]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGJE/EMCALJetTasks/UserTasks/AliAnalysisTaskJetV2.cxx
fix the previous coverity fix on the existence of the particle and the good calorimet...
[u/mrichter/AliRoot.git] / PWGJE / EMCALJetTasks / UserTasks / AliAnalysisTaskJetV2.cxx
CommitLineData
eae37c5c 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17 * Jet V2 task
18 *
19 * this task is part of the emcal jet framework and should be run in the emcaljet train
20 * the following extensions to an accepted AliVEvent are expected:
21 * - (anti-kt) jets
22 * - background estimate rho
23 * - pico tracks
24 * aod's and esd's are handled transparently
25 * the task will attempt to estimate a phi-dependent background density rho
26 * by fitting vn harmonics to the dpt/dphi distribution
27 *
28 * author: Redmer Alexander Bertens, Utrecht Univeristy, Utrecht, Netherlands
29 * rbertens@cern.ch, rbertens@nikhef.nl, r.a.bertens@uu.nl
30 */
31
32// root includes
33#include <TStyle.h>
34#include <TRandom3.h>
35#include <TChain.h>
36#include <TMath.h>
37#include <TF1.h>
38#include <TF2.h>
39#include <TH1F.h>
40#include <TH2F.h>
41#include <TProfile.h>
9e1c2f31 42#include <TFile.h>
eae37c5c 43// aliroot includes
44#include <AliAnalysisTask.h>
45#include <AliAnalysisManager.h>
46#include <AliCentrality.h>
47#include <AliVVertex.h>
48#include <AliVTrack.h>
9e1c2f31 49#include <AliVVZERO.h>
eae37c5c 50#include <AliESDEvent.h>
51#include <AliAODEvent.h>
52#include <AliAODTrack.h>
9e1c2f31 53#include <AliOADBContainer.h>
eae37c5c 54// emcal jet framework includes
55#include <AliPicoTrack.h>
56#include <AliEmcalJet.h>
57#include <AliRhoParameter.h>
58#include <AliLocalRhoParameter.h>
59#include <AliAnalysisTaskJetV2.h>
60#include <AliClusterContainer.h>
61
62class AliAnalysisTaskJetV2;
63using namespace std;
64
65ClassImp(AliAnalysisTaskJetV2)
66
67AliAnalysisTaskJetV2::AliAnalysisTaskJetV2() : AliAnalysisTaskEmcalJet("AliAnalysisTaskJetV2", kTRUE),
9aa4c594 68 fDebug(0), fRunToyMC(kFALSE), fLocalInit(0), fAttachToEvent(kTRUE), fFillHistograms(kTRUE), fFillQAHistograms(kTRUE), fReduceBinsXByFactor(-1.), fReduceBinsYByFactor(-1.), fNoEventWeightsForQC(kTRUE), fCentralityClasses(0), fExpectedRuns(0), fExpectedSemiGoodRuns(0), fUserSuppliedV2(0), fUserSuppliedV3(0), fUserSuppliedR2(0), fUserSuppliedR3(0), fTracksCont(0), fClusterCont(0), fJetsCont(0), fLeadingJet(0), fNAcceptedTracks(0), fNAcceptedTracksQCn(0), fFitModulationType(kNoFit), fFitGoodnessTest(kChi2Poisson), fQCRecovery(kTryFit), fUsePtWeight(kTRUE), fUsePtWeightErrorPropagation(kTRUE), fDetectorType(kVZEROComb), fAnalysisType( kCharged), fFitModulationOptions("QWLI"), fRunModeType(kGrid), fDataType(kESD), fCollisionType(kPbPb), fRandom(0), fRunNumber(-1), fMappedRunNumber(0), fInCentralitySelection(-1), fFitModulation(0), fFitControl(0), fMinPvalue(0.01), fMaxPvalue(1), fNameSmallRho(""), fCachedRho(0), fSoftTrackMinPt(0.15), fSoftTrackMaxPt(5.), fSemiGoodJetMinPhi(0.), fSemiGoodJetMaxPhi(4.), fSemiGoodTrackMinPhi(0.), fSemiGoodTrackMaxPhi(4.), fAbsVertexZ(10), fHistCentrality(0), fHistVertexz(0), fHistRunnumbersPhi(0), fHistRunnumbersEta(0), fHistPvalueCDFROOT(0), fHistPvalueCDFROOTCent(0), fHistChi2ROOTCent(0), fHistPChi2Root(0), fHistPvalueCDF(0), fHistPvalueCDFCent(0), fHistChi2Cent(0), fHistPChi2(0), fHistKolmogorovTest(0), fHistKolmogorovTestCent(0), fHistPKolmogorov(0), fHistRhoStatusCent(0), fHistUndeterminedRunQA(0), fMinDisanceRCtoLJ(0), fMaxCones(-1), fExcludeLeadingJetsFromFit(1.), fRebinSwapHistoOnTheFly(kTRUE), fPercentageOfFits(10.), fOutputList(0), fOutputListGood(0), fOutputListBad(0), fHistAnalysisSummary(0), fHistSwap(0), fProfV2(0), fProfV2Cumulant(0), fProfV3(0), fProfV3Cumulant(0), fHistPsiControl(0), fHistPsiSpread(0), fHistPsiVZEROA(0), fHistPsiVZEROC(0), fHistPsiVZERO(0), fHistPsiTPC(0), fHistPsiVZEROAV0M(0), fHistPsiVZEROCV0M(0), fHistPsiVZEROVV0M(0), fHistPsiTPCV0M(0), fHistPsiVZEROATRK(0), fHistPsiVZEROCTRK(0), fHistPsiVZEROTRK(0), fHistPsiTPCTRK(0), fHistRhoVsMult(0), fHistRhoVsCent(0), fHistRhoAVsMult(0), fHistRhoAVsCent(0), fVZEROgainEqualization(0x0), fVZEROgainEqualizationPerRing(kFALSE), fChi2A(0x0), fChi2C(0x0), fChi3A(0x0), fChi3C(0x0), fOADB(0x0)
9e1c2f31 69{
eae37c5c 70 for(Int_t i(0); i < 10; i++) {
71 fProfV2Resolution[i] = 0;
72 fProfV3Resolution[i] = 0;
73 fHistPicoTrackPt[i] = 0;
74 fHistPicoTrackMult[i] = 0;
75 fHistPicoCat1[i] = 0;
76 fHistPicoCat2[i] = 0;
77 fHistPicoCat3[i] = 0;
78 fHistClusterPt[i] = 0;
79 fHistClusterEtaPhi[i] = 0;
80 fHistClusterEtaPhiWeighted[i] = 0;
9aa4c594 81 fHistPsiTPCLeadingJet[i] = 0;
82 fHistPsiVZEROALeadingJet[i] = 0;
83 fHistPsiVZEROCLeadingJet[i] = 0;
84 fHistPsiVZEROCombLeadingJet[i] = 0;
eae37c5c 85 fHistRhoPackage[i] = 0;
86 fHistRho[i] = 0;
87 fHistRCPhiEta[i] = 0;
88 fHistRhoVsRCPt[i] = 0;
89 fHistRCPt[i] = 0;
90 fHistDeltaPtDeltaPhi2[i] = 0;
91 fHistDeltaPtDeltaPhi2Rho0[i] = 0;
92 fHistRCPhiEtaExLJ[i] = 0;
93 fHistRhoVsRCPtExLJ[i] = 0;
94 fHistRCPtExLJ[i] = 0;
95 fHistDeltaPtDeltaPhi2ExLJ[i] = 0;
96 fHistDeltaPtDeltaPhi2ExLJRho0[i] = 0;
97 fHistJetPtRaw[i] = 0;
98 fHistJetPt[i] = 0;
99 fHistJetEtaPhi[i] = 0;
100 fHistJetPtArea[i] = 0;
101 fHistJetPtEta[i] = 0;
102 fHistJetPtConstituents[i] = 0;
103 fHistJetEtaRho[i] = 0;
104 fHistJetPsi2Pt[i] = 0;
105 fHistJetPsi2PtRho0[i] = 0;
106 }
9e1c2f31 107 for(Int_t i(0); i < 9; i++) {
108 for(Int_t j(0); j < 2; j++) {
109 for(Int_t k(0); k < 2; k++) {
110 fMeanQ[i][j][k] = 0.;
111 fWidthQ[i][j][k] = 0.;
112 fMeanQv3[i][j][k] = 0.;
113 fWidthQv3[i][j][k] = 0.;
114 }
115 }
116 }
117 for(Int_t i(0); i < 4; i++) {
118 fVZEROApol[i] = 0.;
119 fVZEROCpol[i] = 0.;
120 }
121 for(Int_t i(0); i < 8; i++) fUseVZERORing[i] = kTRUE;
122 // default constructor
eae37c5c 123}
124//_____________________________________________________________________________
125AliAnalysisTaskJetV2::AliAnalysisTaskJetV2(const char* name, runModeType type) : AliAnalysisTaskEmcalJet(name, kTRUE),
9aa4c594 126 fDebug(0), fRunToyMC(kFALSE), fLocalInit(0), fAttachToEvent(kTRUE), fFillHistograms(kTRUE), fFillQAHistograms(kTRUE), fReduceBinsXByFactor(-1.), fReduceBinsYByFactor(-1.), fNoEventWeightsForQC(kTRUE), fCentralityClasses(0), fExpectedRuns(0), fExpectedSemiGoodRuns(0), fUserSuppliedV2(0), fUserSuppliedV3(0), fUserSuppliedR2(0), fUserSuppliedR3(0), fTracksCont(0), fClusterCont(0), fJetsCont(0), fLeadingJet(0), fNAcceptedTracks(0), fNAcceptedTracksQCn(0), fFitModulationType(kNoFit), fFitGoodnessTest(kChi2Poisson), fQCRecovery(kTryFit), fUsePtWeight(kTRUE), fUsePtWeightErrorPropagation(kTRUE), fDetectorType(kVZEROComb), fAnalysisType(kCharged), fFitModulationOptions("QWLI"), fRunModeType(type), fDataType(kESD), fCollisionType(kPbPb), fRandom(0), fRunNumber(-1), fMappedRunNumber(0), fInCentralitySelection(-1), fFitModulation(0), fFitControl(0), fMinPvalue(0.01), fMaxPvalue(1), fNameSmallRho(""), fCachedRho(0), fSoftTrackMinPt(0.15), fSoftTrackMaxPt(5.), fSemiGoodJetMinPhi(0.), fSemiGoodJetMaxPhi(4.), fSemiGoodTrackMinPhi(0.), fSemiGoodTrackMaxPhi(4.), fAbsVertexZ(10), fHistCentrality(0), fHistVertexz(0), fHistRunnumbersPhi(0), fHistRunnumbersEta(0), fHistPvalueCDFROOT(0), fHistPvalueCDFROOTCent(0), fHistChi2ROOTCent(0), fHistPChi2Root(0), fHistPvalueCDF(0), fHistPvalueCDFCent(0), fHistChi2Cent(0), fHistPChi2(0), fHistKolmogorovTest(0), fHistKolmogorovTestCent(0), fHistPKolmogorov(0), fHistRhoStatusCent(0), fHistUndeterminedRunQA(0), fMinDisanceRCtoLJ(0), fMaxCones(-1), fExcludeLeadingJetsFromFit(1.), fRebinSwapHistoOnTheFly(kTRUE), fPercentageOfFits(10.), fOutputList(0), fOutputListGood(0), fOutputListBad(0), fHistAnalysisSummary(0), fHistSwap(0), fProfV2(0), fProfV2Cumulant(0), fProfV3(0), fProfV3Cumulant(0), fHistPsiControl(0), fHistPsiSpread(0), fHistPsiVZEROA(0), fHistPsiVZEROC(0), fHistPsiVZERO(0), fHistPsiTPC(0), fHistPsiVZEROAV0M(0), fHistPsiVZEROCV0M(0), fHistPsiVZEROVV0M(0), fHistPsiTPCV0M(0), fHistPsiVZEROATRK(0), fHistPsiVZEROCTRK(0), fHistPsiVZEROTRK(0), fHistPsiTPCTRK(0), fHistRhoVsMult(0), fHistRhoVsCent(0), fHistRhoAVsMult(0), fHistRhoAVsCent(0), fVZEROgainEqualization(0x0), fVZEROgainEqualizationPerRing(kFALSE), fChi2A(0x0), fChi2C(0x0), fChi3A(0x0), fChi3C(0x0), fOADB(0x0)
9e1c2f31 127{
eae37c5c 128 for(Int_t i(0); i < 10; i++) {
129 fProfV2Resolution[i] = 0;
130 fProfV3Resolution[i] = 0;
131 fHistPicoTrackPt[i] = 0;
132 fHistPicoTrackMult[i] = 0;
133 fHistPicoCat1[i] = 0;
134 fHistPicoCat2[i] = 0;
135 fHistPicoCat3[i] = 0;
136 fHistClusterPt[i] = 0;
137 fHistClusterEtaPhi[i] = 0;
138 fHistClusterEtaPhiWeighted[i] = 0;
9aa4c594 139 fHistPsiTPCLeadingJet[i] = 0;
140 fHistPsiVZEROALeadingJet[i] = 0;
141 fHistPsiVZEROCLeadingJet[i] = 0;
142 fHistPsiVZEROCombLeadingJet[i] = 0;
eae37c5c 143 fHistRhoPackage[i] = 0;
144 fHistRho[i] = 0;
145 fHistRCPhiEta[i] = 0;
146 fHistRhoVsRCPt[i] = 0;
147 fHistRCPt[i] = 0;
148 fHistDeltaPtDeltaPhi2[i] = 0;
149 fHistDeltaPtDeltaPhi2Rho0[i] = 0;
150 fHistRCPhiEtaExLJ[i] = 0;
151 fHistRhoVsRCPtExLJ[i] = 0;
152 fHistRCPtExLJ[i] = 0;
153 fHistDeltaPtDeltaPhi2ExLJ[i] = 0;
154 fHistDeltaPtDeltaPhi2ExLJRho0[i] = 0;
155 fHistJetPtRaw[i] = 0;
156 fHistJetPt[i] = 0;
157 fHistJetEtaPhi[i] = 0;
158 fHistJetPtArea[i] = 0;
159 fHistJetPtEta[i] = 0;
160 fHistJetPtConstituents[i] = 0;
161 fHistJetEtaRho[i] = 0;
162 fHistJetPsi2Pt[i] = 0;
163 fHistJetPsi2PtRho0[i] = 0;
9e1c2f31 164 }
165 for(Int_t i(0); i < 9; i++) {
166 for(Int_t j(0); j < 2; j++) {
167 for(Int_t k(0); k < 2; k++) {
168 fMeanQ[i][j][k] = 0.;
169 fWidthQ[i][j][k] = 0.;
170 fMeanQv3[i][j][k] = 0.;
171 fWidthQv3[i][j][k] = 0.;
172 }
173 }
174 }
175 for(Int_t i(0); i < 4; i++) {
176 fVZEROApol[i] = 0.;
177 fVZEROCpol[i] = 0.;
178 }
179 for(Int_t i(0); i < 8; i++) fUseVZERORing[i] = kTRUE;
180
eae37c5c 181 // constructor
182 DefineInput(0, TChain::Class());
183 DefineOutput(1, TList::Class());
184 switch (fRunModeType) {
185 case kLocal : {
186 gStyle->SetOptFit(1);
187 DefineOutput(2, TList::Class());
188 DefineOutput(3, TList::Class());
189 } break;
190 default: fDebug = -1; // suppress debug info explicitely when not running locally
191 }
192 switch (fCollisionType) {
193 case kPythia : {
194 fFitModulationType = kNoFit;
195 } break;
196 default : break;
197 }
198 if(fLocalRhoName=="") fLocalRhoName = Form("LocalRhoFrom_%s", GetName());
199}
200//_____________________________________________________________________________
201AliAnalysisTaskJetV2::~AliAnalysisTaskJetV2()
202{
203 // destructor
9274f9ad 204 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
f41baaab 205 if(fOutputList) {delete fOutputList; fOutputList = 0x0;}
206 if(fOutputListGood) {delete fOutputListGood; fOutputListGood = 0x0;}
