]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGHF/vertexingHF/AliHFPtSpectrum.h
Set bin labels to avoid warning when merging
[u/mrichter/AliRoot.git] / PWGHF / vertexingHF / AliHFPtSpectrum.h
CommitLineData
b188dc47 1#ifndef ALIHFPTSPECTRUM_H
2#define ALIHFPTSPECTRUM_H
3
4/* Copyright(c) 1998-2010, ALICE Experiment at CERN, All rights reserved. *
5 * See cxx source for full Copyright notice */
6
7/* $Id$ */
8
9//***********************************************************************
10// Class AliHFPtSpectrum
11// Base class for feed-down corrections on heavy-flavour decays
12// computes the cross-section via one of the three implemented methods:
13// 0) Consider no feed-down prediction
14// 1) Subtract the feed-down with the "fc" method
15// Yield = Reco * fc; where fc = 1 / ( 1 + (eff_b/eff_c)*(N_b/N_c) ) ;
16// 2) Subtract the feed-down with the "Nb" method
17// Yield = Reco - Feed-down (exact formula on the function implementation)
18//
19// (the corrected yields per bin are divided by the bin-width)
20//
21//
22// In HIC you can also evaluate how the feed-down correction is influenced by an energy loss hypothesis:
23// Raa(c-->D) / Raa(b-->D) defined here as Rcb for the "fc" method
24// Raa(b-->D) defined here as Rb for the "Nb" method
25//
26// Author: Z.Conesa, zconesa@in2p3.fr
27//***********************************************************************
28
29#include "TNamed.h"
30#include "TMath.h"
31
32#include "AliLog.h"
33
34class TH1;
35class TH2;
36class TNtuple;
37class TGraphAsymmErrors;
38
39
40class AliHFPtSpectrum: public TNamed
41{
42
43 public:
44
45 // Constructor
46 AliHFPtSpectrum(const char* name="AliHFPtSpectrum", const char* title="HF feed down correction class", Int_t option=1);
47 // Copy constructor
48 AliHFPtSpectrum(const AliHFPtSpectrum &rhs);
49 // Assignment operator
50 AliHFPtSpectrum& operator=(const AliHFPtSpectrum &source);
51 // Destructor
52 virtual ~AliHFPtSpectrum();
53
54 //
55 // Setters
56 //
57 // Set the theoretical direct & feeddown pt spectrum
58 void SetMCptSpectra(TH1D *hDirect, TH1D *hFeedDown);
59 // Set the theoretical feeddown pt spectrum
60 void SetFeedDownMCptSpectra(TH1D *hFeedDown);
61 // Set the theoretical direct & feeddown pt spectrum upper and lower bounds
62 void SetMCptDistributionsBounds(TH1D *hDirectMax, TH1D *hDirectMin, TH1D *hFeedDownMax, TH1D *hFeedDownMin);
63 // Set the theoretical feeddown pt spectrum upper and lower bounds
64 void SetFeedDownMCptDistributionsBounds(TH1D *hFeedDownMax, TH1D *hFeedDownMin);
65 // Set the acceptance and efficiency corrections for direct
66 void SetDirectAccEffCorrection(TH1D *hDirectEff);
67 // Set the acceptance and efficiency corrections for direct & feeddown
68 void SetAccEffCorrection(TH1D *hDirectEff, TH1D *hFeedDownEff);
69 // Set the reconstructed spectrum
70 void SetReconstructedSpectrum(TH1D *hRec);
71 void SetReconstructedSpectrumSystematics(TGraphAsymmErrors *gRec);
72 // Set the calculation option flag for feed-down correction: 0=none, 1=fc , 2=Nb
73 void SetFeedDownCalculationOption(Int_t option){ fFeedDownOption = option; }
74 // Set if the calculation has to consider asymmetric uncertaInt_ties or not
75 void SetComputeAsymmetricUncertainties(Bool_t flag){ fAsymUncertainties = flag; }
76 // Set if the yield is for particle plus anti-particle or not
77 void SetIsParticlePlusAntiParticleYield(Bool_t flag){
78 if (flag) { fParticleAntiParticle = 2; AliInfo(" Setting for particle + anti-particle yields"); }
