]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGGA/CaloTrackCorrelations/AliAnaPhoton.h
move common switchs and settings declared by each analysis to base class:Calo name...
[u/mrichter/AliRoot.git] / PWGGA / CaloTrackCorrelations / AliAnaPhoton.h
CommitLineData
1c5acb87 1#ifndef ALIANAPHOTON_H
2#define ALIANAPHOTON_H
3/* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
4 * See cxx source for full Copyright notice */
1c5acb87 5
6//_________________________________________________________________________
7//
8// Class for the photon identification.
9// Clusters from calorimeters are identified as photons
10// and kept in the AOD. Few histograms produced.
6175da48 11// Produces input for other analysis classes like AliAnaPi0,
12// AliAnaParticleHadronCorrelation ...
1c5acb87 13//
14
15//-- Author: Gustavo Conesa (INFN-LNF)
16
17// --- ROOT system ---
18class TH2F ;
123fc3bd 19class TH1F;
1c5acb87 20class TString ;
0c1383b5 21class TObjString;
5812a064 22class TList ;
1c5acb87 23
24// --- ANALYSIS system ---
745913ae 25#include "AliAnaCaloTrackCorrBaseClass.h"
1c5acb87 26
745913ae 27class AliAnaPhoton : public AliAnaCaloTrackCorrBaseClass {
1c5acb87 28
78219bac 29 public:
5812a064 30 AliAnaPhoton() ; // default ctor
31 virtual ~AliAnaPhoton() { ; } // virtual dtor
0c1383b5 32
6175da48 33 //---------------------------------------
34 // General analysis frame methods
35 //---------------------------------------
c4a7d28a 36
0c1383b5 37 TObjString * GetAnalysisCuts();
6175da48 38
0c1383b5 39 TList * GetCreateOutputObjects();
c4a7d28a 40
6175da48 41 void Init();
6639984f 42
6175da48 43 void InitParameters();
44
45 void MakeAnalysisFillAOD() ;
46
47 void MakeAnalysisFillHistograms() ;
1c5acb87 48
6175da48 49 void Print(const Option_t * opt)const;
521636d2 50
3d5d5078 51
52 // Analysis methods
53
22ad7981 54 Bool_t ClusterSelected(AliVCluster* cl, TLorentzVector mom, Int_t nlm) ;
1c5acb87 55
3d5d5078 56 void FillAcceptanceHistograms();
b2e375c7 57
22ad7981 58 void FillShowerShapeHistograms( AliVCluster* cluster, Int_t mcTag) ;
3d5d5078 59
c2a62a94 60 void SwitchOnFillShowerShapeHistograms() { fFillSSHistograms = kTRUE ; }
61 void SwitchOffFillShowerShapeHistograms() { fFillSSHistograms = kFALSE ; }
3d5d5078 62
764ab1f4 63 void SwitchOnOnlySimpleSSHistoFill() { fFillOnlySimpleSSHisto = kTRUE ; }
64 void SwitchOffOnlySimpleHistoFill() { fFillOnlySimpleSSHisto = kFALSE ; }
65
22ad7981 66 void FillTrackMatchingResidualHistograms(AliVCluster* calo, Int_t cut);
4bfeae64 67
c2a62a94 68 void SwitchOnTMHistoFill() { fFillTMHisto = kTRUE ; }
69 void SwitchOffTMHistoFill() { fFillTMHisto = kFALSE ; }
4bfeae64 70
bc41680b 71 void FillPileUpHistograms(AliVCluster* cluster, AliVCaloCells *cells) ;
0cea6003 72
6175da48 73 // Analysis parameters setters getters
521636d2 74
6175da48 75 // ** Cluster selection methods **
76
c4a7d28a 77 void SetMinDistanceToBadChannel(Float_t m1, Float_t m2, Float_t m3) {
521636d2 78 fMinDist = m1; fMinDist2 = m2; fMinDist3 = m3; }
6175da48 79
c4a7d28a 80 void SetTimeCut(Double_t min, Double_t max) { fTimeCutMin = min;
521636d2 81 fTimeCutMax = max ; }
82 Double_t GetTimeCutMin() const { return fTimeCutMin ; }
83 Double_t GetTimeCutMax() const { return fTimeCutMax ; }
1e86c71e 84
521636d2 85 void SetNCellCut(Int_t n) { fNCellsCut = n ; }
86 Double_t GetNCellCut() const { return fNCellsCut ; }
c4a7d28a 87
c2a62a94 88 void SetNLMCut(Int_t min, Int_t max) { fNLMCutMin = min;