207 if(fOutputListBad) {delete fOutputListBad; fOutputListBad = 0x0;}
208 if(fFitModulation) {delete fFitModulation; fFitModulation = 0x0;}
209 if(fHistSwap) {delete fHistSwap; fHistSwap = 0x0;}
210 if(fCentralityClasses) {delete fCentralityClasses; fCentralityClasses = 0x0;}
211 if(fExpectedRuns) {delete fExpectedRuns; fExpectedRuns = 0x0;}
212 if(fExpectedSemiGoodRuns) {delete fExpectedSemiGoodRuns; fExpectedSemiGoodRuns = 0x0;}
213 if(fFitControl) {delete fFitControl; fFitControl = 0x0;}
9e1c2f31 214 if(fVZEROgainEqualization) {delete fVZEROgainEqualization; fVZEROgainEqualization = 0x0;}
215 if(fChi2A) {delete fChi2A; fChi2A = 0x0;}
216 if(fChi2C) {delete fChi2C; fChi2C = 0x0;}
217 if(fChi3A) {delete fChi3A; fChi3A = 0x0;}
218 if(fChi3C) {delete fChi3C; fChi3C = 0x0;}
219 if(fOADB && !fOADB->IsZombie()) {
220 fOADB->Close(); fOADB = 0x0;
221 } else if (fOADB) fOADB = 0x0;
eae37c5c 222}
223//_____________________________________________________________________________
224void AliAnalysisTaskJetV2::ExecOnce()
225{
226 // Init the analysis
9274f9ad 227 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 228 fLocalRho = new AliLocalRhoParameter(fLocalRhoName.Data(), 0);
229 if(fAttachToEvent) {
230 if(!(InputEvent()->FindListObject(fLocalRho->GetName()))) {
231 InputEvent()->AddObject(fLocalRho);
232 } else {
233 AliFatal(Form("%s: Container with name %s already present. Aborting", GetName(), fLocalRho->GetName()));
234 }
235 }
236 AliAnalysisTaskEmcalJet::ExecOnce(); // init the base class
237 AliAnalysisTaskEmcalJet::SetVzRange(-1.*fAbsVertexZ, fAbsVertexZ);
238 if(!GetJetContainer()) AliFatal(Form("%s: Couldn't find jet container. Aborting !", GetName()));
239}
240//_____________________________________________________________________________
f41baaab 241Bool_t AliAnalysisTaskJetV2::Notify()
242{
243 // determine the run number to see if the track and jet cuts should be refreshed for semi-good TPC runs
9274f9ad 244 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
f41baaab 245 if(fRunNumber != InputEvent()->GetRunNumber()) {
246 fRunNumber = InputEvent()->GetRunNumber(); // set the current run number
247 if(fDebug > 0) printf("__FUNC__ %s > NEW RUNNUMBER DETECTED \n ", __func__);
9e1c2f31 248 // check if this is 10h or 11h data
2e9c1578 249 switch (fCollisionType) {
250 case kPbPb10h : {
9e1c2f31 251 if(fDebug > 0) printf(" LHC10h data, assuming full acceptance, reading VZERO calibration DB \n ");
252 // for 10h data the vzero event plane calibration needs to be cached
253 ReadVZEROCalibration2010h();
254 // no need to change rho or acceptance for 10h, so we're done
2e9c1578 255 return kTRUE;
256 } break;
06d2671d 257 case kJetFlowMC : {
258 return kTRUE;
259 } break;
9e1c2f31 260 default : {
261 if(fDebug > 0) printf(" checking runnumber to adjust acceptance on the fly \n");
262 } break;
2e9c1578 263 }
f41baaab 264 // reset the cuts. should be a pointless operation except for the case where the run number changes
265 // from semi-good back to good on one node, which is not a likely scenario (unless trains will
266 // run as one masterjob)
f41baaab 267 switch (fAnalysisType) {
268 case kCharged: {
269 AliAnalysisTaskEmcalJet::SetJetPhiLimits(-10., 10.);
270 } break;
271 case kFull: {
272 AliAnalysisTaskEmcalJet::SetJetPhiLimits(1.405 + GetJetRadius(), 3.135 - GetJetRadius());
273 } break;
9e1c2f31 274 default: {
275 AliAnalysisTaskEmcal::SetTrackPhiLimits(-10., 10.);
276 } break;
f41baaab 277 }
278 if(fCachedRho) { // if there's a cached rho, it's the default, so switch back
279 if(fDebug > 0) printf("__FUNC__ %s > replacing rho with cached rho \n ", __func__);
280 fRho = fCachedRho; // reset rho back to cached value. again, should be pointless
281 }
282 Bool_t flaggedAsSemiGood(kFALSE); // not flagged as anything
283 for(Int_t i(0); i < fExpectedSemiGoodRuns->GetSize(); i++) {
284 if(fExpectedSemiGoodRuns->At(i) == fRunNumber) { // run is semi-good
285 if(fDebug > 0) printf("__FUNC__ %s > semi-good tpc run detected, adjusting acceptance \n ", __func__);
286 flaggedAsSemiGood = kTRUE;
287 switch (fAnalysisType) {
288 // for full jets the jet acceptance does not have to be changed as emcal does not
289 // cover the tpc low voltage readout strips
290 case kCharged: {
291 AliAnalysisTaskEmcalJet::SetJetPhiLimits(fSemiGoodJetMinPhi, fSemiGoodJetMaxPhi); // just an acceptance cut, jets are obtained from full azimuth, so no edge effects
292 } break;
293 default: break;
294 }
295 AliAnalysisTaskEmcal::SetTrackPhiLimits(fSemiGoodTrackMinPhi, fSemiGoodTrackMaxPhi); // only affects vn extraction, NOT jet finding
296 // for semi-good runs, also try to get the 'small rho' estimate, if it is available
297 AliRhoParameter* tempRho(dynamic_cast<AliRhoParameter*>(InputEvent()->FindListObject(fNameSmallRho.Data())));
298 if(tempRho) {
299 if(fDebug > 0) printf("__FUNC__ %s > switching to small rho, caching normal rho \n ", __func__);
300 fHistAnalysisSummary->SetBinContent(54, 1.); // bookkeep the fact that small rho is used
301 fCachedRho = fRho; // cache the original rho ...
302 fRho = tempRho; // ... and use the small rho
303 }
304 }
305 }
306 if(!flaggedAsSemiGood) {
307 // in case the run is not a semi-good run, check if it is recognized as another run
308 // only done to catch unexpected runs
309 for(Int_t i(0); i < fExpectedRuns->GetSize(); i++) {
310 if(fExpectedRuns->At(i) == fRunNumber) break; // run is known, break the loop else store the number in a random bin
311 fHistUndeterminedRunQA->SetBinContent(TMath::Nint(10.*gRandom->Uniform(0.,.9))+1, fRunNumber);
312 }
313 fHistAnalysisSummary->SetBinContent(53, 1.); // bookkeep which rho estimate is used
314 }
315 }
316 return kTRUE;
317}
318//_____________________________________________________________________________
eae37c5c 319Bool_t AliAnalysisTaskJetV2::InitializeAnalysis()
320{
321 // initialize the anaysis
322 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
323 // if not set, estimate the number of cones that would fit into the selected acceptance
324 if(fMaxCones <= 0) fMaxCones = TMath::CeilNint((TMath::Abs(GetJetContainer()->GetJetEtaMax()-GetJetContainer()->GetJetEtaMin())*TMath::Abs(GetJetContainer()->GetJetPhiMax()-GetJetContainer()->GetJetPhiMin()))/(TMath::Pi()*GetJetRadius()*GetJetRadius()));
325 // manually 'override' the default acceptance cuts of the emcal framework (use with caution)
326 if(fMinDisanceRCtoLJ==0) fMinDisanceRCtoLJ = GetJetRadius();
327 if(dynamic_cast<AliAODEvent*>(InputEvent())) fDataType = kAOD; // determine the datatype
328 else if(dynamic_cast<AliESDEvent*>(InputEvent())) fDataType = kESD;
329 fHistAnalysisSummary->SetBinContent(36, (int)fDataType);
330 if(!fRandom) fRandom = new TRandom3(0); // set randomizer and random seed
331 switch (fFitModulationType) {
332 case kNoFit : { SetModulationFit(new TF1("fix_kNoFit", "[0]", 0, TMath::TwoPi())); } break;
333 case kV2 : {
334 SetModulationFit(new TF1("fit_kV2", "[0]*([1]+[2]*[3]*TMath::Cos([2]*(x-[4])))", 0, TMath::TwoPi()));
335 fFitModulation->SetParameter(0, 0.); // normalization
336 fFitModulation->SetParameter(3, 0.2); // v2
337 fFitModulation->FixParameter(1, 1.); // constant
338 fFitModulation->FixParameter(2, 2.); // constant
339 } break;
340 case kV3: {
341 SetModulationFit(new TF1("fit_kV3", "[0]*([1]+[2]*[3]*TMath::Cos([2]*(x-[4])))", 0, TMath::TwoPi()));
342 fFitModulation->SetParameter(0, 0.); // normalization
343 fFitModulation->SetParameter(3, 0.2); // v3
344 fFitModulation->FixParameter(1, 1.); // constant
345 fFitModulation->FixParameter(2, 3.); // constant
346 } break;
347 default : { // for the combined fit, the 'direct fourier series' or the user supplied vn values we use v2 and v3
348 SetModulationFit(new TF1("fit_kCombined", "[0]*([1]+[2]*([3]*TMath::Cos([2]*(x-[4]))+[7]*TMath::Cos([5]*(x-[6]))))", 0, TMath::TwoPi()));
349 fFitModulation->SetParameter(0, 0.); // normalization
350 fFitModulation->SetParameter(3, 0.2); // v2
351 fFitModulation->FixParameter(1, 1.); // constant
352 fFitModulation->FixParameter(2, 2.); // constant
353 fFitModulation->FixParameter(5, 3.); // constant
354 fFitModulation->SetParameter(7, 0.2); // v3
355 } break;
356 }
357 switch (fRunModeType) {
358 case kGrid : { fFitModulationOptions += "N0"; } break;
359 default : break;
360 }
361 FillAnalysisSummaryHistogram();
362 return kTRUE;
363}
364//_____________________________________________________________________________
365TH1F* AliAnalysisTaskJetV2::BookTH1F(const char* name, const char* x, Int_t bins, Double_t min, Double_t max, Int_t c, Bool_t append)
366{
367 // book a TH1F and connect it to the output container
368 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
369 if(fReduceBinsXByFactor > 0 ) bins = TMath::Nint(bins/fReduceBinsXByFactor);
370 if(!fOutputList) return 0x0;
371 TString title(name);
372 if(c!=-1) { // format centrality dependent histograms accordingly
373 name = Form("%s_%i", name, c);
374 title += Form("_%i-%i", (int)(fCentralityClasses->At(c)), (int)(fCentralityClasses->At((1+c))));
375 }
376 title += Form(";%s;[counts]", x);
377 TH1F* histogram = new TH1F(name, title.Data(), bins, min, max);
378 histogram->Sumw2();
379 if(append) fOutputList->Add(histogram);
380 return histogram;
381}
382//_____________________________________________________________________________
383TH2F* AliAnalysisTaskJetV2::BookTH2F(const char* name, const char* x, const char*y, Int_t binsx, Double_t minx, Double_t maxx, Int_t binsy, Double_t miny, Double_t maxy, Int_t c, Bool_t append)
384{
385 // book a TH2F and connect it to the output container
386 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
387 if(fReduceBinsXByFactor > 0 ) binsx = TMath::Nint(binsx/fReduceBinsXByFactor);
388 if(fReduceBinsYByFactor > 0 ) binsy = TMath::Nint(binsy/fReduceBinsYByFactor);
389 if(!fOutputList) return 0x0;
390 TString title(name);
391 if(c!=-1) { // format centrality dependent histograms accordingly
392 name = Form("%s_%i", name, c);
393 title += Form("_%i-%i", (int)fCentralityClasses->At(c), (int)(fCentralityClasses->At((1+c))));
394 }
395 title += Form(";%s;%s", x, y);
396 TH2F* histogram = new TH2F(name, title.Data(), binsx, minx, maxx, binsy, miny, maxy);
397 histogram->Sumw2();
398 if(append) fOutputList->Add(histogram);
399 return histogram;
400}
401//_____________________________________________________________________________
402void AliAnalysisTaskJetV2::UserCreateOutputObjects()
403{
404 // create output objects. also initializes some default values in case they aren't
405 // loaded via the AddTask macro
406 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
407 fOutputList = new TList();
