]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGGA/CaloTrackCorrelations/AliAnaPhoton.h
fix compilation warning
[u/mrichter/AliRoot.git] / PWGGA / CaloTrackCorrelations / AliAnaPhoton.h
CommitLineData
1c5acb87 1#ifndef ALIANAPHOTON_H
2#define ALIANAPHOTON_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
1c5acb87 5
6//_________________________________________________________________________
7//
8// Class for the photon identification.
9// Clusters from calorimeters are identified as photons
10// and kept in the AOD. Few histograms produced.
6175da48 11// Produces input for other analysis classes like AliAnaPi0,
12// AliAnaParticleHadronCorrelation ...
1c5acb87 13//
14
15//-- Author: Gustavo Conesa (INFN-LNF)
16
17// --- ROOT system ---
18class TH2F ;
123fc3bd 19class TH1F;
1c5acb87 20class TString ;
0c1383b5 21class TObjString;
5812a064 22class TList ;
1c5acb87 23
24// --- ANALYSIS system ---
745913ae 25#include "AliAnaCaloTrackCorrBaseClass.h"
1c5acb87 26
745913ae 27class AliAnaPhoton : public AliAnaCaloTrackCorrBaseClass {
1c5acb87 28
78219bac 29 public:
5812a064 30 AliAnaPhoton() ; // default ctor
31 virtual ~AliAnaPhoton() { ; } // virtual dtor
0c1383b5 32
6175da48 33 //---------------------------------------
34 // General analysis frame methods
35 //---------------------------------------
c4a7d28a 36
0c1383b5 37 TObjString * GetAnalysisCuts();
6175da48 38
0c1383b5 39 TList * GetCreateOutputObjects();
c4a7d28a 40
6175da48 41 void Init();
6639984f 42
6175da48 43 void InitParameters();
44
45 void MakeAnalysisFillAOD() ;
46
47 void MakeAnalysisFillHistograms() ;
1c5acb87 48
6175da48 49 void Print(const Option_t * opt)const;
521636d2 50
3d5d5078 51
52 // Analysis methods
53
22ad7981 54 Bool_t ClusterSelected(AliVCluster* cl, TLorentzVector mom, Int_t nlm) ;
1c5acb87 55
3d5d5078 56 void FillAcceptanceHistograms();
57
22ad7981 58 void FillShowerShapeHistograms( AliVCluster* cluster, Int_t mcTag) ;
3d5d5078 59
60 void SwitchOnFillShowerShapeHistograms() { fFillSSHistograms = kTRUE ; }
61 void SwitchOffFillShowerShapeHistograms() { fFillSSHistograms = kFALSE ; }
62
764ab1f4 63 void SwitchOnOnlySimpleSSHistoFill() { fFillOnlySimpleSSHisto = kTRUE ; }
64 void SwitchOffOnlySimpleHistoFill() { fFillOnlySimpleSSHisto = kFALSE ; }
65
22ad7981 66 void FillTrackMatchingResidualHistograms(AliVCluster* calo, Int_t cut);
4bfeae64 67
68 void SwitchOnTMHistoFill() { fFillTMHisto = kTRUE ; }
69 void SwitchOffTMHistoFill() { fFillTMHisto = kFALSE ; }
70
22ad7981 71 void FillPileUpHistograms(Float_t energy, Float_t pt, Float_t time) ;
acd56ca4 72 void FillPileUpHistogramsPerEvent(TObjArray * clusters) ;
73
2ad19c3d 74 void SwitchOnFillPileUpHistograms() { fFillPileUpHistograms = kTRUE ; }
75 void SwitchOffFillPileUpHistograms() { fFillPileUpHistograms = kFALSE ; }
3d5d5078 76
6175da48 77 // Analysis parameters setters getters
c4a7d28a 78
521636d2 79 TString GetCalorimeter() const { return fCalorimeter ; }
80 void SetCalorimeter(TString & det) { fCalorimeter = det ; }
81
6175da48 82 // ** Cluster selection methods **
83
c4a7d28a 84 void SetMinDistanceToBadChannel(Float_t m1, Float_t m2, Float_t m3) {
521636d2 85 fMinDist = m1; fMinDist2 = m2; fMinDist3 = m3; }
6175da48 86
c4a7d28a 87 void SetTimeCut(Double_t min, Double_t max) { fTimeCutMin = min;
521636d2 88 fTimeCutMax = max ; }
89 Double_t GetTimeCutMin() const { return fTimeCutMin ; }
90 Double_t GetTimeCutMax() const { return fTimeCutMax ; }
1e86c71e 91
521636d2 92 void SetNCellCut(Int_t n) { fNCellsCut = n ; }
93 Double_t GetNCellCut() const { return fNCellsCut ; }
