BC, tagged as pile-up SPD
246 TH2F * fhEtaPhiPhotonTriggerEMCALBCUM[11]; //! Pseudorapidity vs Phi of photons for E > 2, not matched to trigger
247 TH2F * fhTimePhotonTriggerEMCALBCUM [11]; //! Time distribution of photons, when trigger is in a given BC, not matched to trigger
248
249 TH2F * fhTimePhotonTriggerEMCALBC0UMReMatchOpenTime ; //! Time distribution of photons in event, when trigger is not found, rematched open time trigger
250 TH2F * fhTimePhotonTriggerEMCALBC0UMReMatchCheckNeigh ; //! Time distribution of photons in event, when trigger is not found, rematched with neigbour patchs
251 TH2F * fhTimePhotonTriggerEMCALBC0UMReMatchBoth ; //! Time distribution of photons in event, when trigger is not found, rematched open both
252
253 TH2F * fhPtCentralityPhoton ; //! centrality vs photon pT
254 TH2F * fhPtEventPlanePhoton ; //! event plane vs photon pT
fedea415 255
521636d2 256 //Shower shape
126b8c62 257 TH2F * fhNLocMax; //! number of maxima in selected clusters
258
259 TH2F * fhDispE; //! cluster dispersion vs E
260 TH2F * fhLam0E; //! cluster lambda0 vs E
261 TH2F * fhLam1E; //! cluster lambda1 vs E
262
263 TH2F * fhDispETRD; //! cluster dispersion vs E, SM covered by TRD
264 TH2F * fhLam0ETRD; //! cluster lambda0 vs E, SM covered by TRD
265 TH2F * fhLam1ETRD; //! cluster lambda1 vs E, SM covered by TRD
266
267 TH2F * fhDispETM; //! cluster dispersion vs E, cut on Track Matching residual
268 TH2F * fhLam0ETM; //! cluster lambda0 vs E, cut on Track Matching residual
269 TH2F * fhLam1ETM; //! cluster lambda1 vs E, cut on Track Matching residual
270
271 TH2F * fhDispETMTRD; //! cluster dispersion vs E, SM covered by TRD, cut on Track Matching residual
272 TH2F * fhLam0ETMTRD; //! cluster lambda0 vs E, SM covered by TRD, cut on Track Matching residual
273 TH2F * fhLam1ETMTRD; //! cluster lambda1 vs E, SM covered by TRD, cut on Track Matching residual
274
275 TH2F * fhNCellsLam0LowE; //! number of cells in cluster vs lambda0
276 TH2F * fhNCellsLam1LowE; //! number of cells in cluster vs lambda1
277 TH2F * fhNCellsDispLowE; //! number of cells in cluster vs dispersion
278 TH2F * fhNCellsLam0HighE; //! number of cells in cluster vs lambda0, E>2
279 TH2F * fhNCellsLam1HighE; //! number of cells in cluster vs lambda1, E>2
280 TH2F * fhNCellsDispHighE; //! number of cells in cluster vs dispersion, E>2
281
282 TH2F * fhEtaLam0LowE; //! cluster eta vs lambda0, E<2
283 TH2F * fhPhiLam0LowE; //! cluster phi vs lambda0, E<2
284 TH2F * fhEtaLam0HighE; //! cluster eta vs lambda0, E>2
285 TH2F * fhPhiLam0HighE; //! cluster phi vs lambda0, E>2
286 TH2F * fhLam0DispLowE; //! cluster lambda0 vs dispersion, E<2
287 TH2F * fhLam0DispHighE; //! cluster lambda0 vs dispersion, E>2
288 TH2F * fhLam1Lam0LowE; //! cluster lambda1 vs lambda0, E<2
289 TH2F * fhLam1Lam0HighE; //! cluster lambda1 vs lambda0, E>2
290 TH2F * fhDispLam1LowE; //! cluster disp vs lambda1, E<2
291 TH2F * fhDispLam1HighE; //! cluster disp vs lambda1, E>2
7c65ad18 292
126b8c62 293 TH2F * fhDispEtaE ; //! shower dispersion in eta direction
294 TH2F * fhDispPhiE ; //! shower dispersion in phi direction
295 TH2F * fhSumEtaE ; //! shower dispersion in eta direction
296 TH2F * fhSumPhiE ; //! shower dispersion in phi direction
297 TH2F * fhSumEtaPhiE ; //! shower dispersion in eta and phi direction
298 TH2F * fhDispEtaPhiDiffE ; //! shower dispersion eta - phi
299 TH2F * fhSphericityE ; //! shower sphericity in eta vs phi
300 TH2F * fhDispSumEtaDiffE ; //! difference of 2 eta dispersions
301 TH2F * fhDispSumPhiDiffE ; //! difference of 2 phi dispersions
302 TH2F * fhDispEtaDispPhi[7] ; //! shower dispersion in eta direction vs phi direction for 5 E bins [0-2],[2-4],[4-6],[6-10],[> 10]
303 TH2F * fhLambda0DispEta[7] ; //! shower shape correlation l0 vs disp eta
304 TH2F * fhLambda0DispPhi[7] ; //! shower shape correlation l0 vs disp phi
bfdcf7fb 305
4c8f7c2e 306 //Fill MC dependent histograms, Origin of this cluster is ...