408 fOutputList->SetOwner(kTRUE);
409 if(!fCentralityClasses) { // classes must be defined at this point
410 Double_t c[] = {0., 20., 40., 60., 80., 100.};
411 fCentralityClasses = new TArrayD(sizeof(c)/sizeof(c[0]), c);
412 }
413 if(!fExpectedRuns) { // expected runs must be defined at this point
414 Int_t r[] = {167813, 167988, 168066, 168068, 168069, 168076, 168104, 168212, 168311, 168322, 168325, 168341, 168361, 168362, 168458, 168460, 168461, 168992, 169091, 169094, 169138, 169143, 169167, 169417, 169835, 169837, 169838, 169846, 169855, 169858, 169859, 169923, 169956, 170027, 170036, 170081, /* up till here original good TPC list */169975, 169981, 170038, 170040, 170083, 170084, 170085, 170088, 170089, 170091, 170152, 170155, 170159, 170163, 170193, 170195, 170203, 170204, 170205, 170228, 170230, 170264, 170268, 170269, 170270, 170306, 170308, 170309, /* original semi-good tpc list */169415, 169411, 169035, 168988, 168984, 168826, 168777, 168512, 168511, 168467, 168464, 168342, 168310, 168115, 168108, 168107, 167987, 167915, 167903, /*new runs, good according to RCT */ 169238, 169160, 169156, 169148, 169145, 169144 /* run swith missing OROC 8 but seem ok in QA */};
415 fExpectedRuns = new TArrayI(sizeof(r)/sizeof(r[0]), r);
416 }
2e9c1578 417 // set default semi-good runs only for 11h data
418 switch (fCollisionType) {
419 case kPbPb10h : break;
420 default : {
421 if(!fExpectedSemiGoodRuns) {
422 Int_t r[] = {169975, 169981, 170038, 170040, 170083, 170084, 170085, 170088, 170089, 170091, 170152, 170155, 170159, 170163, 170193, 170195, 170203, 170204, 170205, 170228, 170230, 170264, 170268, 170269, 170270, 170306, 170308, 170309};
423 fExpectedSemiGoodRuns = new TArrayI(sizeof(r)/sizeof(r[0]), r);
424 }
425 }
eae37c5c 426 }
2e9c1578 427
eae37c5c 428 // global QA
429 fHistCentrality = BookTH1F("fHistCentrality", "centrality", 102, -2, 100);
430 fHistVertexz = BookTH1F("fHistVertexz", "vertex z (cm)", 100, -12, 12);
431
432 // pico track and emcal cluster kinematics
433 for(Int_t i(0); i < fCentralityClasses->GetSize()-1; i++) {
434 fHistPicoTrackPt[i] = BookTH1F("fHistPicoTrackPt", "p_{t} [GeV/c]", 100, 0, 100, i);
435 fHistPicoTrackMult[i] = BookTH1F("fHistPicoTrackMult", "multiplicity", 100, 0, 5000, i);
436 if(fFillQAHistograms) {
437 fHistPicoCat1[i] = BookTH2F("fHistPicoCat1", "#eta", "#phi", 50, -1, 1, 50, 0, TMath::TwoPi(), i);
438 fHistPicoCat2[i] = BookTH2F("fHistPicoCat2", "#eta", "#phi", 50, -1, 1, 50, 0, TMath::TwoPi(), i);
439 fHistPicoCat3[i] = BookTH2F("fHistPicoCat3", "#eta", "#phi", 50, -1, 1, 50, 0, TMath::TwoPi(), i);
440 if(fAnalysisType == AliAnalysisTaskJetV2::kFull) {
441 fHistClusterPt[i] = BookTH1F("fHistClusterPt", "p_{t} [GeV/c]", 100, 0, 100, i);
442 fHistClusterEtaPhi[i] = BookTH2F("fHistClusterEtaPhi", "#eta", "#phi", 100, -1., 1., 100, 0, TMath::TwoPi(), i);
9aa4c594 443 fHistClusterEtaPhiWeighted[i] = BookTH2F("fHistClusterEtaPhiWeighted", "#eta", "#phi", 100, -1., 1., 100, 0, TMath::TwoPi(), i);
eae37c5c 444 }
9aa4c594 445 fHistPsiTPCLeadingJet[i] = BookTH2F("fHistPsiTPCLeadingJet", "p_{t} [GeV/c]", "#Psi_{TPC}", 350, -100, 250, 50, -1.*TMath::Pi()/2., TMath::Pi()/2., i);
446 fHistPsiVZEROALeadingJet[i] = BookTH2F("fHistPsiVZEROALeadingJet", "p_{t} [GeV/c]", "#Psi_{VZEROA}", 350, -100, 250, 50, -1.*TMath::Pi()/2., TMath::Pi()/2., i);
447 fHistPsiVZEROCLeadingJet[i] = BookTH2F("fHistPsiVZEROCLeadingJet", "p_{t} [GeV/c]", "#Psi_{VZEROC}", 350, -100, 250, 50, -1.*TMath::Pi()/2., TMath::Pi()/2., i);
448 fHistPsiVZEROCombLeadingJet[i] = BookTH2F("fHistPsiVZEROCombLeadingJet", "p_{t} [GeV/c]", "#Psi_{VZEROComb}", 350, -100, 250, 50, -1.*TMath::Pi()/2., TMath::Pi()/2., i);
eae37c5c 449 }
450 }
451
452 if(fFillQAHistograms) {
453 // event plane estimates and quality
454 fHistPsiControl = new TProfile("fHistPsiControl", "fHistPsiControl", 10, 0, 10);
455 fHistPsiControl->Sumw2();
456 fHistPsiSpread = new TProfile("fHistPsiSpread", "fHistPsiSpread", 4, 0, 4);
457 fHistPsiSpread->Sumw2();
458 fHistPsiControl->GetXaxis()->SetBinLabel(1, "<#Psi_{2, VZEROA}>");
459 fHistPsiControl->GetXaxis()->SetBinLabel(2, "<#Psi_{2, VZEROC}>");
460 fHistPsiControl->GetXaxis()->SetBinLabel(3, "<#Psi_{2, TPC}>");
461 fHistPsiControl->GetXaxis()->SetBinLabel(4, "<#Psi_{2, TPC, #eta < 0}>");
462 fHistPsiControl->GetXaxis()->SetBinLabel(5, "<#Psi_{2, TPC, #eta > 0}>");
463 fHistPsiControl->GetXaxis()->SetBinLabel(6, "<#Psi_{3, VZEROA}>");
464 fHistPsiControl->GetXaxis()->SetBinLabel(7, "<#Psi_{3, VZEROC}>");
465 fHistPsiControl->GetXaxis()->SetBinLabel(8, "<#Psi_{3, TPC}>");
466 fHistPsiControl->GetXaxis()->SetBinLabel(9, "<#Psi_{3, TPC, #eta < 0}>");
467 fHistPsiControl->GetXaxis()->SetBinLabel(10, "<#Psi_{3, TPC, #eta > 0}>");
468 fHistPsiSpread->GetXaxis()->SetBinLabel(1, "<#Psi_{2, VZEROA} - #Psi_{2, VZEROC}>");
469 fHistPsiSpread->GetXaxis()->SetBinLabel(2, "<#Psi_{2, VZEROC} - #Psi_{2, TPC}>");
470 fHistPsiSpread->GetXaxis()->SetBinLabel(3, "<#Psi_{2, VZEROC} - #Psi_{2, TPC}>");
471 fHistPsiSpread->GetXaxis()->SetBinLabel(4, "<#Psi_{2, TPC, #eta < 0} - #Psi_{2, TPC, #eta > 0}>");
472 fOutputList->Add(fHistPsiControl);
473 fOutputList->Add(fHistPsiSpread);
474 fHistPsiVZEROA = BookTH1F("fHistPsiVZEROA", "#Psi_{VZEROA}", 40, -.5*TMath::Pi(), .5*TMath::Pi());
475 fHistPsiVZEROC = BookTH1F("fHistPsiVZEROC", "#Psi_{VZEROC}", 40, -.5*TMath::Pi(), .5*TMath::Pi());
476 fHistPsiVZERO = BookTH1F("fHistPsiVZERO", "#Psi_{VZERO}", 40, -.5*TMath::Pi(), .5*TMath::Pi());
477 fHistPsiTPC = BookTH1F("fHistPsiTPC", "#Psi_{TPC}", 40, -.5*TMath::Pi(), .5*TMath::Pi());
478 fHistPsiVZEROAV0M = BookTH2F("fHistPsiVZEROAV0M", "V0M", "#Psi_{2, VZEROA}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
479 fHistPsiVZEROCV0M = BookTH2F("fHistPsiVZEROCV0M", "V0M", "#Psi_{2, VZEROC}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
480 fHistPsiVZEROVV0M = BookTH2F("fHistPsiVZEROV0M", "V0M", "#Psi_{2, VZERO}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
9aa4c594 481 fHistPsiTPCV0M = BookTH2F("fHistPsiTPCV0M", "V0M", "#Psi_{2, TRK}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
eae37c5c 482 fHistPsiVZEROATRK = BookTH2F("fHistPsiVZEROATRK", "TRK", "#Psi_{2, VZEROA}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
483 fHistPsiVZEROCTRK = BookTH2F("fHistPsiVZEROCTRK", "TRK", "#Psi_{2, VZEROC}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
484 fHistPsiVZEROTRK = BookTH2F("fHistPsiVZEROTRK", "TRK", "#Psi_{2, VZERO}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
485 fHistPsiTPCTRK = BookTH2F("fHistPsiTPCTRK", "TRK", "#Psi_{2, TRK}", 60, 0, 60, 40, -.5*TMath::Pi(), .5*TMath::Pi());
486 }
487 // background
488 for(Int_t i(0); i < fCentralityClasses->GetSize()-1; i ++) {
489 fHistRhoPackage[i] = BookTH1F("fHistRhoPackage", "#rho [GeV/c]", 100, 0, 150, i);
490 fHistRho[i] = BookTH1F("fHistRho", "#rho [GeV/c]", 100, 0, 150, i);
491 }
492 fHistRhoVsMult = BookTH2F("fHistRhoVsMult", "multiplicity", "#rho [GeV/c]", 100, 0, 4000, 100, 0, 250);
493 fHistRhoVsCent = BookTH2F("fHistRhoVsCent", "centrality", "#rho [GeV/c]", 100, 0, 100, 100, 0, 250);
494 fHistRhoAVsMult = BookTH2F("fHistRhoAVsMult", "multiplicity", "#rho * A (jet) [GeV/c]", 100, 0, 4000, 100, 0, 50);
495 fHistRhoAVsCent = BookTH2F("fHistRhoAVsCent", "centrality", "#rho * A (jet) [GeV/c]", 100, 0, 100, 100, 0, 50);
496
497 TString detector("");
498 switch (fDetectorType) {
499 case kTPC : detector+="TPC";
500 break;
501 case kVZEROA : detector+="VZEROA";
502 break;
503 case kVZEROC : detector+="VZEROC";
504 break;
505 case kVZEROComb : detector+="VZEROComb";
506 break;
06d2671d 507 case kFixedEP : detector+="FixedEP";
508 break;
eae37c5c 509 default: break;
510 }
511 // delta pt distributions
512 for(Int_t i(0); i < fCentralityClasses->GetSize()-1; i ++) {
513 if(fFillQAHistograms) fHistRCPhiEta[i] = BookTH2F("fHistRCPhiEta", "#phi (RC)", "#eta (RC)", 40, 0, TMath::TwoPi(), 40, -1, 1, i);
514 fHistRhoVsRCPt[i] = BookTH2F("fHistRhoVsRCPt", "p_{t} (RC) [GeV/c]", "#rho * A (RC) [GeV/c]", 100, 0, 300, 100, 0, 350, i);
515 fHistRCPt[i] = BookTH1F("fHistRCPt", "p_{t} (RC) [GeV/c]", 130, -20, 150, i);
516 if(fFillQAHistograms) fHistRCPhiEtaExLJ[i] = BookTH2F("fHistRCPhiEtaExLJ", "#phi (RC)", "#eta (RC)", 40, 0, TMath::TwoPi(), 40, -1, 1, i);
517 fHistDeltaPtDeltaPhi2[i] = BookTH2F("fHistDeltaPtDeltaPhi2", Form("#phi - #Psi_{2, %s}", detector.Data()), "#delta p_{t} [GeV/c]", 40, 0, TMath::Pi(), 400, -70, 130, i);
518 fHistDeltaPtDeltaPhi2Rho0[i] = BookTH2F("fHistDeltaPtDeltaPhi2Rho0", Form("#phi - #Psi_{2, %s}", detector.Data()), "#delta p_{t} [GeV/c]", 40, 0, TMath::Pi(), 400, -70, 130, i);
519 fHistRhoVsRCPtExLJ[i] = BookTH2F("fHistRhoVsRCPtExLJ", "p_{t} (RC) [GeV/c]", "#rho * A (RC) [GeV/c]", 100, 0, 300, 100, 0, 350, i);
520 fHistRCPtExLJ[i] = BookTH1F("fHistRCPtExLJ", "p_{t} (RC) [GeV/c]", 130, -20, 150, i);
521 fHistDeltaPtDeltaPhi2ExLJ[i] = BookTH2F("fHistDeltaPtDeltaPhi2ExLJ", Form("#phi - #Psi_{2, %s}", detector.Data()), "#delta p_{t} [GeV/c]", 40, 0, TMath::Pi(), 400, -70, 130, i);
522 fHistDeltaPtDeltaPhi2ExLJRho0[i] = BookTH2F("fHistDeltaPtDeltaPhi2ExLJRho0", Form("#phi - #Psi_{2, %s}", detector.Data()), "#delta p_{t} [GeV/c]", 40, 0, TMath::Pi(), 400, -70, 130, i);
523 // jet histograms (after kinematic cuts)
524 fHistJetPtRaw[i] = BookTH1F("fHistJetPtRaw", "p_{t, jet} RAW [GeV/c]", 200, -50, 150, i);
525 fHistJetPt[i] = BookTH1F("fHistJetPt", "p_{t, jet} [GeV/c]", 350, -100, 250, i);
526 if(fFillQAHistograms) fHistJetEtaPhi[i] = BookTH2F("fHistJetEtaPhi", "#eta", "#phi", 100, -1, 1, 100, 0, TMath::TwoPi(), i);
527 fHistJetPtArea[i] = BookTH2F("fHistJetPtArea", "p_{t, jet} [GeV/c]", "Area", 175, -100, 250, 30, 0, 0.9, i);
528 fHistJetPtEta[i] = BookTH2F("fHistJetPtEta", "p_{t, jet} [GeV/c]", "Eta", 175, -100, 250, 30, -0.9, 0.9, i);
9aa4c594 529 fHistJetPtConstituents[i] = BookTH2F("fHistJetPtConstituents", "p_{t, jet} [GeV/c]", "no. of constituents", 350, -100, 250, 60, 0, 150, i);
eae37c5c 530 fHistJetEtaRho[i] = BookTH2F("fHistJetEtaRho", "#eta", "#rho", 100, -1, 1, 100, 0, 300, i);
531 // in plane and out of plane spectra
532 fHistJetPsi2Pt[i] = BookTH2F("fHistJetPsi2Pt", Form("#phi_{jet} - #Psi_{2, %s}", detector.Data()), "p_{t, jet} [GeV/c]", 40, 0., TMath::Pi(), 350, -100, 250, i);
533 fHistJetPsi2PtRho0[i] = BookTH2F("fHistJetPsi2PtRho0", Form("#phi_{jet} - #Psi_{2, %s}", detector.Data()), "p_{t, jet} [GeV/c]", 40, 0., TMath::Pi(), 350, -100, 250, i);
534 // profiles for all correlator permutations which are necessary to calculate each second and third order event plane resolution
535 fProfV2Resolution[i] = new TProfile(Form("fProfV2Resolution_%i", i), Form("fProfV2Resolution_%i", i), 11, -0.5, 10.5);