9e51e29a 89 fNLMCutMax = max ; }
c2a62a94 90 Int_t GetNLMCutMin() const { return fNLMCutMin ; }
91 Int_t GetNLMCutMax() const { return fNLMCutMax ; }
9e51e29a 92
c4a7d28a 93 Bool_t IsTrackMatchRejectionOn() const { return fRejectTrackMatch ; }
94 void SwitchOnTrackMatchRejection() { fRejectTrackMatch = kTRUE ; }
95 void SwitchOffTrackMatchRejection() { fRejectTrackMatch = kFALSE ; }
09273901 96
f66d95af 97 void FillNOriginHistograms(Int_t n) { fNOriginHistograms = n ;
98 if(n > 14) fNOriginHistograms = 14; }
99 void FillNPrimaryHistograms(Int_t n) { fNPrimaryHistograms= n ;
f1c9c78f 100 if(n > 6) fNPrimaryHistograms = 6; }
f66d95af 101
3d5d5078 102 // For histograms in arrays, index in the array, corresponding to a particle
c5693f62 103 enum mcTypes { kmcPhoton = 0, kmcPi0Decay = 1, kmcOtherDecay = 2,
104 kmcPi0 = 3, kmcEta = 4, kmcElectron = 5,
105 kmcConversion = 6, kmcOther = 7, kmcAntiNeutron = 8,
106 kmcAntiProton = 9, kmcPrompt = 10, kmcFragmentation = 11,
107 kmcISR = 12, kmcString = 13 };
41121cfe 108
f1c9c78f 109 enum mcPTypes { kmcPPhoton = 0, kmcPPi0Decay = 1, kmcPOtherDecay = 2,
110 kmcPPrompt = 3, kmcPFragmentation = 4, kmcPISR = 5 };
f66d95af 111
c5693f62 112 enum mcssTypes { kmcssPhoton = 0, kmcssOther = 1, kmcssPi0 = 2,
113 kmcssEta = 3, kmcssConversion = 4, kmcssElectron = 5 };
3d5d5078 114
1c5acb87 115 private:
116
126b8c62 117 Float_t fMinDist ; // Minimal distance to bad channel to accept cluster
118 Float_t fMinDist2; // Cuts on Minimal distance to study acceptance evaluation
119 Float_t fMinDist3; // One more cut on distance used for acceptance-efficiency study
120 Bool_t fRejectTrackMatch ; // If PID on, reject clusters which have an associated TPC track
121 Bool_t fFillTMHisto; // Fill track matching plots
122 Double_t fTimeCutMin ; // Remove clusters/cells with time smaller than this value, in ns
123 Double_t fTimeCutMax ; // Remove clusters/cells with time larger than this value, in ns
124 Int_t fNCellsCut ; // Accept for the analysis clusters with more than fNCellsCut cells
125 Int_t fNLMCutMin ; // Remove clusters/cells with number of local maxima smaller than this value
126 Int_t fNLMCutMax ; // Remove clusters/cells with number of local maxima larger than this value
127 Bool_t fFillSSHistograms ; // Fill shower shape histograms
128 Bool_t fFillOnlySimpleSSHisto; // Fill selected cluster histograms, selected SS histograms
129 Int_t fNOriginHistograms; // Fill only NOriginHistograms of the 14 defined types
130 Int_t fNPrimaryHistograms; // Fill only NPrimaryHistograms of the 7 defined types
2ad19c3d 131
2244659d 132 //Histograms
58ea8ce5 133 TH1F * fhClusterCutsE [10]; //! control histogram on the different photon selection cuts, E
134 TH1F * fhClusterCutsPt[10]; //! control histogram on the different photon selection cuts, pT
126b8c62 135 TH2F * fhNCellsE; //! number of cells in cluster vs E
136 TH2F * fhCellsE; //! energy of cells in cluster vs E of cluster
137 TH2F * fhMaxCellDiffClusterE; //! Fraction of energy carried by cell with maximum energy
138 TH2F * fhTimePt; //! time of photon cluster vs pt
126b8c62 139 TH2F * fhEtaPhi ; //! Pseudorapidity vs Phi of clusters for E > 0.5
126b8c62 140
141 TH1F * fhEPhoton ; //! Number of identified photon vs energy
142 TH1F * fhPtPhoton ; //! Number of identified photon vs transerse momentum
143 TH2F * fhPhiPhoton ; //! Azimuthal angle of identified photon vs transerse momentum