c4a7d28a 94
9e51e29a 95 void SetNLMCut(Int_t min, Int_t max) { fNLMCutMin = min;
96 fNLMCutMax = max ; }
97 Int_t GetNLMCutMin() const { return fNLMCutMin ; }
98 Int_t GetNLMCutMax() const { return fNLMCutMax ; }
99
100
c4a7d28a 101 Bool_t IsTrackMatchRejectionOn() const { return fRejectTrackMatch ; }
102 void SwitchOnTrackMatchRejection() { fRejectTrackMatch = kTRUE ; }
103 void SwitchOffTrackMatchRejection() { fRejectTrackMatch = kFALSE ; }
09273901 104
f66d95af 105 void FillNOriginHistograms(Int_t n) { fNOriginHistograms = n ;
106 if(n > 14) fNOriginHistograms = 14; }
107 void FillNPrimaryHistograms(Int_t n) { fNPrimaryHistograms= n ;
108 if(n > 7) fNPrimaryHistograms = 7; }
109
3d5d5078 110 // For histograms in arrays, index in the array, corresponding to a particle
c5693f62 111 enum mcTypes { kmcPhoton = 0, kmcPi0Decay = 1, kmcOtherDecay = 2,
112 kmcPi0 = 3, kmcEta = 4, kmcElectron = 5,
113 kmcConversion = 6, kmcOther = 7, kmcAntiNeutron = 8,
114 kmcAntiProton = 9, kmcPrompt = 10, kmcFragmentation = 11,
115 kmcISR = 12, kmcString = 13 };
41121cfe 116
c5693f62 117 enum mcPTypes { kmcPPhoton = 0, kmcPPi0Decay = 1, kmcPOtherDecay = 2, kmcPOther = 3,
118 kmcPPrompt = 4, kmcPFragmentation = 5, kmcPISR = 6 };
f66d95af 119
c5693f62 120 enum mcssTypes { kmcssPhoton = 0, kmcssOther = 1, kmcssPi0 = 2,
121 kmcssEta = 3, kmcssConversion = 4, kmcssElectron = 5 };
3d5d5078 122
1c5acb87 123 private:
124
6175da48 125 TString fCalorimeter ; // Calorimeter where the gamma is searched;
126 Float_t fMinDist ; // Minimal distance to bad channel to accept cluster
127 Float_t fMinDist2; // Cuts on Minimal distance to study acceptance evaluation
128 Float_t fMinDist3; // One more cut on distance used for acceptance-efficiency study
129 Bool_t fRejectTrackMatch ; // If PID on, reject clusters which have an associated TPC track
09273901 130 Bool_t fFillTMHisto; // Fill track matching plots
6175da48 131 Double_t fTimeCutMin ; // Remove clusters/cells with time smaller than this value, in ns
132 Double_t fTimeCutMax ; // Remove clusters/cells with time larger than this value, in ns
133 Int_t fNCellsCut ; // Accept for the analysis clusters with more than fNCellsCut cells
9e51e29a 134 Int_t fNLMCutMin ; // Remove clusters/cells with number of local maxima smaller than this value
135 Int_t fNLMCutMax ; // Remove clusters/cells with number of local maxima larger than this value
c4a7d28a 136 Bool_t fFillSSHistograms ; // Fill shower shape histograms
764ab1f4 137 Bool_t fFillOnlySimpleSSHisto; // Fill selected cluster histograms, selected SS histograms
f66d95af 138 Int_t fNOriginHistograms; // Fill only NOriginHistograms of the 14 defined types
139 Int_t fNPrimaryHistograms; // Fill only NPrimaryHistograms of the 7 defined types
2ad19c3d 140 Bool_t fFillPileUpHistograms; // Fill pile-up related histograms
141
2244659d 142 //Histograms
9e51e29a 143 TH1F * fhClusterCuts[10]; //! control histogram on the different photon selection cuts
c4a7d28a 144 TH2F * fhNCellsE; //! number of cells in cluster vs E
5c46c992 145 TH2F * fhCellsE; //! energy of cells in cluster vs E of cluster
f66d95af 146 TH2F * fhMaxCellDiffClusterE; //! Fraction of energy carried by cell with maximum energy
f15c25da 147 TH2F * fhTimeE; //! time of cluster vs E
148
20218aea 149 TH1F * fhEPhoton ; //! Number of identified photon vs energy
6175da48 150 TH1F * fhPtPhoton ; //! Number of identified photon vs transerse momentum
151 TH2F * fhPhiPhoton ; //! Azimuthal angle of identified photon vs transerse momentum