536 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(3, "<cos(2(#Psi_{VZEROA} - #Psi_{VZEROC}))>");
537 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(4, "<cos(2(#Psi_{VZEROC} - #Psi_{VZEROA}))>");
538 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(5, "<cos(2(#Psi_{VZEROA} - #Psi_{TPC}))>");
539 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(6, "<cos(2(#Psi_{TPC} - #Psi_{VZEROA}))>");
540 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(7, "<cos(2(#Psi_{VZEROC} - #Psi_{TPC}))>");
541 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(8, "<cos(2(#Psi_{TPC} - #Psi_{VZEROC}))>");
542 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(9, "<cos(2(#Psi_{VZERO} - #Psi_{TPC_A}))>");
543 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(10, "<cos(2(#Psi_{VZERO} - #Psi_{TPC_B}))>");
544 fProfV2Resolution[i]->GetXaxis()->SetBinLabel(11, "<cos(2(#Psi_{TPC_A} - #Psi_{TPC_B}))>");
545 fOutputList->Add(fProfV2Resolution[i]);
546 fProfV3Resolution[i] = new TProfile(Form("fProfV3Resolution_%i", i), Form("fProfV3Resolution_%i", i), 11, -0.5, 10.5);
547 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(3, "<cos(3(#Psi_{VZEROA} - #Psi_{VZEROC}))>");
548 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(4, "<cos(3(#Psi_{VZEROC} - #Psi_{VZEROA}))>");
549 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(5, "<cos(3(#Psi_{VZEROA} - #Psi_{TPC}))>");
550 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(6, "<cos(3(#Psi_{TPC} - #Psi_{VZEROA}))>");
551 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(7, "<cos(3(#Psi_{VZEROC} - #Psi_{TPC}))>");
552 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(8, "<cos(3(#Psi_{TPC} - #Psi_{VZEROC}))>");
553 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(9, "<cos(3(#Psi_{VZERO} - #Psi_{TPC_A}))>");
554 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(10, "<cos(3(#Psi_{VZERO} - #Psi_{TPC_B}))>");
555 fProfV3Resolution[i]->GetXaxis()->SetBinLabel(11, "<cos(3(#Psi_{TPC_A} - #Psi_{TPC_B}))>");
556 fOutputList->Add(fProfV3Resolution[i]);
557 }
558 // vn profile
559 Float_t temp[fCentralityClasses->GetSize()];
560 for(Int_t i(0); i < fCentralityClasses->GetSize(); i++) temp[i] = fCentralityClasses->At(i);
561 fProfV2 = new TProfile("fProfV2", "fProfV2", fCentralityClasses->GetSize()-1, temp);
562 fProfV3 = new TProfile("fProfV3", "fProfV3", fCentralityClasses->GetSize()-1, temp);
563 fOutputList->Add(fProfV2);
564 fOutputList->Add(fProfV3);
565 switch (fFitModulationType) {
566 case kQC2 : {
567 fProfV2Cumulant = new TProfile("fProfV2Cumulant", "fProfV2Cumulant", fCentralityClasses->GetSize()-1, temp);
568 fProfV3Cumulant = new TProfile("fProfV3Cumulant", "fProfV3Cumulant", fCentralityClasses->GetSize()-1, temp);
569 fOutputList->Add(fProfV2Cumulant);
570 fOutputList->Add(fProfV3Cumulant);
571 } break;
572 case kQC4 : {
573 fProfV2Cumulant = new TProfile("fProfV2Cumulant", "fProfV2Cumulant", fCentralityClasses->GetSize()-1, temp);
574 fProfV3Cumulant = new TProfile("fProfV3Cumulant", "fProfV3Cumulant", fCentralityClasses->GetSize()-1, temp);
575 fOutputList->Add(fProfV2Cumulant);
576 fOutputList->Add(fProfV3Cumulant);
577 } break;
578 default : break;
579 }
580 // for the histograms initialized below, binning is fixed to runnumbers or flags
581 fReduceBinsXByFactor = 1;
582 fReduceBinsYByFactor = 1;
583 if(fFillQAHistograms) {
584 fHistRunnumbersEta = new TH2F("fHistRunnumbersEta", "fHistRunnumbersEta", fExpectedRuns->GetSize()+1, -.5, fExpectedRuns->GetSize()+.5, 100, -1.1, 1.1);
585 fHistRunnumbersEta->Sumw2();
586 fOutputList->Add(fHistRunnumbersEta);
587 fHistRunnumbersPhi = new TH2F("fHistRunnumbersPhi", "fHistRunnumbersPhi", fExpectedRuns->GetSize()+1, -.5, fExpectedRuns->GetSize()+.5, 100, -0.2, TMath::TwoPi()+0.2);
588 fHistRunnumbersPhi->Sumw2();
589 fOutputList->Add(fHistRunnumbersPhi);
590 for(Int_t i(0); i < fExpectedRuns->GetSize(); i++) {
591 fHistRunnumbersPhi->GetXaxis()->SetBinLabel(i+1, Form("%i", fExpectedRuns->At(i)));
592 fHistRunnumbersEta->GetXaxis()->SetBinLabel(i+1, Form("%i", fExpectedRuns->At(i)));
593 }
594 fHistRunnumbersPhi->GetXaxis()->SetBinLabel(fExpectedRuns->GetSize()+1, "undetermined");
595 fHistRunnumbersEta->GetXaxis()->SetBinLabel(fExpectedRuns->GetSize()+1, "undetermined");
596 }
597 fHistAnalysisSummary = BookTH1F("fHistAnalysisSummary", "flag", 54, -0.5, 54.5);
598 fHistSwap = new TH1F("fHistSwap", "fHistSwap", 20, 0, TMath::TwoPi());
599 if(fUsePtWeight) fHistSwap->Sumw2();
600
601 if(fUserSuppliedV2) fOutputList->Add(fUserSuppliedV2);
602 if(fUserSuppliedV3) fOutputList->Add(fUserSuppliedV3);
603 if(fUserSuppliedR2) fOutputList->Add(fUserSuppliedR2);
604 if(fUserSuppliedR3) fOutputList->Add(fUserSuppliedR3);
605 // increase readability of output list
606 fOutputList->Sort();
607 // cdf and pdf of chisquare distribution
608 fHistPvalueCDF = BookTH1F("fHistPvalueCDF", "CDF #chi^{2}", 50, 0, 1);
609 fHistPvalueCDFCent = BookTH2F("fHistPvalueCDFCent", "centrality", "p-value", 40, 0, 100, 40, 0, 1);
610 fHistChi2Cent = BookTH2F("fHistChi2Cent", "centrality", "#tilde{#chi^{2}}", 100, 0, 100, 100, 0, 5);
611 fHistPChi2 = BookTH2F("fHistPChi2", "p-value", "#tilde{#chi^{2}}", 1000, 0, 1, 100, 0, 5);
612 fHistKolmogorovTest = BookTH1F("fHistKolmogorovTest", "KolmogorovTest", 50, 0, 1);
613 fHistKolmogorovTestCent = BookTH2F("fHistKolmogorovTestCent", "centrality", "Kolmogorov p", 40, 0, 100, 45, 0, 1);
614 fHistPvalueCDFROOT = BookTH1F("fHistPvalueCDFROOT", "CDF #chi^{2} ROOT", 50, 0, 1);
615 fHistPvalueCDFROOTCent = BookTH2F("fHistPvalueCDFROOTCent", "centrality", "p-value ROOT", 40, 0, 100, 45, 0, 1);
616 fHistChi2ROOTCent = BookTH2F("fHistChi2ROOTCent", "centrality", "#tilde{#chi^{2}}", 40, 0, 100, 45, 0, 5);
617 fHistPChi2Root = BookTH2F("fHistPChi2Root", "p-value", "#tilde{#chi^{2}} ROOT", 1000, 0, 1, 100, 0, 5);
618 fHistPKolmogorov = BookTH2F("fHistPKolmogorov", "p-value", "kolmogorov p",40, 0, 1, 40, 0, 1);
619 fHistRhoStatusCent = BookTH2F("fHistRhoStatusCent", "centrality", "status [-1=lin was better, 0=ok, 1 = failed]", 101, -1, 100, 3, -1.5, 1.5);
620 fHistUndeterminedRunQA = BookTH1F("fHistUndeterminedRunQA", "runnumber", 10, 0, 10);
621
622 PostData(1, fOutputList);
623
624 switch (fRunModeType) {
625 case kLocal : {
626 fOutputListGood = new TList();
627 fOutputListGood->SetOwner(kTRUE);
628 fOutputListBad = new TList();
629 fOutputListBad->SetOwner(kTRUE);
630 PostData(2, fOutputListGood);
631 PostData(3, fOutputListBad);
632 } break;
633 default: break;
634 }
635
636 // get the containers
637 fTracksCont = GetParticleContainer("Tracks");
638 fClusterCont = GetClusterContainer(0); // get the default cluster container
639 fJetsCont = GetJetContainer("Jets");
640}
641//_____________________________________________________________________________
642Bool_t AliAnalysisTaskJetV2::Run()
643{
9e1c2f31 644 // called for each accepted event (call made from user exec of parent class)
eae37c5c 645 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
06d2671d 646 if(!fTracks||!fJets||!fRho) {
9aa4c594 647 if(!fTracks) printf(" > Failed to retrieve fTracks ! < \n");
648 if(!fJets) printf(" > Failed to retrieve fJets ! < \n");
649 if(!fRho) printf(" > Failed to retrieve fRho ! < \n");
06d2671d 650 return kFALSE;
651 }
eae37c5c 652 if(!fLocalInit) fLocalInit = InitializeAnalysis();
653 // reject the event if expected data is missing
654 if(!PassesCuts(InputEvent())) return kFALSE;
9aa4c594 655 // cache the leading jet within acceptance
656 fLeadingJet = GetLeadingJet();
eae37c5c 657 // set the rho value
658 fLocalRho->SetVal(fRho->GetVal());
06d2671d 659 // place holder arrays for the event planes
660 //
eae37c5c 661 // [0][0] psi2a [1,0] psi2c
662 // [0][1] psi3a [1,1] psi3c
663 Double_t vzero[2][2];
eae37c5c 664 /* for the combined vzero event plane
665 * [0] psi2 [1] psi3
666 * not fully implmemented yet, use with caution ! */
667 Double_t vzeroComb[2];
eae37c5c 668 // [0] psi2 [1] psi3
669 Double_t tpc[2];
06d2671d 670 // evaluate the actual event planes
671 switch (fDetectorType) {
672 case kFixedEP : {
673 // for fixed, fix all ep's to default values
674 tpc[0] = 0.; tpc[1] = 1.;
675 vzero[0][0] = 0.; vzero[0][1] = 1.;
676 vzero[1][0] = 0.; vzero[1][1] = 1.;
677 vzeroComb[0] = 0.; vzeroComb[1] = 1.;
678 } break;
679 default : {
680 // else grab the actual data
681 CalculateEventPlaneVZERO(vzero);
682 CalculateEventPlaneCombinedVZERO(vzeroComb);
683 CalculateEventPlaneTPC(tpc);
684 } break;
685 }
eae37c5c 686 Double_t psi2(-1), psi3(-1);
687 // arrays which will hold the fit parameters
688 switch (fDetectorType) { // determine the detector type for the rho fit
06d2671d 689 case kTPC : { psi2 = tpc[0]; psi3 = tpc[1]; } break;
690 case kVZEROA : { psi2 = vzero[0][0]; psi3 = vzero[0][1]; } break;
691 case kVZEROC : { psi2 = vzero[1][0]; psi3 = vzero[1][1]; } break;
692 case kVZEROComb : { psi2 = vzeroComb[0]; psi3 = vzeroComb[1];} break;
693 case kFixedEP : { psi2 = 0.; psi3 = 1.;} break;
eae37c5c 694 default : break;
695 }
696 switch (fFitModulationType) { // do the fits
697 case kNoFit : {
698 switch (fCollisionType) {
699 case kPythia : { // background is zero for pp jets
700 fFitModulation->FixParameter(0, 0);
701 fLocalRho->SetVal(0);
702 } break;
703 default : {
704 fFitModulation->FixParameter(0, fLocalRho->GetVal());
705 } break;
706 }
707 } break;
708 case kV2 : { // only v2
709 if(CorrectRho(psi2, psi3)) {
710 fProfV2->Fill(fCent, fFitModulation->GetParameter(3));
711 if(fUserSuppliedR2) {
712 Double_t r(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent)));
713 if(r > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)/r);
714 }
715 CalculateEventPlaneResolution(vzero, vzeroComb, tpc);
716 }
717 } break;
718 case kV3 : { // only v3
719 if(CorrectRho(psi2, psi3)) {
720 if(fUserSuppliedR3) {
721 Double_t r(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent)));
722 if(r > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)/r);
723 }
724 fProfV3->Fill(fCent, fFitModulation->GetParameter(3));
725 CalculateEventPlaneResolution(vzero, vzeroComb, tpc);
726 }
727 } break;
728 case kQC2 : { // qc2 analysis
729 if(CorrectRho(psi2, psi3)) {
730 if(fUserSuppliedR2 && fUserSuppliedR3) {
731 // note for the qc method, resolution is REVERSED to go back to v2obs
732 Double_t r2(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent)));
733 Double_t r3(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent)));
734 if(r2 > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)*r2);
735 if(r3 > 0) fFitModulation->SetParameter(7, fFitModulation->GetParameter(7)*r3);