307
126b8c62 308 TH2F * fhMCDeltaE[14] ; //! MC-Reco E distribution coming from MC particle
309 TH2F * fhMCDeltaPt[14] ; //! MC-Reco pT distribution coming from MC particle
310 TH2F * fhMC2E[14] ; //! E distribution, Reco vs MC coming from MC particle
311 TH2F * fhMC2Pt[14] ; //! pT distribution, Reco vs MC coming from MC particle
4c8f7c2e 312
126b8c62 313 TH1F * fhMCE[14]; //! Number of identified photon vs cluster energy coming from MC particle
314 TH1F * fhMCPt[14]; //! Number of identified photon vs cluster pT coming from MC particle
315 TH2F * fhMCPhi[14]; //! Phi of identified photon coming from MC particle
316 TH2F * fhMCEta[14]; //! eta of identified photon coming from MC particle
3d5d5078 317
126b8c62 318 TH1F * fhEPrimMC[7]; //! Number of generated photon vs energy
319 TH1F * fhPtPrimMC[7]; //! Number of generated photon vs pT
320 TH2F * fhPhiPrimMC[7]; //! Phi of generted photon
321 TH2F * fhYPrimMC[7]; //! Rapidity of generated photon
4cf13296 322 TH2F * fhEtaPrimMC[7]; //! Eta of generated photon
3d5d5078 323
126b8c62 324 TH1F * fhEPrimMCAcc[7]; //! Number of generated photon vs energy, in calorimeter acceptance
325 TH1F * fhPtPrimMCAcc[7]; //! Number of generated photon vs pT, in calorimeter acceptance
326 TH2F * fhPhiPrimMCAcc[7]; //! Phi of generted photon, in calorimeter acceptance
4cf13296 327 TH2F * fhEtaPrimMCAcc[7]; //! Phi of generted photon, in calorimeter acceptance
126b8c62 328 TH2F * fhYPrimMCAcc[7]; //! Rapidity of generated photon, in calorimeter acceptance
f66d95af 329
521636d2 330 // Shower Shape MC
331
126b8c62 332 TH2F * fhMCELambda0[6] ; //! E vs Lambda0 from MC particle
333 TH2F * fhMCELambda1[6] ; //! E vs Lambda1 from MC particle
334 TH2F * fhMCEDispersion[6] ; //! E vs Dispersion from MC particle
335
336 TH2F * fhMCPhotonELambda0NoOverlap ; //! E vs Lambda0 from MC photons, no overlap
337 TH2F * fhMCPhotonELambda0TwoOverlap ; //! E vs Lambda0 from MC photons, 2 particles overlap
338 TH2F * fhMCPhotonELambda0NOverlap ; //! E vs Lambda0 from MC photons, N particles overlap
339
340 TH2F * fhMCLambda0vsClusterMaxCellDiffE0[6]; //! Lambda0 vs fraction of energy of max cell for E < 2 GeV
341 TH2F * fhMCLambda0vsClusterMaxCellDiffE2[6]; //! Lambda0 vs fraction of energy of max cell for 2< E < 6 GeV
342 TH2F * fhMCLambda0vsClusterMaxCellDiffE6[6]; //! Lambda0 vs fraction of energy of max cell for E > 6 GeV
343 TH2F * fhMCNCellsvsClusterMaxCellDiffE0[6]; //! NCells vs fraction of energy of max cell for E < 2
344 TH2F * fhMCNCellsvsClusterMaxCellDiffE2[6]; //! NCells vs fraction of energy of max cell for 2 < E < 6 GeV
345 TH2F * fhMCNCellsvsClusterMaxCellDiffE6[6]; //! NCells vs fraction of energy of max cell for E > 6
346 TH2F * fhMCNCellsE[6]; //! NCells per cluster vs energy
347 TH2F * fhMCMaxCellDiffClusterE[6]; //! Fraction of energy carried by cell with maximum energy
348
349 TH2F * fhMCEDispEta[6] ; //! shower dispersion in eta direction