152 TH2F * fhEtaPhoton ; //! Pseudorapidity of identified photon vs transerse momentum
153 TH2F * fhEtaPhiPhoton ; //! Pseudorapidity vs Phi of identified photon for transerse momentum > 0.5
154 TH2F * fhEtaPhi05Photon ; //! Pseudorapidity vs Phi of identified photon for transerse momentum < 0.5
c8710850 155 TH2F * fhPtCentralityPhoton ; //! centrality vs photon pT
156 TH2F * fhPtEventPlanePhoton ; //! event plane vs photon pT
fedea415 157
521636d2 158 //Shower shape
9e51e29a 159 TH2F * fhNLocMax; //! number of maxima in selected clusters
160
521636d2 161 TH2F * fhDispE; //! cluster dispersion vs E
162 TH2F * fhLam0E; //! cluster lambda0 vs E
163 TH2F * fhLam1E; //! cluster lambda1 vs E
7c65ad18 164
521636d2 165 TH2F * fhDispETRD; //! cluster dispersion vs E, SM covered by TRD
166 TH2F * fhLam0ETRD; //! cluster lambda0 vs E, SM covered by TRD
167 TH2F * fhLam1ETRD; //! cluster lambda1 vs E, SM covered by TRD
7c65ad18 168
b5dbb99b 169 TH2F * fhDispETM; //! cluster dispersion vs E, cut on Track Matching residual
170 TH2F * fhLam0ETM; //! cluster lambda0 vs E, cut on Track Matching residual
171 TH2F * fhLam1ETM; //! cluster lambda1 vs E, cut on Track Matching residual
172
173 TH2F * fhDispETMTRD; //! cluster dispersion vs E, SM covered by TRD, cut on Track Matching residual
174 TH2F * fhLam0ETMTRD; //! cluster lambda0 vs E, SM covered by TRD, cut on Track Matching residual
175 TH2F * fhLam1ETMTRD; //! cluster lambda1 vs E, SM covered by TRD, cut on Track Matching residual
176
521636d2 177 TH2F * fhNCellsLam0LowE; //! number of cells in cluster vs lambda0
178 TH2F * fhNCellsLam1LowE; //! number of cells in cluster vs lambda1
179 TH2F * fhNCellsDispLowE; //! number of cells in cluster vs dispersion
180 TH2F * fhNCellsLam0HighE; //! number of cells in cluster vs lambda0, E>2
181 TH2F * fhNCellsLam1HighE; //! number of cells in cluster vs lambda1, E>2
182 TH2F * fhNCellsDispHighE; //! number of cells in cluster vs dispersion, E>2
183
521636d2 184 TH2F * fhEtaLam0LowE; //! cluster eta vs lambda0, E<2
185 TH2F * fhPhiLam0LowE; //! cluster phi vs lambda0, E<2
186 TH2F * fhEtaLam0HighE; //! cluster eta vs lambda0, E>2
187 TH2F * fhPhiLam0HighE; //! cluster phi vs lambda0, E>2
188 TH2F * fhLam0DispLowE; //! cluster lambda0 vs dispersion, E<2
189 TH2F * fhLam0DispHighE; //! cluster lambda0 vs dispersion, E>2
190 TH2F * fhLam1Lam0LowE; //! cluster lambda1 vs lambda0, E<2
191 TH2F * fhLam1Lam0HighE; //! cluster lambda1 vs lambda0, E>2
192 TH2F * fhDispLam1LowE; //! cluster disp vs lambda1, E<2
193 TH2F * fhDispLam1HighE; //! cluster disp vs lambda1, E>2
7c65ad18 194
34c16486 195 TH2F * fhDispEtaE ; //! shower dispersion in eta direction
196 TH2F * fhDispPhiE ; //! shower dispersion in phi direction
197 TH2F * fhSumEtaE ; //! shower dispersion in eta direction
198 TH2F * fhSumPhiE ; //! shower dispersion in phi direction
199 TH2F * fhSumEtaPhiE ; //! shower dispersion in eta and phi direction
200 TH2F * fhDispEtaPhiDiffE ; //! shower dispersion eta - phi
201 TH2F * fhSphericityE ; //! shower sphericity in eta vs phi
202 TH2F * fhDispSumEtaDiffE ; //! difference of 2 eta dispersions
203 TH2F * fhDispSumPhiDiffE ; //! difference of 2 phi dispersions
d2655d46 204 TH2F * fhDispEtaDispPhi[7] ; //! shower dispersion in eta direction vs phi direction for 5 E bins [0-2],[2-4],[4-6],[6-10],[> 10]
205 TH2F * fhLambda0DispEta[7] ; //! shower shape correlation l0 vs disp eta
206 TH2F * fhLambda0DispPhi[7] ; //! shower shape correlation l0 vs disp phi
bfdcf7fb 207
4c8f7c2e 208 //Fill MC dependent histograms, Origin of this cluster is ...