736 }
737 if (fUsePtWeight) { // use weighted weights
738 Double_t dQCnM11 = (fNoEventWeightsForQC) ? 1. : QCnM11();
739 fProfV2->Fill(fCent, fFitModulation->GetParameter(3), dQCnM11);
740 fProfV3->Fill(fCent, fFitModulation->GetParameter(7), dQCnM11);
741 } else {
742 Double_t dQCnM = (fNoEventWeightsForQC) ? 2. : QCnM();
743 fProfV2->Fill(fCent, fFitModulation->GetParameter(3), dQCnM*(dQCnM-1));
744 fProfV3->Fill(fCent, fFitModulation->GetParameter(7), dQCnM*(dQCnM-1));
745 }
746 CalculateEventPlaneResolution(vzero, vzeroComb, tpc);
747 }
748 } break;
749 case kQC4 : {
750 if(CorrectRho(psi2, psi3)) {
751 if(fUserSuppliedR2 && fUserSuppliedR3) {
752 // note for the qc method, resolution is REVERSED to go back to v2obs
753 Double_t r2(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent)));
754 Double_t r3(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent)));
755 if(r2 > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)*r2);
756 if(r3 > 0) fFitModulation->SetParameter(7, fFitModulation->GetParameter(7)*r3);
757 }
758 if (fUsePtWeight) { // use weighted weights
759 fProfV2->Fill(fCent, TMath::Power(fFitModulation->GetParameter(3),0.5)/*, QCnM1111()*/);
760 fProfV3->Fill(fCent, TMath::Power(fFitModulation->GetParameter(7),0.5)/*, QCnM1111()*/);
761 } else {
762 fProfV2->Fill(fCent, TMath::Power(fFitModulation->GetParameter(3),0.5)/*, QCnM()*(QCnM()-1)*(QCnM()-2)*(QCnM()-3)*/);
763 fProfV3->Fill(fCent, TMath::Power(fFitModulation->GetParameter(7),0.5)/*, QCnM()*(QCnM()-1)*(QCnM()-2)*(QCnM()-3)*/);
764 }
765 }
766 CalculateEventPlaneResolution(vzero, vzeroComb, tpc);
767 } break;
768 default : {
769 if(CorrectRho(psi2, psi3)) {
770 if(fUserSuppliedR2 && fUserSuppliedR3) {
771 Double_t r2(fUserSuppliedR2->GetBinContent(fUserSuppliedR2->GetXaxis()->FindBin(fCent)));
772 Double_t r3(fUserSuppliedR3->GetBinContent(fUserSuppliedR3->GetXaxis()->FindBin(fCent)));
773 if(r2 > 0) fFitModulation->SetParameter(3, fFitModulation->GetParameter(3)/r2);
774 if(r3 > 0) fFitModulation->SetParameter(7, fFitModulation->GetParameter(7)/r3);
775 }
776 fProfV2->Fill(fCent, fFitModulation->GetParameter(3));
777 fProfV3->Fill(fCent, fFitModulation->GetParameter(7));
778 CalculateEventPlaneResolution(vzero, vzeroComb, tpc);
779 }
780 } break;
781 }
782 // if all went well, update the local rho parameter
783 fLocalRho->SetLocalRho(fFitModulation);
784 // fill a number of histograms. event qa needs to be filled first as it also determines the runnumber for the track qa
785 if(fFillQAHistograms) FillQAHistograms(InputEvent());
786 if(fFillHistograms) FillHistogramsAfterSubtraction(psi2, vzero, vzeroComb, tpc);
787 // send the output to the connected output container
788 PostData(1, fOutputList);
789 switch (fRunModeType) {
790 case kLocal : {
791 PostData(2, fOutputListGood);
792 PostData(3, fOutputListBad);
793 } break;
794 default: break;
795 }
eae37c5c 796 return kTRUE;
797}
798//_____________________________________________________________________________
06d2671d 799void AliAnalysisTaskJetV2::Exec(Option_t* c)
800{
801 // for stand alone, avoid framework event setup
802 switch (fCollisionType) {
803 case kJetFlowMC : {
804 // need to call ExecOnce as it is not loaded otherwise
805 if(!fLocalRho) AliAnalysisTaskJetV2::ExecOnce();
806 AliAnalysisTaskJetV2::Run();
807 } break;
808 default : {
809 AliAnalysisTaskSE::Exec(c);
810 } break;
811 }
812}
813//_____________________________________________________________________________
9e1c2f31 814Double_t AliAnalysisTaskJetV2::CalculateEventPlaneChi(Double_t res)
815{
4a4073c4 816 // return chi for given resolution to combine event plane estimates from two subevents
817 // see Phys. Rev. C no. CS6346 (http://arxiv.org/abs/nucl-ex/9805001)
818 Double_t chi(2.), delta(1.), con((TMath::Sqrt(TMath::Pi()))/(2.*TMath::Sqrt(2)));
9e1c2f31 819 for (Int_t i(0); i < 15; i++) {
820 chi = ((con*chi*TMath::Exp(-chi*chi/4.)*(TMath::BesselI0(chi*chi/4.)+TMath::BesselI1(chi*chi/4.))) < res) ? chi + delta : chi - delta;
821 delta = delta / 2.;
822 }
823 return chi;
824}
825//_____________________________________________________________________________
eae37c5c 826void AliAnalysisTaskJetV2::CalculateEventPlaneVZERO(Double_t vzero[2][2]) const
827{
9e1c2f31 828 // get the vzero event plane (a and c separately)
6c3fa11d 829 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
9e1c2f31 830 switch (fCollisionType) {
831 case kPbPb10h : {
832 // for 10h data, get the calibrated q-vector from the database
833 Double_t QA2[] = {-999., -999.};
834 Double_t QA3[] = {-999., -999.};
835 Double_t QC2[] = {-999., -999.};
836 Double_t QC3[] = {-999., -999.};
837 CalculateQvectorVZERO(QA2, QA3, QC2, QC3);
838 vzero[0][0] = .5*TMath::ATan2(QA2[1], QA2[0]);
839 vzero[1][0] = .5*TMath::ATan2(QC2[1], QC2[0]);
840 vzero[0][1] = (1./3.)*TMath::ATan2(QA3[1], QA3[0]);
841 vzero[1][1] = (1./3.)*TMath::ATan2(QC3[1], QC3[0]);
842 } break;
843 default: {
844 // by default use the ep from the event header (make sure EP selection task is enabeled!)
845 Double_t a(0), b(0), c(0), d(0), e(0), f(0), g(0), h(0);
846 vzero[0][0] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 8, 2, a, b);
847 vzero[1][0] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 9, 2, c, d);
848 vzero[0][1] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 8, 3, e, f);
849 vzero[1][1] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 9, 3, g, h);
850 return;
851 }
eae37c5c 852 }
9e1c2f31 853}
854//_____________________________________________________________________________
855void AliAnalysisTaskJetV2::CalculateEventPlaneCombinedVZERO(Double_t* comb) const
856{
857 // return the combined vzero event plane
eae37c5c 858 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
9e1c2f31 859 switch (fCollisionType) {
860 // for 10h data call calibration info
861 case kPbPb10h : {
862 // get the calibrated q-vectors
863 Double_t Q2[] = {-999., -999.};
864 Double_t Q3[] = {-999., -999.};
865 // return if something isn't ok from the calibration side
866 CalculateQvectorCombinedVZERO(Q2, Q3);
867 comb[0] = .5*TMath::ATan2(Q2[1], Q2[0]);
868 comb[1] = (1./3.)*TMath::ATan2(Q3[1], Q3[0]);
869 } break;
870 default : {
871 // for all other types use calibrated event plane from the event header
872 Double_t a(0), b(0), c(0), d(0);
873 comb[0] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 10, 2, a, b);
874 comb[1] = InputEvent()->GetEventplane()->CalculateVZEROEventPlane(InputEvent(), 10, 3, c, d);
875 } break;
eae37c5c 876 }
eae37c5c 877}
878//_____________________________________________________________________________
879void AliAnalysisTaskJetV2::CalculateEventPlaneTPC(Double_t* tpc)
880{
881 // grab the TPC event plane
882 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
883 fNAcceptedTracks = 0; // reset the track counter
884 Double_t qx2(0), qy2(0); // for psi2
885 Double_t qx3(0), qy3(0); // for psi3
886 if(fTracksCont) {
887 Float_t excludeInEta = -999;
888 if(fExcludeLeadingJetsFromFit > 0 ) { // remove the leading jet from ep estimate
889 if(fLeadingJet) excludeInEta = fLeadingJet->Eta();
890 }
891 for(Int_t iTPC(0); iTPC < fTracksCont->GetNEntries(); iTPC++) {
892 AliVParticle* track = fTracksCont->GetParticle(iTPC);
893 if(!PassesCuts(track) || track->Pt() < fSoftTrackMinPt || track->Pt() > fSoftTrackMaxPt) continue;
894 if(fExcludeLeadingJetsFromFit > 0 &&( (TMath::Abs(track->Eta() - excludeInEta) < GetJetContainer()->GetJetRadius()*fExcludeLeadingJetsFromFit ) || (TMath::Abs(track->Eta()) - GetJetContainer()->GetJetRadius() - GetJetContainer()->GetJetEtaMax() ) > 0 )) continue;
895 fNAcceptedTracks++;
896 qx2+= TMath::Cos(2.*track->Phi());
897 qy2+= TMath::Sin(2.*track->Phi());
898 qx3+= TMath::Cos(3.*track->Phi());
899 qy3+= TMath::Sin(3.*track->Phi());
900 }
901 }
902 tpc[0] = .5*TMath::ATan2(qy2, qx2);
903 tpc[1] = (1./3.)*TMath::ATan2(qy3, qx3);
eae37c5c 904}
905//_____________________________________________________________________________
906void AliAnalysisTaskJetV2::CalculateEventPlaneResolution(Double_t vzero[2][2], Double_t* vzeroComb, Double_t* tpc)
907{
908 // fill the profiles for the resolution parameters
9e1c2f31 909 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 910 fProfV2Resolution[fInCentralitySelection]->Fill(2., TMath::Cos(2.*(vzero[0][0] - vzero[1][0])));
911 fProfV2Resolution[fInCentralitySelection]->Fill(3., TMath::Cos(2.*(vzero[1][0] - vzero[0][0])));
912 fProfV2Resolution[fInCentralitySelection]->Fill(4., TMath::Cos(2.*(vzero[0][0] - tpc[0])));
913 fProfV2Resolution[fInCentralitySelection]->Fill(5., TMath::Cos(2.*(tpc[0] - vzero[0][0])));
914 fProfV2Resolution[fInCentralitySelection]->Fill(6., TMath::Cos(2.*(vzero[1][0] - tpc[0])));
915 fProfV2Resolution[fInCentralitySelection]->Fill(7., TMath::Cos(2.*(tpc[0] - vzero[1][0])));
916 fProfV3Resolution[fInCentralitySelection]->Fill(2., TMath::Cos(3.*(vzero[0][0] - vzero[1][0])));
917 fProfV3Resolution[fInCentralitySelection]->Fill(3., TMath::Cos(3.*(vzero[1][0] - vzero[0][0])));
918 fProfV3Resolution[fInCentralitySelection]->Fill(4., TMath::Cos(3.*(vzero[0][0] - tpc[0])));
919 fProfV3Resolution[fInCentralitySelection]->Fill(5., TMath::Cos(3.*(tpc[0] - vzero[0][0])));
920 fProfV3Resolution[fInCentralitySelection]->Fill(6., TMath::Cos(3.*(vzero[1][0] - tpc[0])));
921 fProfV3Resolution[fInCentralitySelection]->Fill(7., TMath::Cos(3.*(tpc[0] - vzero[1][0])));
922 // for the resolution of the combined vzero event plane, use two tpc halves as uncorrelated subdetectors
923 Double_t qx2a(0), qy2a(0); // for psi2a, negative eta
924 Double_t qx3a(0), qy3a(0); // for psi3a, negative eta
925 Double_t qx2b(0), qy2b(0); // for psi2a, positive eta
926 Double_t qx3b(0), qy3b(0); // for psi3a, positive eta
927 if(fTracks) {
928 Int_t iTracks(fTracks->GetEntriesFast());
929 for(Int_t iTPC(0); iTPC < iTracks; iTPC++) {
930 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(iTPC));
931 if(!PassesCuts(track) || track->Pt() < fSoftTrackMinPt || track->Pt() > fSoftTrackMaxPt) continue;
932 if(track->Eta() < 0 ) {
933 qx2a+= TMath::Cos(2.*track->Phi());
934 qy2a+= TMath::Sin(2.*track->Phi());
935 qx3a+= TMath::Cos(3.*track->Phi());
936 qy3a+= TMath::Sin(3.*track->Phi());
937 } else if (track->Eta() > 0) {
938 qx2b+= TMath::Cos(2.*track->Phi());
939 qy2b+= TMath::Sin(2.*track->Phi());
940 qx3b+= TMath::Cos(3.*track->Phi());
941 qy3b+= TMath::Sin(3.*track->Phi());
942 }
943 }
944 }
945 Double_t tpca2(.5*TMath::ATan2(qy2a, qx2a));
946 Double_t tpca3((1./3.)*TMath::ATan2(qy3a, qx3a));
947 Double_t tpcb2(.5*TMath::ATan2(qy2b, qx2b));
948 Double_t tpcb3((1./3.)*TMath::ATan2(qy3b, qx3b));