144 TH2F * fhEtaPhoton ; //! Pseudorapidity of identified photon vs transerse momentum
145 TH2F * fhEtaPhiPhoton ; //! Pseudorapidity vs Phi of identified photon for E > 0.5
146 TH2F * fhEtaPhi05Photon ; //! Pseudorapidity vs Phi of identified photon for E < 0.5
126b8c62 147
148 TH2F * fhPtCentralityPhoton ; //! centrality vs photon pT
149 TH2F * fhPtEventPlanePhoton ; //! event plane vs photon pT
fedea415 150
521636d2 151 //Shower shape
126b8c62 152 TH2F * fhNLocMax; //! number of maxima in selected clusters
153
154 TH2F * fhDispE; //! cluster dispersion vs E
155 TH2F * fhLam0E; //! cluster lambda0 vs E
156 TH2F * fhLam1E; //! cluster lambda1 vs E
157
158 TH2F * fhDispETRD; //! cluster dispersion vs E, SM covered by TRD
159 TH2F * fhLam0ETRD; //! cluster lambda0 vs E, SM covered by TRD
160 TH2F * fhLam1ETRD; //! cluster lambda1 vs E, SM covered by TRD
161
162 TH2F * fhDispETM; //! cluster dispersion vs E, cut on Track Matching residual
163 TH2F * fhLam0ETM; //! cluster lambda0 vs E, cut on Track Matching residual
164 TH2F * fhLam1ETM; //! cluster lambda1 vs E, cut on Track Matching residual
165
166 TH2F * fhDispETMTRD; //! cluster dispersion vs E, SM covered by TRD, cut on Track Matching residual
167 TH2F * fhLam0ETMTRD; //! cluster lambda0 vs E, SM covered by TRD, cut on Track Matching residual
168 TH2F * fhLam1ETMTRD; //! cluster lambda1 vs E, SM covered by TRD, cut on Track Matching residual
169
170 TH2F * fhNCellsLam0LowE; //! number of cells in cluster vs lambda0
171 TH2F * fhNCellsLam1LowE; //! number of cells in cluster vs lambda1
172 TH2F * fhNCellsDispLowE; //! number of cells in cluster vs dispersion
173 TH2F * fhNCellsLam0HighE; //! number of cells in cluster vs lambda0, E>2
174 TH2F * fhNCellsLam1HighE; //! number of cells in cluster vs lambda1, E>2
175 TH2F * fhNCellsDispHighE; //! number of cells in cluster vs dispersion, E>2
176
177 TH2F * fhEtaLam0LowE; //! cluster eta vs lambda0, E<2
178 TH2F * fhPhiLam0LowE; //! cluster phi vs lambda0, E<2
179 TH2F * fhEtaLam0HighE; //! cluster eta vs lambda0, E>2
180 TH2F * fhPhiLam0HighE; //! cluster phi vs lambda0, E>2
181 TH2F * fhLam0DispLowE; //! cluster lambda0 vs dispersion, E<2
182 TH2F * fhLam0DispHighE; //! cluster lambda0 vs dispersion, E>2
183 TH2F * fhLam1Lam0LowE; //! cluster lambda1 vs lambda0, E<2
184 TH2F * fhLam1Lam0HighE; //! cluster lambda1 vs lambda0, E>2
185 TH2F * fhDispLam1LowE; //! cluster disp vs lambda1, E<2
186 TH2F * fhDispLam1HighE; //! cluster disp vs lambda1, E>2
7c65ad18 187
126b8c62 188 TH2F * fhDispEtaE ; //! shower dispersion in eta direction
189 TH2F * fhDispPhiE ; //! shower dispersion in phi direction
190 TH2F * fhSumEtaE ; //! shower dispersion in eta direction
191 TH2F * fhSumPhiE ; //! shower dispersion in phi direction
192 TH2F * fhSumEtaPhiE ; //! shower dispersion in eta and phi direction
193 TH2F * fhDispEtaPhiDiffE ; //! shower dispersion eta - phi
194 TH2F * fhSphericityE ; //! shower sphericity in eta vs phi
195 TH2F * fhDispSumEtaDiffE ; //! difference of 2 eta dispersions
196 TH2F * fhDispSumPhiDiffE ; //! difference of 2 phi dispersions
197 TH2F * fhDispEtaDispPhi[7] ; //! shower dispersion in eta direction vs phi direction for 5 E bins [0-2],[2-4],[4-6],[6-10],[> 10]
198 TH2F * fhLambda0DispEta[7] ; //! shower shape correlation l0 vs disp eta
199 TH2F * fhLambda0DispPhi[7] ; //! shower shape correlation l0 vs disp phi
bfdcf7fb 200
4c8f7c2e 201 //Fill MC dependent histograms, Origin of this cluster is ...