209
5812a064 210 TH2F * fhMCDeltaE[14] ; //! MC-Reco E distribution coming from MC particle
211 TH2F * fhMCDeltaPt[14] ; //! MC-Reco pT distribution coming from MC particle
212 TH2F * fhMC2E[14] ; //! E distribution, Reco vs MC coming from MC particle
213 TH2F * fhMC2Pt[14] ; //! pT distribution, Reco vs MC coming from MC particle
4c8f7c2e 214
5812a064 215 TH1F * fhMCE[14]; //! Number of identified photon vs cluster energy coming from MC particle
216 TH1F * fhMCPt[14]; //! Number of identified photon vs cluster pT coming from MC particle
217 TH2F * fhMCPhi[14]; //! Phi of identified photon coming from MC particle
218 TH2F * fhMCEta[14]; //! eta of identified photon coming from MC particle
3d5d5078 219
5812a064 220 TH1F * fhEPrimMC[7]; //! Number of generated photon vs energy
221 TH1F * fhPtPrimMC[7]; //! Number of generated photon vs pT
222 TH2F * fhPhiPrimMC[7]; //! Phi of generted photon
223 TH2F * fhYPrimMC[7]; //! Rapidity of generated photon
3d5d5078 224
5812a064 225 TH1F * fhEPrimMCAcc[7]; //! Number of generated photon vs energy, in calorimeter acceptance
226 TH1F * fhPtPrimMCAcc[7]; //! Number of generated photon vs pT, in calorimeter acceptance
227 TH2F * fhPhiPrimMCAcc[7]; //! Phi of generted photon, in calorimeter acceptance
228 TH2F * fhYPrimMCAcc[7]; //! Rapidity of generated photon, in calorimeter acceptance
f66d95af 229
521636d2 230 // Shower Shape MC
231
5812a064 232 TH2F * fhMCELambda0[6] ; //! E vs Lambda0 from MC particle
233 TH2F * fhMCELambda1[6] ; //! E vs Lambda1 from MC particle
234 TH2F * fhMCEDispersion[6] ; //! E vs Dispersion from MC particle
f66d95af 235
5812a064 236 TH2F * fhMCPhotonELambda0NoOverlap ; //! E vs Lambda0 from MC photons, no overlap
237 TH2F * fhMCPhotonELambda0TwoOverlap ; //! E vs Lambda0 from MC photons, 2 particles overlap
238 TH2F * fhMCPhotonELambda0NOverlap ; //! E vs Lambda0 from MC photons, N particles overlap
f66d95af 239
240 TH2F * fhMCLambda0vsClusterMaxCellDiffE0[6]; //! Lambda0 vs fraction of energy of max cell for E < 2 GeV
241 TH2F * fhMCLambda0vsClusterMaxCellDiffE2[6]; //! Lambda0 vs fraction of energy of max cell for 2< E < 6 GeV
242 TH2F * fhMCLambda0vsClusterMaxCellDiffE6[6]; //! Lambda0 vs fraction of energy of max cell for E > 6 GeV
243 TH2F * fhMCNCellsvsClusterMaxCellDiffE0[6]; //! NCells vs fraction of energy of max cell for E < 2
244 TH2F * fhMCNCellsvsClusterMaxCellDiffE2[6]; //! NCells vs fraction of energy of max cell for 2 < E < 6 GeV
245 TH2F * fhMCNCellsvsClusterMaxCellDiffE6[6]; //! NCells vs fraction of energy of max cell for E > 6
246 TH2F * fhMCNCellsE[6]; //! NCells per cluster vs energy
247 TH2F * fhMCMaxCellDiffClusterE[6]; //! Fraction of energy carried by cell with maximum energy
248
34c16486 249 TH2F * fhMCEDispEta[6] ; //! shower dispersion in eta direction
250 TH2F * fhMCEDispPhi[6] ; //! shower dispersion in phi direction
251 TH2F * fhMCESumEtaPhi[6] ; //! shower dispersion in eta vs phi direction
252 TH2F * fhMCEDispEtaPhiDiff[6] ; //! shower dispersion in eta -phi direction
253 TH2F * fhMCESphericity[6] ; //! shower sphericity, eta vs phi