949 fProfV2Resolution[fInCentralitySelection]->Fill(8., TMath::Cos(2.*(vzeroComb[0] - tpca2)));
950 fProfV2Resolution[fInCentralitySelection]->Fill(9., TMath::Cos(2.*(vzeroComb[0] - tpcb2)));
951 fProfV2Resolution[fInCentralitySelection]->Fill(10., TMath::Cos(2.*(tpca2 - tpcb2)));
952 fProfV3Resolution[fInCentralitySelection]->Fill(8., TMath::Cos(3.*(vzeroComb[1] - tpca3)));
953 fProfV3Resolution[fInCentralitySelection]->Fill(9., TMath::Cos(3.*(vzeroComb[1] - tpcb3)));
954 fProfV3Resolution[fInCentralitySelection]->Fill(10., TMath::Cos(3.*(tpca3 - tpcb3)));
955}
956//_____________________________________________________________________________
9e1c2f31 957void AliAnalysisTaskJetV2::CalculateQvectorVZERO(Double_t Qa2[2], Double_t Qc2[2], Double_t Qa3[2], Double_t Qc3[2]) const
958{
959 // return the calibrated 2nd and 3rd order q-vectors for vzeroa and vzeroc
960 // function takes arrays as arguments, which correspond to vzero info in the following way
961 //
962 // Qa2[0] = Qx2 for vzero A Qa2[1] = Qy2 for vzero A (etc)
963
964 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
965 // placeholders for geometric information
966 Double_t phi(-999.), weight(-999.);
967 // reset placeholders for Q-vector components
968 Qa2[0] = 0.; Qc2[0] = 0.; Qa3[0] = 0.; Qc3[0] = 0.;
969 Qa2[1] = 0.; Qc2[1] = 0.; Qa3[1] = 0.; Qc3[1] = 0.;
970
971 for(Int_t i(0); i < 64; i++) {
972 // loop over all scintillators, construct Q-vectors in the same loop
973 phi = TMath::PiOver4()*(0.5+i%8);
974 weight = 0.;
975 // note that disabled rings have already been excluded in ReadVZEROCalibration2010h
976 if(i<32) { // v0c side
977 if(i < 8) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROCpol[0]/fVZEROgainEqualization->GetBinContent(1+i);
978 else if (i < 16 ) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROCpol[1]/fVZEROgainEqualization->GetBinContent(1+i);
979 else if (i < 24 ) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROCpol[2]/fVZEROgainEqualization->GetBinContent(1+i);
980 else if (i < 32 ) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROCpol[3]/fVZEROgainEqualization->GetBinContent(1+i);
981 // fill Q-vectors for v0c side
982 Qc2[0]+=weight*TMath::Cos(2.*phi);
983 Qc3[0]+=weight*TMath::Cos(3.*phi);
984 Qc2[1]+=weight*TMath::Sin(2.*phi);
985 Qc3[1]+=weight*TMath::Sin(3.*phi);
986 } else { // v0a side
987 if( i < 40) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROApol[0]/fVZEROgainEqualization->GetBinContent(1+i);
988 else if ( i < 48 ) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROApol[1]/fVZEROgainEqualization->GetBinContent(1+i);
989 else if ( i < 56 ) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROApol[2]/fVZEROgainEqualization->GetBinContent(1+i);
990 else if ( i < 64 ) weight = InputEvent()->GetVZEROData()->GetMultiplicity(i)*fVZEROApol[3]/fVZEROgainEqualization->GetBinContent(1+i);
991 // fill Q-vectors for v0a side
992 Qa2[0]+=weight*TMath::Cos(2.*phi);
993 Qa3[0]+=weight*TMath::Cos(3.*phi);
994 Qa2[1]+=weight*TMath::Sin(2.*phi);
995 Qa3[1]+=weight*TMath::Sin(3.*phi);
996 }
997 }
998 // get the cache index and read the correction terms from the cache
999 Int_t VZEROcentralityBin(GetVZEROCentralityBin());
1000 Double_t Qx2amean = fMeanQ[VZEROcentralityBin][1][0];
1001 Double_t Qx2arms = fWidthQ[VZEROcentralityBin][1][0];
1002 Double_t Qy2amean = fMeanQ[VZEROcentralityBin][1][1];
1003 Double_t Qy2arms = fWidthQ[VZEROcentralityBin][1][1];
1004
1005 Double_t Qx2cmean = fMeanQ[VZEROcentralityBin][0][0];
1006 Double_t Qx2crms = fWidthQ[VZEROcentralityBin][0][0];
1007 Double_t Qy2cmean = fMeanQ[VZEROcentralityBin][0][1];
1008 Double_t Qy2crms = fWidthQ[VZEROcentralityBin][0][1];
1009
1010 Double_t Qx3amean = fMeanQv3[VZEROcentralityBin][1][0];
1011 Double_t Qx3arms = fWidthQv3[VZEROcentralityBin][1][0];
1012 Double_t Qy3amean = fMeanQv3[VZEROcentralityBin][1][1];
1013 Double_t Qy3arms = fWidthQv3[VZEROcentralityBin][1][1];
1014
1015 Double_t Qx3cmean = fMeanQv3[VZEROcentralityBin][0][0];
1016 Double_t Qx3crms = fWidthQv3[VZEROcentralityBin][0][0];
1017 Double_t Qy3cmean = fMeanQv3[VZEROcentralityBin][0][1];
1018 Double_t Qy3crms = fWidthQv3[VZEROcentralityBin][0][1];
1019
1020 // update the weighted q-vectors with the re-centered values
1021 Qa2[0] = (Qa2[0] - Qx2amean)/Qx2arms;
1022 Qa2[1] = (Qa2[1] - Qy2amean)/Qy2arms;
1023 Qc2[0] = (Qc2[0] - Qx2cmean)/Qx2crms;
1024 Qc2[1] = (Qc2[1] - Qy2cmean)/Qy2crms;
1025
1026 Qa3[0] = (Qa3[0] - Qx3amean)/Qx3arms;
1027 Qa3[1] = (Qa3[1] - Qy3amean)/Qy3arms;
1028 Qc3[0] = (Qc3[0] - Qx3cmean)/Qx3crms;
1029 Qc3[1] = (Qc3[0] - Qy3cmean)/Qy3crms;
1030}
1031//_____________________________________________________________________________
1032void AliAnalysisTaskJetV2::CalculateQvectorCombinedVZERO(Double_t Q2[2], Double_t Q3[2]) const
1033{
1034 // calculate calibrated q-vector of the combined vzeroa, vzeroc system
1035 // this is somewhat ugly as CalculateQvectorCombinedVZERO is called more than once per event
1036 // but for now it will have to do ...
1037 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1038
1039 // first step: retrieve the q-vectors component-wise per vzero detector
1040 Double_t QA2[] = {-999., -999.};
1041 Double_t QA3[] = {-999., -999.};
1042 Double_t QC2[] = {-999., -999.};
1043 Double_t QC3[] = {-999., -999.};
1044 CalculateQvectorVZERO(QA2, QA3, QC2, QC3);
1045
1046 // get cache index and retrieve the chi weights for this centrality
1047 Int_t VZEROcentralityBin(GetVZEROCentralityBin());
1048 Double_t chi2A(fChi2A->At(VZEROcentralityBin));
1049 Double_t chi2C(fChi2C->At(VZEROcentralityBin));
1050 Double_t chi3A(fChi3A->At(VZEROcentralityBin));
1051 Double_t chi3C(fChi3C->At(VZEROcentralityBin));
1052
1053 // combine the vzera and vzeroc signal
1054 Q2[0] = chi2A*chi2A*QA2[0]+chi2C*chi2C*QC2[0];
1055 Q2[1] = chi2A*chi2A*QA2[1]+chi2C*chi2C*QC2[1];
1056 Q3[0] = chi3A*chi3A*QA3[0]+chi3C*chi3C*QC3[0];
1057 Q3[1] = chi3A*chi3A*QC3[1]+chi3C*chi3C*QC3[1];
1058}
1059//_____________________________________________________________________________
eae37c5c 1060void AliAnalysisTaskJetV2::CalculateRandomCone(Float_t &pt, Float_t &eta, Float_t &phi,
1061 AliParticleContainer* tracksCont, AliClusterContainer* clusterCont, AliEmcalJet* jet) const
1062{
1063 // get a random cone
1064 if(fDebug > 1) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1065 pt = 0; eta = 0; phi = 0;
1066 Float_t etaJet(999), phiJet(999), dJet(999); // no jet: same as jet very far away
1067 if(jet) { // if a leading jet is given, use its kinematic properties to exclude it
1068 etaJet = jet->Eta();
1069 phiJet = jet->Phi();
1070 }
1071 // the random cone acceptance has to equal the jet acceptance
1072 // this also insures safety when runnnig on the semi-good tpc runs for 11h data,
1073 // where jet acceptance is adjusted to reduced acceptance - hence random cone acceptance as well
1074 Float_t minPhi(GetJetContainer()->GetJetPhiMin()), maxPhi(GetJetContainer()->GetJetPhiMax());
1075 if(maxPhi > TMath::TwoPi()) maxPhi = TMath::TwoPi();
1076 if(minPhi < 0 ) minPhi = 0.;
1077 // construct a random cone and see if it's far away enough from the leading jet
1078 Int_t attempts(1000);
1079 while(kTRUE) {
1080 attempts--;
1081 eta = gRandom->Uniform(GetJetContainer()->GetJetEtaMin(), GetJetContainer()->GetJetEtaMax());
1082 phi = gRandom->Uniform(minPhi, maxPhi);
1083
1084 dJet = TMath::Sqrt((etaJet-eta)*(etaJet-eta)+(phiJet-phi)*(phiJet-phi));
1085 if(dJet > fMinDisanceRCtoLJ) break;
1086 else if (attempts == 0) {
1087 printf(" > No random cone after 1000 tries, giving up ... !\n");
1088 return;
1089 }
1090 }
1091 // get the charged energy (if tracks are provided)
1092 if(tracksCont) {
1093 AliVParticle* track = tracksCont->GetNextAcceptParticle(0);
1094 while(track) {
1095 Float_t etaTrack(track->Eta()), phiTrack(track->Phi());
1096 // get distance from cone
1097 if(TMath::Abs(phiTrack-phi) > TMath::Abs(phiTrack - phi + TMath::TwoPi())) phiTrack+=TMath::TwoPi();
1098 if(TMath::Abs(phiTrack-phi) > TMath::Abs(phiTrack - phi - TMath::TwoPi())) phiTrack-=TMath::TwoPi();
1099 if(TMath::Sqrt(TMath::Abs((etaTrack-eta)*(etaTrack-eta)+(phiTrack-phi)*(phiTrack-phi))) <= GetJetRadius()) pt += track->Pt();
1100 track = tracksCont->GetNextAcceptParticle();
1101 }
1102 }
1103 // get the neutral energy (if clusters are provided)
1104 if(clusterCont) {
1105 AliVCluster* cluster = clusterCont->GetNextAcceptCluster(0);
1106 while(cluster) {
1107 TLorentzVector momentum;
1108 cluster->GetMomentum(momentum, const_cast<Double_t*>(fVertex));
1109 Float_t etaClus(momentum.Eta()), phiClus(momentum.Phi());
1110 // get distance from cone
1111 if(TMath::Abs(phiClus-phi) > TMath::Abs(phiClus - phi + TMath::TwoPi())) phiClus+=TMath::TwoPi();
1112 if(TMath::Abs(phiClus-phi) > TMath::Abs(phiClus - phi - TMath::TwoPi())) phiClus-=TMath::TwoPi();
1113 if(TMath::Sqrt(TMath::Abs((etaClus-eta)*(etaClus-eta)+(phiClus-phi)*(phiClus-phi))) <= GetJetRadius()) pt += momentum.Pt();
1114 cluster = clusterCont->GetNextAcceptCluster();
1115 }
1116 }
1117}
1118//_____________________________________________________________________________
1119Double_t AliAnalysisTaskJetV2::CalculateQC2(Int_t harm) {
1120 // get the second order q-cumulant, a -999 return will be caught in the qa routine of CorrectRho
1121 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1122 Double_t reQ(0), imQ(0), modQ(0), M11(0), M(0);
1123 if(fUsePtWeight) { // for the weighted 2-nd order q-cumulant
1124 QCnQnk(harm, 1, reQ, imQ); // get the weighted 2-nd order q-vectors
1125 modQ = reQ*reQ+imQ*imQ; // get abs Q-squared
1126 M11 = QCnM11(); // equals S2,1 - S1,2
1127 return (M11 > 0) ? ((modQ - QCnS(1,2))/M11) : -999;
1128 } // else return the non-weighted 2-nd order q-cumulant
1129 QCnQnk(harm, 0, reQ, imQ); // get the non-weighted 2-nd order q-vectors
1130 modQ = reQ*reQ+imQ*imQ; // get abs Q-squared
1131 M = QCnM();
1132 return (M > 1) ? (modQ - M)/(M*(M-1)) : -999;
1133}
1134//_____________________________________________________________________________
1135Double_t AliAnalysisTaskJetV2::CalculateQC4(Int_t harm) {
1136 // get the fourth order q-cumulant, a -999 return will be caught in the qa routine of CorrectRho
1137 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1138 Double_t reQn1(0), imQn1(0), reQ2n2(0), imQ2n2(0), reQn3(0), imQn3(0), M1111(0), M(0);
1139 Double_t a(0), b(0), c(0), d(0), e(0), f(0), g(0); // terms of the calculation
1140 if(fUsePtWeight) { // for the weighted 4-th order q-cumulant
1141 QCnQnk(harm, 1, reQn1, imQn1);
1142 QCnQnk(harm*2, 2, reQ2n2, imQ2n2);
1143 QCnQnk(harm, 3, reQn3, imQn3);
1144 // fill in the terms ...