79 else { fParticleAntiParticle = 1; AliInfo(" Setting for only (anti)particle yields, not the sum of both"); }
80 }
81 //
82 void SetfIsStatUncEff(Bool_t flag){ fIsStatUncEff = flag; }
83 // Set if the calculation has to consider Ratio(c/b eloss) hypothesis
84 void SetComputeElossHypothesis(Bool_t flag){ fPbPbElossHypothesis = flag; }
85 // Set the luminosity and its uncertainty
86 void SetLuminosity(Double_t luminosity, Double_t unc){
87 fLuminosity[0]=luminosity; fLuminosity[1]=unc;
88 }
89 // Set the trigger efficiency and its uncertainty
90 void SetTriggerEfficiency(Double_t efficiency, Double_t unc){
91 fTrigEfficiency[0]=efficiency; fTrigEfficiency[1]=unc;
92 }
93 // Set global acceptance x efficiency correction uncertainty (in percentages)
94 void SetAccEffPercentageUncertainty(Double_t globalEffUnc, Double_t globalBCEffRatioUnc){
95 fGlobalEfficiencyUncertainties[0] = globalEffUnc;
96 fGlobalEfficiencyUncertainties[1] = globalBCEffRatioUnc;
97 }
98 // Set the normalization factors
99 void SetNormalization(Double_t normalization){
100 fLuminosity[0]=normalization;
101 }
102 void SetNormalization(Int_t nevents, Double_t sigma){
103 fLuminosity[0]=nevents/sigma;
104 fNevts = nevents;
105 }
106 void SetNormalization(Int_t nevents, Double_t sigma, Double_t sigmaunc){
107 fLuminosity[0] = nevents/sigma;
108 fLuminosity[1] = fLuminosity[0] * TMath::Sqrt( (1/nevents) + (sigmaunc/sigma)*(sigmaunc/sigma) );
109 fNevts = nevents;
110 }
111 //
112 // Set the Tab parameter and its uncertainty
113 void SetTabParameter(Double_t tabvalue, Double_t uncertainty){
114 fTab[0] = tabvalue;
115 fTab[1] = uncertainty;
116 }
117
118
119 //
120 // Getters
121 //
122 // Return the theoretical predictions used for the calculation (rebinned if needed)
123 TH1D * GetDirectTheoreticalSpectrum() const { return (fhDirectMCpt ? (TH1D*)fhDirectMCpt : NULL); }
124 TH1D * GetDirectTheoreticalUpperLimitSpectrum() const { return (fhDirectMCptMax ? (TH1D*)fhDirectMCptMax : NULL); }
125 TH1D * GetDirectTheoreticalLowerLimitSpectrum() const { return (fhDirectMCptMin ? (TH1D*)fhDirectMCptMin : NULL); }
126 TH1D * GetFeedDownTheoreticalSpectrum() const { return (fhFeedDownMCpt ? (TH1D*)fhFeedDownMCpt : NULL); }
127 TH1D * GetFeedDownTheoreticalUpperLimitSpectrum() const { return (fhFeedDownMCptMax ? (TH1D*)fhFeedDownMCptMax : NULL); }
128 TH1D * GetFeedDownTheoreticalLowerLimitSpectrum() const { return (fhFeedDownMCptMin ? (TH1D*)fhFeedDownMCptMin : NULL); }
129 // Return the acceptance and efficiency corrections (rebinned if needed)
130 TH1D * GetDirectAccEffCorrection() const { return (fhDirectEffpt ? (TH1D*)fhDirectEffpt : NULL); }
131 TH1D * GetFeedDownAccEffCorrection() const { return (fhFeedDownEffpt ? (TH1D*)fhFeedDownEffpt : NULL); }
132 // Return whether the Ratio(c/b eloss) hypothesis has been considered
133 Bool_t IsElossHypothesisCalculated(){ return fPbPbElossHypothesis; }
134 // Return the TGraphAsymmErrors of the feed-down correction (extreme systematics)
135 TGraphAsymmErrors * GetFeedDownCorrectionFcExtreme() const { return (fgFcExtreme ? fgFcExtreme : NULL); }
136 // Return the TGraphAsymmErrors of the feed-down correction (conservative systematics)
137 TGraphAsymmErrors * GetFeedDownCorrectionFcConservative() const { return (fgFcConservative ? fgFcConservative : NULL); }
138 // Return the histogram of the feed-down correction
139 TH1D * GetHistoFeedDownCorrectionFc() const { return (fhFc ? (TH1D*)fhFc : NULL); }
140 // Return the histograms of the feed-down correction bounds