350 TH2F * fhMCEDispPhi[6] ; //! shower dispersion in phi direction
351 TH2F * fhMCESumEtaPhi[6] ; //! shower dispersion in eta vs phi direction
352 TH2F * fhMCEDispEtaPhiDiff[6] ; //! shower dispersion in eta -phi direction
353 TH2F * fhMCESphericity[6] ; //! shower sphericity, eta vs phi
354 TH2F * fhMCDispEtaDispPhi[7][6] ; //! shower dispersion in eta direction vs phi direction for 5 E bins [0-2],[2-4],[4-6],[6-10],[> 10]
355 TH2F * fhMCLambda0DispEta[7][6] ; //! shower shape correlation l0 vs disp eta
356 TH2F * fhMCLambda0DispPhi[7][6] ; //! shower shape correlation l0 vs disp phi
34c16486 357
3d5d5078 358 //Embedding
126b8c62 359 TH2F * fhEmbeddedSignalFractionEnergy ; //! Fraction of photon energy of embedded signal vs cluster energy
3d5d5078 360
126b8c62 361 TH2F * fhEmbedPhotonELambda0FullSignal ; //! Lambda0 vs E for embedded photons with more than 90% of the cluster energy
362 TH2F * fhEmbedPhotonELambda0MostlySignal ; //! Lambda0 vs E for embedded photons with 90%<fraction<50%
363 TH2F * fhEmbedPhotonELambda0MostlyBkg ; //! Lambda0 vs E for embedded photons with 50%<fraction<10%
364 TH2F * fhEmbedPhotonELambda0FullBkg ; //! Lambda0 vs E for embedded photons with less than 10% of the cluster energy
3d5d5078 365
126b8c62 366 TH2F * fhEmbedPi0ELambda0FullSignal ; //! Lambda0 vs E for embedded photons with more than 90% of the cluster energy
367 TH2F * fhEmbedPi0ELambda0MostlySignal ; //! Lambda0 vs E for embedded photons with 90%<fraction<50%
368 TH2F * fhEmbedPi0ELambda0MostlyBkg ; //! Lambda0 vs E for embedded photons with 50%<fraction<10%
369 TH2F * fhEmbedPi0ELambda0FullBkg ; //! Lambda0 vs E for embedded photons with less than 10% of the cluster energy
3d5d5078 370
09273901 371 // Track Matching
126b8c62 372 TH2F * fhTrackMatchedDEta[2] ; //! Eta distance between track and cluster vs cluster E, after and before photon cuts
373 TH2F * fhTrackMatchedDPhi[2] ; //! Phi distance between track and cluster vs cluster E, after and before photon cuts
374 TH2F * fhTrackMatchedDEtaDPhi[2] ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV, after and before
b2e375c7 375
126b8c62 376 TH2F * fhTrackMatchedDEtaPos[2] ; //! Eta distance between track and cluster vs cluster E, after and before photon cuts
377 TH2F * fhTrackMatchedDPhiPos[2] ; //! Phi distance between track and cluster vs cluster E, after and before photon cuts
378 TH2F * fhTrackMatchedDEtaDPhiPos[2] ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV, after and before
b2e375c7 379
126b8c62 380 TH2F * fhTrackMatchedDEtaNeg[2] ; //! Eta distance between track and cluster vs cluster E, after and before photon cuts
381 TH2F * fhTrackMatchedDPhiNeg[2] ; //! Phi distance between track and cluster vs cluster E, after and before photon cuts
382 TH2F * fhTrackMatchedDEtaDPhiNeg[2] ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV, after and before photon cuts
4bfeae64 383
126b8c62 384 TH2F * fhTrackMatchedDEtaTRD[2] ; //! Eta distance between track and cluster vs cluster E, after and before photon cuts, behind TRD