1145 a = (reQn1*reQn1+imQn1*imQn1)*(reQn1*reQn1+imQn1*imQn1);
1146 b = reQ2n2*reQ2n2 + imQ2n2*imQ2n2;
1147 c = -2.*(reQ2n2*reQn1*reQn1-reQ2n2*imQn1*imQn1+2.*imQ2n2*reQn1*imQn1);
1148 d = 8.*(reQn3*reQn1+imQn3*imQn1);
1149 e = -4.*QCnS(1,2)*(reQn1*reQn1+imQn1*imQn1);
1150 f = -6.*QCnS(1,4);
1151 g = 2.*QCnS(2,2);
1152 M1111 = QCnM1111();
1153 return (M1111 > 0) ? (a+b+c+d+e+f+g)/M1111 : -999;
1154 } // else return the unweighted case
1155 Double_t reQn(0), imQn(0), reQ2n(0), imQ2n(0);
1156 QCnQnk(harm, 0, reQn, imQn);
1157 QCnQnk(harm*2, 0, reQ2n, imQ2n);
1158 // fill in the terms ...
1159 M = QCnM();
1160 if(M < 4) return -999;
1161 a = (reQn*reQn+imQn*imQn)*(reQn*reQn+imQn*imQn);
1162 b = reQ2n*reQ2n + imQ2n*imQ2n;
1163 c = -2.*(reQ2n*reQn*reQn-reQ2n*imQn*imQn+2.*imQ2n*reQn*imQn);
1164 e = -4.*(M-2)*(reQn*reQn+imQn*imQn);
1165 f = 2.*M*(M-3);
1166 return (a+b+c+e+f)/(M*(M-1)*(M-2)*(M-3));
1167}
1168//_____________________________________________________________________________
1169void AliAnalysisTaskJetV2::QCnQnk(Int_t n, Int_t k, Double_t &reQ, Double_t &imQ) {
1170 // get the weighted n-th order q-vector, pass real and imaginary part as reference
1171 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1172 if(!fTracks) return;
1173 fNAcceptedTracksQCn = 0;
1174 Int_t iTracks(fTracks->GetEntriesFast());
1175 for(Int_t iTPC(0); iTPC < iTracks; iTPC++) {
1176 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(iTPC));
1177 if(!PassesCuts(track) || track->Pt() < fSoftTrackMinPt || track->Pt() > fSoftTrackMaxPt) continue;
1178 fNAcceptedTracksQCn++;
1179 // for the unweighted case, k equals zero and the weight doesn't contribute to the equation below
1180 reQ += TMath::Power(track->Pt(), k) * TMath::Cos(((double)n)*track->Phi());
1181 imQ += TMath::Power(track->Pt(), k) * TMath::Sin(((double)n)*track->Phi());
1182 }
1183}
1184//_____________________________________________________________________________
1185void AliAnalysisTaskJetV2::QCnDiffentialFlowVectors(
1186 TClonesArray* pois, TArrayD* ptBins, Bool_t vpart, Double_t* repn, Double_t* impn,
1187 Double_t *mp, Double_t *reqn, Double_t *imqn, Double_t* mq, Int_t n)
1188{
9e1c2f31 1189 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1190 // get unweighted differential flow vectors
eae37c5c 1191 Int_t iPois(pois->GetEntriesFast());
1192 if(vpart) {
1193 for(Int_t i(0); i < iPois; i++) {
1194 for(Int_t ptBin(0); ptBin < ptBins->GetSize()-1; ptBin++) {
1195 AliVTrack* poi = static_cast<AliVTrack*>(pois->At(i));
1196 if(PassesCuts(poi)) {
1197 if(poi->Pt() >= ptBins->At(ptBin) && poi->Pt() < ptBins->At(ptBin+1)) {
1198 // fill the flow vectors assuming that all poi's are in the rp selection (true by design)
1199 repn[ptBin]+=TMath::Cos(((double)n)*poi->Phi());
1200 impn[ptBin]+=TMath::Sin(((double)n)*poi->Phi());
1201 mp[ptBin]++;
1202 reqn[ptBin]+=TMath::Cos(((double)n)*poi->Phi());
1203 imqn[ptBin]+=TMath::Sin(((double)n)*poi->Phi());
1204 mq[ptBin]++;
1205 }
1206 }
1207 }
1208 }
1209 } else {
1210 for(Int_t i(0); i < iPois; i++) {
1211 for(Int_t ptBin(0); ptBin < ptBins->GetSize()-1; ptBin++) {
1212 AliEmcalJet* poi = static_cast<AliEmcalJet*>(pois->At(i));
1213 if(PassesCuts(poi)) {
1214 Double_t pt(poi->Pt()-poi->Area()*fLocalRho->GetLocalVal(poi->Phi(), GetJetContainer()->GetJetRadius(), fLocalRho->GetVal()));
1215 if(pt >= ptBins->At(ptBin) && pt < ptBins->At(ptBin+1)) {
1216 repn[ptBin]+=TMath::Cos(((double)n)*poi->Phi());
1217 impn[ptBin]+=TMath::Sin(((double)n)*poi->Phi());
1218 mp[ptBin]++; // qn isn't filled, no overlap between poi's and rp's
1219 }
1220 }
1221 }
1222 }
1223 }
1224}
1225//_____________________________________________________________________________
1226Double_t AliAnalysisTaskJetV2::QCnS(Int_t i, Int_t j) {
1227 // get the weighted ij-th order autocorrelation correction
1228 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1229 if(!fTracks || i <= 0 || j <= 0) return -999;
1230 Int_t iTracks(fTracks->GetEntriesFast());
1231 Double_t Sij(0);
1232 for(Int_t iTPC(0); iTPC < iTracks; iTPC++) {
1233 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(iTPC));
1234 if(!PassesCuts(track) || track->Pt() < fSoftTrackMinPt || track->Pt() > fSoftTrackMaxPt) continue;
1235 Sij+=TMath::Power(track->Pt(), j);
1236 }
1237 return TMath::Power(Sij, i);
1238}
1239//_____________________________________________________________________________
1240Double_t AliAnalysisTaskJetV2::QCnM() {
1241 // get multiplicity for unweighted q-cumulants. function QCnQnk should be called first
1242 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1243 return (Double_t) fNAcceptedTracksQCn;
1244}
1245//_____________________________________________________________________________
1246Double_t AliAnalysisTaskJetV2::QCnM11() {
1247 // get multiplicity weights for the weighted two particle cumulant
1248 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1249 return (QCnS(2,1) - QCnS(1,2));
1250}
1251//_____________________________________________________________________________
1252Double_t AliAnalysisTaskJetV2::QCnM1111() {
1253 // get multiplicity weights for the weighted four particle cumulant
1254 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1255 return (QCnS(4,1)-6*QCnS(1,2)*QCnS(2,1)+8*QCnS(1,3)*QCnS(1,1)+3*QCnS(2,2)-6*QCnS(1,4));
1256}
1257//_____________________________________________________________________________
1258Bool_t AliAnalysisTaskJetV2::QCnRecovery(Double_t psi2, Double_t psi3) {
1259 // decides how to deal with the situation where c2 or c3 is negative
1260 // returns kTRUE depending on whether or not a modulated rho is used for the jet background
1261 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1262 if(TMath::AreEqualAbs(fFitModulation->GetParameter(3), .0, 1e-10) && TMath::AreEqualAbs(fFitModulation->GetParameter(7), .0,1e-10)) {
1263 fFitModulation->SetParameter(7, 0);
1264 fFitModulation->SetParameter(3, 0);
1265 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1266 return kTRUE; // v2 and v3 have physical null values
1267 }
1268 switch (fQCRecovery) {
1269 case kFixedRho : { // roll back to the original rho
1270 fFitModulation->SetParameter(7, 0);
1271 fFitModulation->SetParameter(3, 0);
1272 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1273 return kFALSE; // rho is forced to be fixed
1274 }
1275 case kNegativeVn : {
1276 Double_t c2(fFitModulation->GetParameter(3));
1277 Double_t c3(fFitModulation->GetParameter(7));
1278 if( c2 < 0 ) c2 = -1.*TMath::Sqrt(-1.*c2);
1279 if( c3 < 0 ) c3 = -1.*TMath::Sqrt(-1.*c3);
1280 fFitModulation->SetParameter(3, c2);
1281 fFitModulation->SetParameter(7, c3);
1282 return kTRUE; // is this a physical quantity ?
1283 }
1284 case kTryFit : {
1285 fitModulationType tempType(fFitModulationType); // store temporarily
1286 fFitModulationType = kCombined;
1287 fFitModulation->SetParameter(7, 0);
1288 fFitModulation->SetParameter(3, 0);
1289 Bool_t pass(CorrectRho(psi2, psi3)); // do the fit and all quality checks
1290 fFitModulationType = tempType; // roll back for next event
1291 return pass;
1292 }
1293 default : return kFALSE;
1294 }
1295 return kFALSE;
1296}
1297//_____________________________________________________________________________
1298Bool_t AliAnalysisTaskJetV2::CorrectRho(Double_t psi2, Double_t psi3)
1299{
1300 // get rho' -> rho(phi)
1301 // two routines are available, both can be used with or without pt weights
1302 // [1] get vn from q-cumulants or as an integrated value from a user supplied histogram
1303 // in case of cumulants, both cumulants and vn values are stored. in both cases, v2 and v3
1304 // are expected. a check is performed to see if rho has no negative local minimum
1305 // for full description, see Phys. Rev. C 83, 044913
1306 // since the cn distribution has negative values, vn = sqrt(cn) can be imaginary sometimes
1307 // in this case one can either roll back to the 'original' rixed rho, do a fit for vn or take use
1308 // vn = - sqrt(|cn|)
1309 // [2] fitting a fourier expansion to the de/dphi distribution
1310 // the fit can be done with either v2, v3 or a combination.
1311 // in all cases, a cut can be made on the p-value of the chi-squared value of the fit
1312 // and a check can be performed to see if rho has no negative local minimum
1313 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1314 Int_t freeParams(2); // free parameters of the fit (for NDF)
1315 switch (fFitModulationType) { // for approaches where no fitting is required
1316 case kQC2 : {
1317 fFitModulation->FixParameter(4, psi2);
1318 fFitModulation->FixParameter(6, psi3);
1319 fFitModulation->FixParameter(3, CalculateQC2(2)); // set here with cn, vn = sqrt(cn)
1320 fFitModulation->FixParameter(7, CalculateQC2(3));
1321 // first fill the histos of the raw cumulant distribution
1322 if (fUsePtWeight) { // use weighted weights
1323 Double_t dQCnM11 = (fNoEventWeightsForQC) ? 1. : QCnM11();
1324 fProfV2Cumulant->Fill(fCent, fFitModulation->GetParameter(3), dQCnM11);
1325 fProfV3Cumulant->Fill(fCent, fFitModulation->GetParameter(7), dQCnM11);
1326 } else {
1327 Double_t dQCnM = (fNoEventWeightsForQC) ? 2. : QCnM();
1328 fProfV2Cumulant->Fill(fCent, fFitModulation->GetParameter(3), dQCnM*(dQCnM-1));
1329 fProfV3Cumulant->Fill(fCent, fFitModulation->GetParameter(7), dQCnM*(dQCnM-1));
1330 }
1331 // then see if one of the cn value is larger than zero and vn is readily available
1332 if(fFitModulation->GetParameter(3) > 0 && fFitModulation->GetParameter(7) > 0) {
1333 fFitModulation->FixParameter(3, TMath::Sqrt(fFitModulation->GetParameter(3)));
1334 fFitModulation->FixParameter(7, TMath::Sqrt(fFitModulation->GetParameter(7)));
1335 } else if (!QCnRecovery(psi2, psi3)) return kFALSE; // try to recover the cumulant, this will set v2 and v3
1336 if(fFitModulation->GetMinimum(0, TMath::TwoPi()) < 0) { // general check
1337 fFitModulation->SetParameter(7, 0);
1338 fFitModulation->SetParameter(3, 0);
1339 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1340 return kFALSE;
1341 }
1342 return kTRUE;
1343 } break;
1344 case kQC4 : {
1345 fFitModulation->FixParameter(4, psi2);
1346 fFitModulation->FixParameter(6, psi3);
1347 fFitModulation->FixParameter(3, CalculateQC4(2)); // set here with cn, vn = sqrt(cn)
1348 fFitModulation->FixParameter(7, CalculateQC4(3));
1349 // first fill the histos of the raw cumulant distribution
1350 if (fUsePtWeight) { // use weighted weights
1351 fProfV2Cumulant->Fill(fCent, fFitModulation->GetParameter(3)/*, QCnM1111()*/);
1352 fProfV3Cumulant->Fill(fCent, fFitModulation->GetParameter(7)/*, QCnM1111()*/);
1353 } else {
1354 fProfV2Cumulant->Fill(fCent, fFitModulation->GetParameter(3)/*, QCnM1111()*/);
1355 fProfV3Cumulant->Fill(fCent, fFitModulation->GetParameter(7)/*, QCnM1111()*/);
1356 }
1357 // then see if one of the cn value is larger than zero and vn is readily available
1358 if(fFitModulation->GetParameter(3) > 0 && fFitModulation->GetParameter(7) > 0) {
1359 fFitModulation->FixParameter(3, TMath::Sqrt(fFitModulation->GetParameter(3)));
1360 fFitModulation->FixParameter(7, TMath::Sqrt(fFitModulation->GetParameter(7)));
1361 } else if (!QCnRecovery(psi2, psi3)) return kFALSE; // try to recover the cumulant, this will set v2 and v3
1362 if(fFitModulation->GetMinimum(0, TMath::TwoPi()) < 0) { // general check
1363 fFitModulation->SetParameter(7, 0);
1364 fFitModulation->SetParameter(3, 0);
1365 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1366 return kFALSE;
1367 }
1368 } break;
1369 case kIntegratedFlow : {
1370 // use v2 and v3 values from an earlier iteration over the data
1371 fFitModulation->FixParameter(3, fUserSuppliedV2->GetBinContent(fUserSuppliedV2->GetXaxis()->FindBin(fCent)));
1372 fFitModulation->FixParameter(4, psi2);
1373 fFitModulation->FixParameter(6, psi3);
1374 fFitModulation->FixParameter(7, fUserSuppliedV3->GetBinContent(fUserSuppliedV3->GetXaxis()->FindBin(fCent)));
1375 if(fFitModulation->GetMinimum(0, TMath::TwoPi()) < 0) {
1376 fFitModulation->SetParameter(7, 0);
1377 fFitModulation->SetParameter(3, 0);
1378 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1379 return kFALSE;
1380 }
1381 return kTRUE;
1382 }
1383 default : break;
1384 }
1385 TString detector("");
1386 switch (fDetectorType) {
1387 case kTPC : detector+="TPC";
1388 break;
1389 case kVZEROA : detector+="VZEROA";
1390 break;
1391 case kVZEROC : detector+="VZEROC";
1392 break;
1393 case kVZEROComb : detector+="VZEROComb";
1394 break;
06d2671d 1395 case kFixedEP : detector+="FixedEP";
1396 break;
eae37c5c 1397 default: break;
1398 }
1399 Int_t iTracks(fTracks->GetEntriesFast());
1400 Double_t excludeInEta = -999;
1401 Double_t excludeInPhi = -999;
1402 Double_t excludeInPt = -999;
1403 if(iTracks <= 0 || fLocalRho->GetVal() <= 0 ) return kFALSE; // no use fitting an empty event ...