202
126b8c62 203 TH2F * fhMCDeltaE[14] ; //! MC-Reco E distribution coming from MC particle
204 TH2F * fhMCDeltaPt[14] ; //! MC-Reco pT distribution coming from MC particle
205 TH2F * fhMC2E[14] ; //! E distribution, Reco vs MC coming from MC particle
206 TH2F * fhMC2Pt[14] ; //! pT distribution, Reco vs MC coming from MC particle
4c8f7c2e 207
126b8c62 208 TH1F * fhMCE[14]; //! Number of identified photon vs cluster energy coming from MC particle
209 TH1F * fhMCPt[14]; //! Number of identified photon vs cluster pT coming from MC particle
210 TH2F * fhMCPhi[14]; //! Phi of identified photon coming from MC particle
211 TH2F * fhMCEta[14]; //! eta of identified photon coming from MC particle
3d5d5078 212
126b8c62 213 TH1F * fhEPrimMC[7]; //! Number of generated photon vs energy
214 TH1F * fhPtPrimMC[7]; //! Number of generated photon vs pT
215 TH2F * fhPhiPrimMC[7]; //! Phi of generted photon
216 TH2F * fhYPrimMC[7]; //! Rapidity of generated photon
4cf13296 217 TH2F * fhEtaPrimMC[7]; //! Eta of generated photon
3d5d5078 218
126b8c62 219 TH1F * fhEPrimMCAcc[7]; //! Number of generated photon vs energy, in calorimeter acceptance
220 TH1F * fhPtPrimMCAcc[7]; //! Number of generated photon vs pT, in calorimeter acceptance
221 TH2F * fhPhiPrimMCAcc[7]; //! Phi of generted photon, in calorimeter acceptance
4cf13296 222 TH2F * fhEtaPrimMCAcc[7]; //! Phi of generted photon, in calorimeter acceptance
126b8c62 223 TH2F * fhYPrimMCAcc[7]; //! Rapidity of generated photon, in calorimeter acceptance
f66d95af 224
521636d2 225 // Shower Shape MC
126b8c62 226 TH2F * fhMCELambda0[6] ; //! E vs Lambda0 from MC particle
227 TH2F * fhMCELambda1[6] ; //! E vs Lambda1 from MC particle
228 TH2F * fhMCEDispersion[6] ; //! E vs Dispersion from MC particle
229
230 TH2F * fhMCPhotonELambda0NoOverlap ; //! E vs Lambda0 from MC photons, no overlap
231 TH2F * fhMCPhotonELambda0TwoOverlap ; //! E vs Lambda0 from MC photons, 2 particles overlap
232 TH2F * fhMCPhotonELambda0NOverlap ; //! E vs Lambda0 from MC photons, N particles overlap
233
234 TH2F * fhMCLambda0vsClusterMaxCellDiffE0[6]; //! Lambda0 vs fraction of energy of max cell for E < 2 GeV
235 TH2F * fhMCLambda0vsClusterMaxCellDiffE2[6]; //! Lambda0 vs fraction of energy of max cell for 2< E < 6 GeV
236 TH2F * fhMCLambda0vsClusterMaxCellDiffE6[6]; //! Lambda0 vs fraction of energy of max cell for E > 6 GeV
237 TH2F * fhMCNCellsvsClusterMaxCellDiffE0[6]; //! NCells vs fraction of energy of max cell for E < 2
238 TH2F * fhMCNCellsvsClusterMaxCellDiffE2[6]; //! NCells vs fraction of energy of max cell for 2 < E < 6 GeV
239 TH2F * fhMCNCellsvsClusterMaxCellDiffE6[6]; //! NCells vs fraction of energy of max cell for E > 6
240 TH2F * fhMCNCellsE[6]; //! NCells per cluster vs energy
241 TH2F * fhMCMaxCellDiffClusterE[6]; //! Fraction of energy carried by cell with maximum energy
242
243 TH2F * fhMCEDispEta[6] ; //! shower dispersion in eta direction
244 TH2F * fhMCEDispPhi[6] ; //! shower dispersion in phi direction
245 TH2F * fhMCESumEtaPhi[6] ; //! shower dispersion in eta vs phi direction
246 TH2F * fhMCEDispEtaPhiDiff[6] ; //! shower dispersion in eta -phi direction