141 TH1D * GetHistoUpperLimitFeedDownCorrectionFc() const { return (fhFcMax ? (TH1D*)fhFcMax : NULL); }
142 TH1D * GetHistoLowerLimitFeedDownCorrectionFc() const { return (fhFcMin ? (TH1D*)fhFcMin : NULL); }
143 // Return the histogram of the feed-down correction times the Ratio(c/b eloss)
144 TH2D * GetHistoFeedDownCorrectionFcVsEloss() const { return (fhFcRcb ? (TH2D*)fhFcRcb : NULL); }
145 // Return the TGraphAsymmErrors of the yield after feed-down correction (systematics but feed-down)
146 TGraphAsymmErrors * GetFeedDownCorrectedSpectrum() const { return (fgYieldCorr ? fgYieldCorr : NULL); }
147 // Return the TGraphAsymmErrors of the yield after feed-down correction (feed-down extreme systematics)
148 TGraphAsymmErrors * GetFeedDownCorrectedSpectrumExtreme() const { return (fgYieldCorrExtreme ? fgYieldCorrExtreme : NULL); }
149 // Return the TGraphAsymmErrors of the yield after feed-down correction (feed-down conservative systematics)
150 TGraphAsymmErrors * GetFeedDownCorrectedSpectrumConservative() const { return (fgYieldCorrConservative ? fgYieldCorrConservative : NULL); }
151 // Return the histogram of the yield after feed-down correction
152 TH1D * GetHistoFeedDownCorrectedSpectrum() const { return (fhYieldCorr ? (TH1D*)fhYieldCorr : NULL); }
153 // Return the histogram of the yield after feed-down correction bounds
154 TH1D * GetHistoUpperLimitFeedDownCorrectedSpectrum() const { return (fhYieldCorrMax ? (TH1D*)fhYieldCorrMax : NULL); }
155 TH1D * GetHistoLowerLimitFeedDownCorrectedSpectrum() const { return (fhYieldCorrMin ? (TH1D*)fhYieldCorrMin : NULL); }
156 // Return the histogram of the yield after feed-down correction vs the Ratio(c/b eloss)
157 TH2D * GetHistoFeedDownCorrectedSpectrumVsEloss() const { return (fhYieldCorrRcb ? (TH2D*)fhYieldCorrRcb : NULL); }
158 // Return the equivalent invariant cross-section TGraphAsymmErrors (systematics but feed-down)
159 TGraphAsymmErrors * GetCrossSectionFromYieldSpectrum() const { return (fgSigmaCorr ? fgSigmaCorr : NULL); }
160 // Return the equivalent invariant cross-section TGraphAsymmErrors (feed-down extreme systematics)
161 TGraphAsymmErrors * GetCrossSectionFromYieldSpectrumExtreme() const { return (fgSigmaCorrExtreme ? fgSigmaCorrExtreme : NULL); }
162 // Return the equivalent invariant cross-section TGraphAsymmErrors (feed-down conservative systematics)
163 TGraphAsymmErrors * GetCrossSectionFromYieldSpectrumConservative() const { return (fgSigmaCorrConservative ? fgSigmaCorrConservative : NULL); }
164 // Return the equivalent invariant cross-section histogram
165 TH1D * GetHistoCrossSectionFromYieldSpectrum() const { return (fhSigmaCorr ? (TH1D*)fhSigmaCorr : NULL); }
166 // Return the equivalent invariant cross-section histogram bounds
167 TH1D * GetHistoUpperLimitCrossSectionFromYieldSpectrum() const { return (fhSigmaCorrMax ? (TH1D*)fhSigmaCorrMax : NULL); }
168 TH1D * GetHistoLowerLimitCrossSectionFromYieldSpectrum() const { return (fhSigmaCorrMin ? (TH1D*)fhSigmaCorrMin : NULL); }
169 // Return the cross section systematics from data systematics
170 TH1D * GetHistoCrossSectionDataSystematics() const { return (fhSigmaCorrDataSyst ? (TH1D*)fhSigmaCorrDataSyst : NULL); }
171 //
172 // PbPb special calculations
173 // Return the equivalent invariant cross-section histogram vs the Ratio(c/b eloss)
174 TH2D * GetHistoCrossSectionFromYieldSpectrumVsEloss() const { return (fhSigmaCorrRcb ? (TH2D*)fhSigmaCorrRcb : NULL); }
175 // Return the ntuple of the calculation vs the Ratio(c/b eloss)