385 TH2F * fhTrackMatchedDPhiTRD[2] ; //! Phi distance between track and cluster vs cluster E, after and before photon cuts, behind TRD
4bfeae64 386
126b8c62 387 TH2F * fhTrackMatchedDEtaMCOverlap[2] ; //! Eta distance between track and cluster vs cluster E, several particle overlap, after and before photon cuts
388 TH2F * fhTrackMatchedDPhiMCOverlap[2] ; //! Phi distance between track and cluster vs cluster E, several particle overlap, after and before photon cuts
389 TH2F * fhTrackMatchedDEtaMCNoOverlap[2]; //! Eta distance between track and cluster vs cluster E, not other particle overlap, after and before photon cuts
390 TH2F * fhTrackMatchedDPhiMCNoOverlap[2]; //! Phi distance between track and cluster vs cluster E, not other particle overlap, after and before photon cuts
391 TH2F * fhTrackMatchedDEtaMCConversion[2]; //! Eta distance between track and cluster vs cluster E, originated in conversion, after and before photon cuts
392 TH2F * fhTrackMatchedDPhiMCConversion[2]; //! Phi distance between track and cluster vs cluster E, originated in conversion, after and before photon cuts
4bfeae64 393
126b8c62 394 TH2F * fhTrackMatchedMCParticle[2]; //! Trace origin of matched particle
395 TH2F * fhdEdx[2]; //! matched track dEdx vs cluster E, after and before photon cuts
396 TH2F * fhEOverP[2]; //! matched track E cluster over P track vs cluster E, after dEdx cut, after and before photon cuts
397 TH2F * fhEOverPTRD[2]; //! matched track E cluster over P track vs cluster E, after dEdx cut, after and before photon cuts, behind TRD
31ae6d59 398
2ad19c3d 399 // Pile-up
126b8c62 400 TH1F * fhPtPileUp[7]; //! pT distribution of clusters before any selection
401 TH1F * fhPtChargedPileUp[7]; //! pT distribution of track matched clusters
402 TH1F * fhPtPhotonPileUp[7]; //! pT distribution of selected photons
403 TH2F * fhLambda0PileUp[7]; //! E vs M02 distribution of clusters, before any selection
404 TH2F * fhLambda0ChargedPileUp[7]; //! E vs M02 distribution of clusters, track matched clusters
405 TH2F * fhClusterCellTimePileUp[7]; //! E vs Time inside cluster, before any selection, not max cell
406 TH2F * fhClusterTimeDiffPileUp[7]; //! E vs Time difference inside cluster, before any selection
407 TH2F * fhClusterTimeDiffChargedPileUp[7]; //! E vs Time difference inside cluster for track matched clusters
408 TH2F * fhClusterTimeDiffPhotonPileUp[7]; //! E vs Time difference inside cluster for selected photons
409 TH2F * fhClusterEFracLongTimePileUp[7]; //! E vs fraction of cluster energy from cells with large time
410 TH2F * fhTimePtNoCut; //! time of cluster vs Pt, no cut
411 TH2F * fhTimePtSPD; //! time of cluster vs Pt, IsSPDPileUp
412 TH2F * fhTimePtPhotonNoCut; //! time of photon cluster vs Pt, no cut
413 TH2F * fhTimePtPhotonSPD; //! time of photon cluster vs Pt, IsSPDPileUp
414 TH2F * fhTimeNPileUpVertSPD; //! time of cluster vs n pile-up vertices from SPD