247 TH2F * fhMCESphericity[6] ; //! shower sphericity, eta vs phi
248 TH2F * fhMCDispEtaDispPhi[7][6] ; //! shower dispersion in eta direction vs phi direction for 5 E bins [0-2],[2-4],[4-6],[6-10],[> 10]
249 TH2F * fhMCLambda0DispEta[7][6] ; //! shower shape correlation l0 vs disp eta
250 TH2F * fhMCLambda0DispPhi[7][6] ; //! shower shape correlation l0 vs disp phi
34c16486 251
3d5d5078 252 //Embedding
126b8c62 253 TH2F * fhEmbeddedSignalFractionEnergy ; //! Fraction of photon energy of embedded signal vs cluster energy
3d5d5078 254
126b8c62 255 TH2F * fhEmbedPhotonELambda0FullSignal ; //! Lambda0 vs E for embedded photons with more than 90% of the cluster energy
256 TH2F * fhEmbedPhotonELambda0MostlySignal ; //! Lambda0 vs E for embedded photons with 90%<fraction<50%
257 TH2F * fhEmbedPhotonELambda0MostlyBkg ; //! Lambda0 vs E for embedded photons with 50%<fraction<10%
258 TH2F * fhEmbedPhotonELambda0FullBkg ; //! Lambda0 vs E for embedded photons with less than 10% of the cluster energy
3d5d5078 259
126b8c62 260 TH2F * fhEmbedPi0ELambda0FullSignal ; //! Lambda0 vs E for embedded photons with more than 90% of the cluster energy
261 TH2F * fhEmbedPi0ELambda0MostlySignal ; //! Lambda0 vs E for embedded photons with 90%<fraction<50%
262 TH2F * fhEmbedPi0ELambda0MostlyBkg ; //! Lambda0 vs E for embedded photons with 50%<fraction<10%
263 TH2F * fhEmbedPi0ELambda0FullBkg ; //! Lambda0 vs E for embedded photons with less than 10% of the cluster energy
3d5d5078 264
09273901 265 // Track Matching
126b8c62 266 TH2F * fhTrackMatchedDEta[2] ; //! Eta distance between track and cluster vs cluster E, after and before photon cuts
267 TH2F * fhTrackMatchedDPhi[2] ; //! Phi distance between track and cluster vs cluster E, after and before photon cuts
268 TH2F * fhTrackMatchedDEtaDPhi[2] ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV, after and before
b2e375c7 269
126b8c62 270 TH2F * fhTrackMatchedDEtaPos[2] ; //! Eta distance between track and cluster vs cluster E, after and before photon cuts
271 TH2F * fhTrackMatchedDPhiPos[2] ; //! Phi distance between track and cluster vs cluster E, after and before photon cuts
272 TH2F * fhTrackMatchedDEtaDPhiPos[2] ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV, after and before
b2e375c7 273
126b8c62 274 TH2F * fhTrackMatchedDEtaNeg[2] ; //! Eta distance between track and cluster vs cluster E, after and before photon cuts
275 TH2F * fhTrackMatchedDPhiNeg[2] ; //! Phi distance between track and cluster vs cluster E, after and before photon cuts
276 TH2F * fhTrackMatchedDEtaDPhiNeg[2] ; //! Eta vs Phi distance between track and cluster, E cluster > 0.5 GeV, after and before photon cuts
4bfeae64 277
126b8c62 278 TH2F * fhTrackMatchedDEtaTRD[2] ; //! Eta distance between track and cluster vs cluster E, after and before photon cuts, behind TRD
279 TH2F * fhTrackMatchedDPhiTRD[2] ; //! Phi distance between track and cluster vs cluster E, after and before photon cuts, behind TRD
4bfeae64 280
126b8c62 281 TH2F * fhTrackMatchedDEtaMCOverlap[2] ; //! Eta distance between track and cluster vs cluster E, several particle overlap, after and before photon cuts