d2655d46 254 TH2F * fhMCDispEtaDispPhi[7][6] ; //! shower dispersion in eta direction vs phi direction for 5 E bins [0-2],[2-4],[4-6],[6-10],[> 10]
255 TH2F * fhMCLambda0DispEta[7][6] ; //! shower shape correlation l0 vs disp eta
256 TH2F * fhMCLambda0DispPhi[7][6] ; //! shower shape correlation l0 vs disp phi
34c16486 257
3d5d5078 258 //Embedding
5812a064 259 TH2F * fhEmbeddedSignalFractionEnergy ; //! Fraction of photon energy of embedded signal vs cluster energy
3d5d5078 260
5812a064 261 TH2F * fhEmbedPhotonELambda0FullSignal ; //! Lambda0 vs E for embedded photons with more than 90% of the cluster energy
262 TH2F * fhEmbedPhotonELambda0MostlySignal ; //! Lambda0 vs E for embedded photons with 90%<fraction<50%
263 TH2F * fhEmbedPhotonELambda0MostlyBkg ; //! Lambda0 vs E for embedded photons with 50%<fraction<10%
264 TH2F * fhEmbedPhotonELambda0FullBkg ; //! Lambda0 vs E for embedded photons with less than 10% of the cluster energy
3d5d5078 265
5812a064 266 TH2F * fhEmbedPi0ELambda0FullSignal ; //! Lambda0 vs E for embedded photons with more than 90% of the cluster energy
267 TH2F * fhEmbedPi0ELambda0MostlySignal ; //! Lambda0 vs E for embedded photons with 90%<fraction<50%
268 TH2F * fhEmbedPi0ELambda0MostlyBkg ; //! Lambda0 vs E for embedded photons with 50%<fraction<10%
269 TH2F * fhEmbedPi0ELambda0FullBkg ; //! Lambda0 vs E for embedded photons with less than 10% of the cluster energy
3d5d5078 270
09273901 271 // Track Matching
4bfeae64 272 TH2F * fhTrackMatchedDEta[2] ; //! Eta distance between track and cluster vs cluster E, after and before photon cuts
273 TH2F * fhTrackMatchedDPhi[2] ; //! Phi distance between track and cluster vs cluster E, after and before photon cuts
274 TH2F * fhTrackMatchedDEtaDPhi[2] ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV, after and before photon cuts
275
276 TH2F * fhTrackMatchedDEtaTRD[2] ; //! Eta distance between track and cluster vs cluster E, after and before photon cuts, behind TRD
277 TH2F * fhTrackMatchedDPhiTRD[2] ; //! Phi distance between track and cluster vs cluster E, after and before photon cuts, behind TRD
278
279 TH2F * fhTrackMatchedDEtaMCOverlap[2] ; //! Eta distance between track and cluster vs cluster E, several particle overlap, after and before photon cuts
280 TH2F * fhTrackMatchedDPhiMCOverlap[2] ; //! Phi distance between track and cluster vs cluster E, several particle overlap, after and before photon cuts
281 TH2F * fhTrackMatchedDEtaMCNoOverlap[2]; //! Eta distance between track and cluster vs cluster E, not other particle overlap, after and before photon cuts
282 TH2F * fhTrackMatchedDPhiMCNoOverlap[2]; //! Phi distance between track and cluster vs cluster E, not other particle overlap, after and before photon cuts
283 TH2F * fhTrackMatchedDEtaMCConversion[2]; //! Eta distance between track and cluster vs cluster E, originated in conversion, after and before photon cuts
284 TH2F * fhTrackMatchedDPhiMCConversion[2]; //! Phi distance between track and cluster vs cluster E, originated in conversion, after and before photon cuts