415 TH2F * fhTimeNPileUpVertTrack; //! time of cluster vs n pile-up vertices from Tracks
416 TH2F * fhTimeNPileUpVertContributors; //! time of cluster vs n pile-up vertex from SPD contributors
417 TH2F * fhTimePileUpMainVertexZDistance; //! time of cluster vs difference of z main vertex and pile-up vertex
418 TH2F * fhTimePileUpMainVertexZDiamond; //! time of cluster vs difference of z diamond and pile-up vertex
419 TH2F * fhClusterMultSPDPileUp[4]; //! E max cluster vs event cluster multiplicity, for tmax-tdiff cuts, pile up event
420 TH2F * fhClusterMultNoPileUp[4]; //! E max cluster vs event cluster multiplicity, for tmax-tdiff cuts, not pile up event
421 TH2F * fhEtaPhiBC0; //! eta/phi of clusters in BC=0
422 TH2F * fhEtaPhiBCPlus; //! eta/phi of clusters in BC>0
423 TH2F * fhEtaPhiBCMinus; //! eta/phi of clusters in BC<0
424 TH2F * fhEtaPhiBC0PileUpSPD; //! eta/phi of clusters in BC=0, SPD pile-up
425 TH2F * fhEtaPhiBCPlusPileUpSPD; //! eta/phi of clusters in BC>0, SPD pile-up
426 TH2F * fhEtaPhiBCMinusPileUpSPD; //! eta/phi of clusters in BC<0, SPD pile-up
427
428 TH2F * fhPtNPileUpSPDVtx; //! cluster pt vs number of spd pile-up vertices
429 TH2F * fhPtNPileUpTrkVtx; //! cluster pt vs number of track pile-up vertices
430 TH2F * fhPtNPileUpSPDVtxTimeCut; //! cluster pt vs number of spd pile-up vertices, time cut +-25 ns
431 TH2F * fhPtNPileUpTrkVtxTimeCut; //! cluster pt vs number of track pile-up vertices, time cut +- 25 ns
432 TH2F * fhPtNPileUpSPDVtxTimeCut2; //! cluster pt vs number of spd pile-up vertices, time cut +-75 ns
433 TH2F * fhPtNPileUpTrkVtxTimeCut2; //! cluster pt vs number of track pile-up vertices, time cut +- 75 ns
434
435 TH2F * fhPtPhotonNPileUpSPDVtx; //! photon pt vs number of spd pile-up vertices
436 TH2F * fhPtPhotonNPileUpTrkVtx; //! photon pt vs number of track pile-up vertices
437 TH2F * fhPtPhotonNPileUpSPDVtxTimeCut; //! photon pt vs number of spd pile-up vertices, time cut +-25 ns
438 TH2F * fhPtPhotonNPileUpTrkVtxTimeCut; //! photon pt vs number of track pile-up vertices, time cut +- 25 ns
439 TH2F * fhPtPhotonNPileUpSPDVtxTimeCut2; //! photon pt vs number of spd pile-up vertices, time cut +-75 ns
440 TH2F * fhPtPhotonNPileUpTrkVtxTimeCut2; //! photon pt vs number of track pile-up vertices, time cut +- 75 ns
0f7e7205 441
379cd093 442 TH2F * fhEClusterSM ; //! cluster E distribution per SM, before any selection, after reader
443 TH2F * fhEPhotonSM ; //! photon-like cluster E distribution per SM
444 TH2F * fhPtClusterSM; //! cluster E distribution per SM, before any selection, after reader
445 TH2F * fhPtPhotonSM ; //! photon-like cluster E distribution per SM
446
09273901 447 AliAnaPhoton( const AliAnaPhoton & g) ; // cpy ctor
c5693f62 448 AliAnaPhoton & operator = (const AliAnaPhoton & g) ; // cpy assignment
449
379cd093 450 ClassDef(AliAnaPhoton,36)
6639984f 451
1c5acb87 452} ;
453
1c5acb87 454#endif//ALIANAPHOTON_H
455
456
457