282 TH2F * fhTrackMatchedDPhiMCOverlap[2] ; //! Phi distance between track and cluster vs cluster E, several particle overlap, after and before photon cuts
283 TH2F * fhTrackMatchedDEtaMCNoOverlap[2]; //! Eta distance between track and cluster vs cluster E, not other particle overlap, after and before photon cuts
284 TH2F * fhTrackMatchedDPhiMCNoOverlap[2]; //! Phi distance between track and cluster vs cluster E, not other particle overlap, after and before photon cuts
285 TH2F * fhTrackMatchedDEtaMCConversion[2]; //! Eta distance between track and cluster vs cluster E, originated in conversion, after and before photon cuts
286 TH2F * fhTrackMatchedDPhiMCConversion[2]; //! Phi distance between track and cluster vs cluster E, originated in conversion, after and before photon cuts
4bfeae64 287
126b8c62 288 TH2F * fhTrackMatchedMCParticle[2]; //! Trace origin of matched particle
289 TH2F * fhdEdx[2]; //! matched track dEdx vs cluster E, after and before photon cuts
290 TH2F * fhEOverP[2]; //! matched track E cluster over P track vs cluster E, after dEdx cut, after and before photon cuts
291 TH2F * fhEOverPTRD[2]; //! matched track E cluster over P track vs cluster E, after dEdx cut, after and before photon cuts, behind TRD
31ae6d59 292
2ad19c3d 293 // Pile-up
126b8c62 294 TH1F * fhPtPhotonPileUp[7]; //! pT distribution of selected photons
126b8c62 295 TH2F * fhClusterTimeDiffPhotonPileUp[7]; //! E vs Time difference inside cluster for selected photons
126b8c62 296 TH2F * fhTimePtPhotonNoCut; //! time of photon cluster vs Pt, no cut
297 TH2F * fhTimePtPhotonSPD; //! time of photon cluster vs Pt, IsSPDPileUp
298 TH2F * fhTimeNPileUpVertSPD; //! time of cluster vs n pile-up vertices from SPD
299 TH2F * fhTimeNPileUpVertTrack; //! time of cluster vs n pile-up vertices from Tracks
126b8c62 300
301 TH2F * fhPtPhotonNPileUpSPDVtx; //! photon pt vs number of spd pile-up vertices
302 TH2F * fhPtPhotonNPileUpTrkVtx; //! photon pt vs number of track pile-up vertices
303 TH2F * fhPtPhotonNPileUpSPDVtxTimeCut; //! photon pt vs number of spd pile-up vertices, time cut +-25 ns
304 TH2F * fhPtPhotonNPileUpTrkVtxTimeCut; //! photon pt vs number of track pile-up vertices, time cut +- 25 ns
305 TH2F * fhPtPhotonNPileUpSPDVtxTimeCut2; //! photon pt vs number of spd pile-up vertices, time cut +-75 ns
306 TH2F * fhPtPhotonNPileUpTrkVtxTimeCut2; //! photon pt vs number of track pile-up vertices, time cut +- 75 ns
0f7e7205 307
379cd093 308 TH2F * fhEClusterSM ; //! cluster E distribution per SM, before any selection, after reader
309 TH2F * fhEPhotonSM ; //! photon-like cluster E distribution per SM
310 TH2F * fhPtClusterSM; //! cluster E distribution per SM, before any selection, after reader
311 TH2F * fhPtPhotonSM ; //! photon-like cluster E distribution per SM
312
09273901 313 AliAnaPhoton( const AliAnaPhoton & g) ; // cpy ctor
c5693f62 314 AliAnaPhoton & operator = (const AliAnaPhoton & g) ; // cpy assignment
315
58ea8ce5 316 ClassDef(AliAnaPhoton,37)
6639984f 317
1c5acb87 318} ;
319
1c5acb87 320#endif//ALIANAPHOTON_H
321
322
323