176 TNtuple * GetNtupleCrossSectionVsEloss() { return (fnSigma ? (TNtuple*)fnSigma : NULL); }
177 //
178 //
179 // Histograms to keep track of the influence of the efficiencies statistical uncertainty on the cross-section
180 TH1D * GetDirectStatEffUncOnSigma() const { return (TH1D*)fhStatUncEffcSigma; }
181 TH1D * GetFeedDownStatEffUncOnSigma() const { return (TH1D*)fhStatUncEffbSigma; }
182 // Histograms to keep track of the influence of the efficiencies statistical uncertainty on the feed-down correction factor
183 TH1D * GetDirectStatEffUncOnFc() const { return (TH1D*)fhStatUncEffcFD; }
184 TH1D * GetFeedDownStatEffUncOnFc() const { return (TH1D*)fhStatUncEffbFD; }
185
186
187 //
188 // Main function:
189 // Compute the invariant cross-section from the yield (correct it)
190 // variables : analysed delta_y, BR for the final correction, BR b --> decay (relative to the input theoretical prediction)
191 void ComputeHFPtSpectrum(Double_t deltaY=1.0, Double_t branchingRatioC=1.0, Double_t branchingRatioBintoFinalDecay=1.0);
192
193 // Compute the systematic uncertainties
194 // taking as input the AliHFSystErr uncertainties
195 void ComputeSystUncertainties(AliHFSystErr *systematics, Bool_t combineFeedDown);
196 //
197 // Drawing the corrected spectrum comparing to theoretical prediction
198 void DrawSpectrum(TGraphAsymmErrors *gPrediction);
199
200 //
201 // Basic functions
202 //
203 void EstimateAndSetDirectEfficiencyRecoBin(TH1D *hSimu, TH1D *hReco);
204 void EstimateAndSetFeedDownEfficiencyRecoBin(TH1D *hSimu, TH1D *hReco);
205
206 //
207 // Functions to reweight histograms for testing purposes:
208 // to reweight the simulation: hToReweight is reweighted as hReference/hToReweight
209 TH1D * ReweightHisto(TH1D *hToReweight, TH1D *hReference);
210 // to reweight the reco-histos: hRecToReweight is reweighted as hReference/hMCToReweight
211 TH1D * ReweightRecHisto(TH1D *hRecToReweight, TH1D *hMCToReweight, TH1D *hMCReference);
212 // Functionality to find the y-axis bin of a TH2 for a given y-value
213 Int_t FindTH2YBin(TH2D *histo, Float_t yvalue);
214
215
216 protected:
217
218 // Initialization
219 Bool_t Initialize();
220
221 // Basic functions
222 //
223 // Compute the feed-down correction via fc-method
224 void CalculateFeedDownCorrectionFc();
225 // Correct the yield for feed-down correction via fc-method
226 void CalculateFeedDownCorrectedSpectrumFc();
227 // Correct the yield for feed-down correction via Nb-method
228 void CalculateFeedDownCorrectedSpectrumNb(Double_t deltaY, Double_t branchingRatioBintoFinalDecay);
229
230 // Check histograms consistency function
231 Bool_t CheckHistosConsistency(TH1D *h1, TH1D *h2);
232 // Function to rebin the theoretical spectra in the data-reconstructed spectra binning
233 TH1D * RebinTheoreticalSpectra(TH1D *hTheory, const char *name);
234 // Function to estimate the efficiency in the data-reconstructed spectra binning
235 TH1D * EstimateEfficiencyRecoBin(TH1D *hSimu, TH1D *hReco, const char *name);
236 // Reset stat unc on the efficiencies
237 void ResetStatUncEff();
238
239
240 //
241 // Input spectra
242 //
243 TH1D *fhDirectMCpt; // Input MC c-->D spectra
244 TH1D *fhFeedDownMCpt; // Input MC b-->D spectra
245 TH1D *fhDirectMCptMax; // Input MC maximum c-->D spectra
246 TH1D *fhDirectMCptMin; // Input MC minimum c-->D spectra
247 TH1D *fhFeedDownMCptMax; // Input MC maximum b-->D spectra
248 TH1D *fhFeedDownMCptMin; // Input MC minimum b-->D spectra
249 TH1D *fhDirectEffpt; // c-->D Acceptance and efficiency correction