285
286 TH2F * fhTrackMatchedMCParticle[2]; //! Trace origin of matched particle
287 TH2F * fhdEdx[2]; //! matched track dEdx vs cluster E, after and before photon cuts
288 TH2F * fhEOverP[2]; //! matched track E cluster over P track vs cluster E, after dEdx cut, after and before photon cuts
289 TH2F * fhEOverPTRD[2]; //! matched track E cluster over P track vs cluster E, after dEdx cut, after and before photon cuts, behind TRD
31ae6d59 290
2ad19c3d 291 // Pile-up
fad96885 292 TH1F * fhPtPileUp[7]; //! pT distribution of clusters before any selection
293 TH1F * fhPtChargedPileUp[7]; //! pT distribution of track matched clusters
5e5e056f 294 TH1F * fhPtPhotonPileUp[7]; //! pT distribution of selected photons
fad96885 295 TH2F * fhLambda0PileUp[7]; //! E vs M02 distribution of clusters, before any selection
296 TH2F * fhLambda0ChargedPileUp[7]; //! E vs M02 distribution of clusters, track matched clusters
297 TH2F * fhClusterTimeDiffPileUp[7]; //! E vs Time difference inside cluster, before any selection
298 TH2F * fhClusterTimeDiffChargedPileUp[7]; //! E vs Time difference inside cluster for track matched clusters
299 TH2F * fhClusterTimeDiffPhotonPileUp[7]; //! E vs Time difference inside cluster for selected photons
650d1938 300 TH2F * fhClusterEFracLongTimePileUp[7]; //! E vs fraction of cluster energy from cells with large time
5e5e056f 301 TH2F * fhTimeENoCut; //! time of cluster vs E, no cut
2ad19c3d 302 TH2F * fhTimeESPD; //! time of cluster vs E, IsSPDPileUp
303 TH2F * fhTimeESPDMulti; //! time of cluster vs E, IsSPDPileUpMulti
304 TH2F * fhTimeNPileUpVertSPD; //! time of cluster vs n pile-up vertices from SPD
305 TH2F * fhTimeNPileUpVertTrack; //! time of cluster vs n pile-up vertices from Tracks
306 TH2F * fhTimeNPileUpVertContributors; //! time of cluster vs n pile-up vertex from SPD contributors
307 TH2F * fhTimePileUpMainVertexZDistance; //! time of cluster vs difference of z main vertex and pile-up vertex
308 TH2F * fhTimePileUpMainVertexZDiamond; //! time of cluster vs difference of z diamond and pile-up vertex
acd56ca4 309 TH2F * fhClusterMultSPDPileUp[4]; //! E max cluster vs event cluster multiplicity, for tmax-tdiff cuts, pile up event
310 TH2F * fhClusterMultNoPileUp[4]; //! E max cluster vs event cluster multiplicity, for tmax-tdiff cuts, not pile up event
fedea415 311 TH2F * fhEtaPhiBC0; //! eta/phi of clusters in BC=0
312 TH2F * fhEtaPhiBCPlus; //! eta/phi of clusters in BC>0
313 TH2F * fhEtaPhiBCMinus; //! eta/phi of clusters in BC<0
314 TH2F * fhEtaPhiBC0PileUpSPD; //! eta/phi of clusters in BC=0, SPD pile-up
315 TH2F * fhEtaPhiBCPlusPileUpSPD; //! eta/phi of clusters in BC>0, SPD pile-up
316 TH2F * fhEtaPhiBCMinusPileUpSPD; //! eta/phi of clusters in BC<0, SPD pile-up
317
09273901 318 AliAnaPhoton( const AliAnaPhoton & g) ; // cpy ctor
c5693f62 319 AliAnaPhoton & operator = (const AliAnaPhoton & g) ; // cpy assignment
320
c8710850 321 ClassDef(AliAnaPhoton,29)
6639984f 322
1c5acb87 323} ;
324
1c5acb87 325#endif//ALIANAPHOTON_H
326
327
328