250 TH1D *fhFeedDownEffpt; // b-->D Acceptance and efficiency correction
251 TH1D *fhRECpt; // all reconstructed D
252 //
253 TGraphAsymmErrors *fgRECSystematics; // all reconstructed D Systematic uncertainties
254 //
255 // Normalization factors
256 Int_t fNevts; // nb of analyzed events
257 Double_t fLuminosity[2]; // analyzed luminosity & uncertainty
258 Double_t fTrigEfficiency[2]; // trigger efficiency & uncertainty
259 Double_t fGlobalEfficiencyUncertainties[2]; // uncertainties on the efficiency [0]=c, b, [1]=b/c
260 Double_t fTab[2]; // Tab parameter and its uncertainty
261
262 //
263 // Output spectra
264 //
265 TH1D *fhFc; // Correction histo fc = 1 / ( 1 + (eff_b/eff_c)*(N_b/N_c) )
266 TH1D *fhFcMax; // Maximum fc histo
267 TH1D *fhFcMin; // Minimum fc histo
268 TH2D *fhFcRcb; // Correction histo fc vs the Ratio(c/b eloss)
269 TGraphAsymmErrors * fgFcExtreme; // Extreme correction as TGraphAsymmErrors
270 TGraphAsymmErrors * fgFcConservative; // Extreme correction as TGraphAsymmErrors
271 TH1D *fhYieldCorr; // Corrected yield (stat unc. only)
272 TH1D *fhYieldCorrMax; // Maximum corrected yield
273 TH1D *fhYieldCorrMin; // Minimum corrected yield
274 TH2D *fhYieldCorrRcb; // Corrected yield (stat unc. only) vs the Ratio(c/b eloss)
275 TGraphAsymmErrors * fgYieldCorr; // Corrected yield as TGraphAsymmErrors (syst but feed-down)
276 TGraphAsymmErrors * fgYieldCorrExtreme; // Extreme corrected yield as TGraphAsymmErrors (syst from feed-down)
277 TGraphAsymmErrors * fgYieldCorrConservative; // Conservative corrected yield as TGraphAsymmErrors (syst from feed-down)
278 TH1D *fhSigmaCorr; // Corrected cross-section (stat unc. only)
279 TH1D *fhSigmaCorrMax; // Maximum corrected cross-section
280 TH1D *fhSigmaCorrMin; // Minimum corrected cross-section
281 TH1D *fhSigmaCorrDataSyst; // Corrected cross-section (syst. unc. from data only)
282 TH2D *fhSigmaCorrRcb; // Corrected cross-section (stat unc. only) vs the Ratio(c/b eloss)
283 TGraphAsymmErrors * fgSigmaCorr; // Corrected cross-section as TGraphAsymmErrors (syst but feed-down)
284 TGraphAsymmErrors * fgSigmaCorrExtreme; // Extreme corrected cross-section as TGraphAsymmErrors (syst from feed-down)
285 TGraphAsymmErrors * fgSigmaCorrConservative; // Conservative corrected cross-section as TGraphAsymmErrors (syst from feed-down)
286 //
287 TNtuple *fnSigma; // Ntuple of the calculation vs the Ratio(c/b eloss)
288 TNtuple *fnHypothesis; // Ntuple of the calculation vs the Ratio(c/b eloss)
289
290 //
291 Int_t fFeedDownOption; // feed-down correction flag: 0=none, 1=fc, 2=Nb
292 Bool_t fAsymUncertainties; // flag: asymmetric uncertainties are (1) or not (0) considered
293 Bool_t fPbPbElossHypothesis; // flag: whether to do estimates vs Ratio(c/b eloss) hypothesis
294 Bool_t fIsStatUncEff; // flag : consider (1) or not (0) the stat unc on the efficiencies
295 Int_t fParticleAntiParticle; // 1: only one sign, 2: yield is for particle+anti-particle
296
297 //
298 TH1D *fhStatUncEffcSigma; // Uncertainty on the cross-section due to the prompt efficiency statistical uncertainty
299 TH1D *fhStatUncEffbSigma; // Uncertainty on the cross-section due to the feed-down efficiency statistical uncertainty
300 TH1D *fhStatUncEffcFD; // Uncertainty on the feed-down correction due to the prompt efficiency statistical uncertainty
301 TH1D *fhStatUncEffbFD; // Uncertainty on the feed-down correction due to the feed-down efficiency statistical uncertainty
302
303 ClassDef(AliHFPtSpectrum,3) // Class for Heavy Flavor spectra corrections
304};
305
306#endif