1404 if(fExcludeLeadingJetsFromFit > 0 ) {
1405 if(fLeadingJet) {
1406 excludeInEta = fLeadingJet->Eta();
1407 excludeInPhi = fLeadingJet->Phi();
1408 excludeInPt = fLeadingJet->Pt();
1409 }
1410 }
1411 // check the acceptance of the track selection that will be used
1412 // if one uses e.g. semi-good tpc tracks, accepance in phi is reduced to 0 < phi < 4
1413 // the defaults (-10 < phi < 10) which accept all, are then overwritten
1414 Double_t lowBound(0.), upBound(TMath::TwoPi()); // bounds for fit
1415 if(GetParticleContainer()->GetParticlePhiMin() > lowBound) lowBound = GetParticleContainer()->GetParticlePhiMin();
1416 if(GetParticleContainer()->GetParticlePhiMax() < upBound) upBound = GetParticleContainer()->GetParticlePhiMax();
6c3fa11d 1417 fHistSwap->Reset(); // clear the histogram
eae37c5c 1418 TH1F _tempSwap; // on stack for quick access
1419 TH1F _tempSwapN; // on stack for quick access, bookkeeping histogram
1420 if(fRebinSwapHistoOnTheFly) {
1421 if(fNAcceptedTracks < 49) fNAcceptedTracks = 49; // avoid aliasing effects
1422 _tempSwap = TH1F("_tempSwap", "_tempSwap", TMath::CeilNint(TMath::Sqrt(fNAcceptedTracks)), lowBound, upBound);
1423 if(fUsePtWeightErrorPropagation) _tempSwapN = TH1F("_tempSwapN", "_tempSwapN", TMath::CeilNint(TMath::Sqrt(fNAcceptedTracks)), lowBound, upBound);
1424 if(fUsePtWeight) _tempSwap.Sumw2();
1425 }
1426 else _tempSwap = *fHistSwap; // now _tempSwap holds the desired histo
1427 // non poissonian error when using pt weights
1428 Double_t totalpts(0.), totalptsquares(0.), totalns(0.);
1429 for(Int_t i(0); i < iTracks; i++) {
9e1c2f31 1430 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(i));
1431 if(fExcludeLeadingJetsFromFit > 0 &&( (TMath::Abs(track->Eta() - excludeInEta) < GetJetContainer()->GetJetRadius()*fExcludeLeadingJetsFromFit ) || (TMath::Abs(track->Eta()) - GetJetContainer()->GetJetRadius() - GetJetContainer()->GetJetEtaMax() ) > 0 )) continue;
1432 if(!PassesCuts(track) || track->Pt() > fSoftTrackMaxPt || track->Pt() < fSoftTrackMinPt) continue;
1433 if(fUsePtWeight) {
1434 _tempSwap.Fill(track->Phi(), track->Pt());
1435 if(fUsePtWeightErrorPropagation) {
1436 totalpts += track->Pt();
1437 totalptsquares += track->Pt()*track->Pt();
1438 totalns += 1;
1439 _tempSwapN.Fill(track->Phi());
eae37c5c 1440 }
9e1c2f31 1441 }
1442 else _tempSwap.Fill(track->Phi());
eae37c5c 1443 }
1444 if(fUsePtWeight && fUsePtWeightErrorPropagation) {
1445 // in the case of pt weights overwrite the poissonian error estimate which is assigned by root by a more sophisticated appraoch
1446 // the assumption here is that the bin error will be dominated by the uncertainty in the mean pt in a bin and in the uncertainty
1447 // of the number of tracks in a bin, the first of which will be estimated from the sample standard deviation of all tracks in the
1448 // event, for the latter use a poissonian estimate. the two contrubitions are assumed to be uncorrelated
9e1c2f31 1449 if(totalns < 2) return kFALSE; // not one track passes the cuts > 2 avoids possible division by 0 later on
eae37c5c 1450 for(Int_t l = 0; l < _tempSwap.GetNbinsX(); l++) {
1451 if(_tempSwapN.GetBinContent(l+1) == 0) {
1452 _tempSwap.SetBinContent(l+1,0);
1453 _tempSwap.SetBinError(l+1,0);
1454 }
1455 else {
1456 Double_t vartimesnsq = totalptsquares*totalns - totalpts*totalpts;
1457 Double_t variance = vartimesnsq/(totalns*(totalns-1.));
1458 Double_t SDOMSq = variance / _tempSwapN.GetBinContent(l+1);
1459 Double_t SDOMSqOverMeanSq = SDOMSq * _tempSwapN.GetBinContent(l+1) * _tempSwapN.GetBinContent(l+1) / (_tempSwapN.GetBinContent(l+1) * _tempSwapN.GetBinContent(l+1));
1460 Double_t poissonfrac = 1./_tempSwapN.GetBinContent(l+1);
1461 Double_t vartotalfrac = SDOMSqOverMeanSq + poissonfrac;
1462 Double_t vartotal = vartotalfrac * _tempSwap.GetBinContent(l+1) * _tempSwap.GetBinContent(l+1);
1463 if(vartotal > 0.0001) _tempSwap.SetBinError(l+1,TMath::Sqrt(vartotal));
1464 else {
1465 _tempSwap.SetBinContent(l+1,0);
1466 _tempSwap.SetBinError(l+1,0);
1467 }
1468 }
1469 }
1470 }
eae37c5c 1471 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1472 switch (fFitModulationType) {
1473 case kNoFit : {
1474 fFitModulation->FixParameter(0, fLocalRho->GetVal() );
1475 freeParams = 0;
1476 } break;
1477 case kV2 : {
1478 fFitModulation->FixParameter(4, psi2);
1479 freeParams = 1;
1480 } break;
1481 case kV3 : {
1482 fFitModulation->FixParameter(4, psi3);
1483 freeParams = 1;
1484 } break;
1485 case kCombined : {
1486 fFitModulation->FixParameter(4, psi2);
1487 fFitModulation->FixParameter(6, psi3);
1488 freeParams = 2;
1489 } break;
1490 case kFourierSeries : {
1491 // in this approach, an explicit calculation will be made of vn = sqrt(xn^2+yn^2)
1492 // where x[y] = Integrate[r(phi)cos[sin](n phi)dphi, 0, 2pi]
1493 Double_t cos2(0), sin2(0), cos3(0), sin3(0), sumPt(0);
1494 for(Int_t i(0); i < iTracks; i++) {
1495 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(i));
1496 if(!PassesCuts(track) || track->Pt() > fSoftTrackMaxPt || track->Pt() < fSoftTrackMinPt) continue;
1497 sumPt += track->Pt();
1498 cos2 += track->Pt()*TMath::Cos(2*PhaseShift(track->Phi()-psi2));
1499 sin2 += track->Pt()*TMath::Sin(2*PhaseShift(track->Phi()-psi2));
1500 cos3 += track->Pt()*TMath::Cos(3*PhaseShift(track->Phi()-psi3));
1501 sin3 += track->Pt()*TMath::Sin(3*PhaseShift(track->Phi()-psi3));
1502 }
1503 fFitModulation->SetParameter(3, TMath::Sqrt(cos2*cos2+sin2*sin2)/fLocalRho->GetVal());
1504 fFitModulation->SetParameter(4, psi2);
1505 fFitModulation->SetParameter(6, psi3);
1506 fFitModulation->SetParameter(7, TMath::Sqrt(cos3*cos3+sin3*sin3)/fLocalRho->GetVal());
1507 } break;
1508 default : break;
1509 }
1510 if(fRunToyMC) {
1511 // toy mc, just here to check procedure, azimuthal profile is filled from hypothesis so p-value distribution should be flat
1512 Int_t _bins = _tempSwap.GetXaxis()->GetNbins();
1513 TF1* _tempFit = new TF1("temp_fit_kCombined", "[0]*([1]+[2]*([3]*TMath::Cos([2]*(x-[4]))+[7]*TMath::Cos([5]*(x-[6]))))", 0, TMath::TwoPi());
1514 _tempFit->SetParameter(0, fFitModulation->GetParameter(0)); // normalization
1515 _tempFit->SetParameter(3, 0.1); // v2
1516 _tempFit->FixParameter(1, 1.); // constant
1517 _tempFit->FixParameter(2, 2.); // constant
1518 _tempFit->FixParameter(5, 3.); // constant
1519 _tempFit->FixParameter(4, fFitModulation->GetParameter(4));
1520 _tempFit->FixParameter(6, fFitModulation->GetParameter(6));
1521 _tempFit->SetParameter(7, 0.1); // v3
1522 _tempSwap.Reset(); // rese bin content
1523 for(int _binsI = 0; _binsI < _bins*_bins; _binsI++) _tempSwap.Fill(_tempFit->GetRandom());
1524 }
1525 _tempSwap.Fit(fFitModulation, fFitModulationOptions.Data(), "", lowBound, upBound);
1526 // the quality of the fit is evaluated from 1 - the cdf of the chi square distribution
1527 // three methods are available, all with their drawbacks. all are stored, one is selected to do the cut
1528 Int_t NDF(_tempSwap.GetXaxis()->GetNbins()-freeParams);
9e1c2f31 1529 if(NDF == 0 || (float)NDF <= 0.) return kFALSE;
eae37c5c 1530 Double_t CDF(1.-ChiSquareCDF(NDF, ChiSquare(_tempSwap, fFitModulation)));
1531 Double_t CDFROOT(1.-ChiSquareCDF(NDF, fFitModulation->GetChisquare()));
1532 Double_t CDFKolmogorov(KolmogorovTest(_tempSwap, fFitModulation));
1533 // fill the values and centrality correlation (redundant but easy on the eyes)
1534 fHistPvalueCDF->Fill(CDF);
1535 fHistPvalueCDFCent->Fill(fCent, CDF);
1536 fHistPvalueCDFROOT->Fill(CDFROOT);
1537 fHistPvalueCDFROOTCent->Fill(fCent, CDFROOT);
1538 fHistKolmogorovTest->Fill(CDFKolmogorov);
1539 fHistChi2ROOTCent->Fill(fCent, fFitModulation->GetChisquare()/((float)NDF));
1540 fHistChi2Cent->Fill(fCent, ChiSquare(_tempSwap, fFitModulation)/((float)NDF));
1541 fHistKolmogorovTestCent->Fill(fCent, CDFKolmogorov);
1542 fHistPChi2Root->Fill(CDFROOT, fFitModulation->GetChisquare()/((float)NDF));
1543 fHistPChi2->Fill(CDF, ChiSquare(_tempSwap, fFitModulation)/((float)NDF));
1544 fHistPKolmogorov->Fill(CDF, CDFKolmogorov);
1545
1546 // variable CDF is used for making cuts, so we fill it with the selected p-value
1547 switch (fFitGoodnessTest) {
1548 case kChi2ROOT : {
1549 CDF = CDFROOT;
1550 } break;
1551 case kChi2Poisson : break; // CDF is already CDF
1552 case kKolmogorov : {
1553 CDF = CDFKolmogorov;
1554 } break;
1555 default: break;
1556 }
1557
1558 if(fFitControl) {
1559 // as an additional quality check, see if fitting a control fit has a higher significance
1560 _tempSwap.Fit(fFitControl, fFitModulationOptions.Data(), "", lowBound, upBound);
1561 Double_t CDFControl(-1.);
1562 switch (fFitGoodnessTest) {
1563 case kChi2ROOT : {
1564 CDFControl = 1.-ChiSquareCDF(fFitControl->GetNDF(), fFitModulation->GetChisquare());
1565 } break;
1566 case kChi2Poisson : {
1567 CDFControl = 1.-ChiSquareCDF(fFitControl->GetNDF(), ChiSquare(_tempSwap, fFitModulation));
1568 } break;
1569 case kKolmogorov : {
1570 CDFControl = KolmogorovTest(_tempSwap, fFitControl);
1571 } break;
1572 default: break;
1573 }
1574 if(CDFControl > CDF) {
1575 CDF = -1.; // control fit is more significant, so throw out the 'old' fit
1576 fHistRhoStatusCent->Fill(fCent, -1);
1577 }
1578 }
9e1c2f31 1579 if(CDF >= fMinPvalue && CDF <= fMaxPvalue && ( fFitModulation->GetMinimum(0, TMath::TwoPi()) > 0)) {
1580 // fit quality. not that although with limited acceptance the fit is performed on just
1581 // part of phase space, the requirement that energy desntiy is larger than zero is applied
1582 // to the FULL spectrum
eae37c5c 1583 fHistRhoStatusCent->Fill(fCent, 0.);
1584 // for LOCAL didactic purposes, save the best and the worst fits
1585 // this routine can produce a lot of output histograms (it's not memory 'safe') and will not work on GRID
1586 // since the output will become unmergeable (i.e. different nodes may produce conflicting output)
1587 switch (fRunModeType) {
1588 case kLocal : {
1589 if(fRandom->Uniform(0, 100) > fPercentageOfFits) break;
1590 static Int_t didacticCounterBest(0);
1591 TProfile* didacticProfile = (TProfile*)_tempSwap.Clone(Form("Fit_%i_1-CDF_%.3f_cen_%i_%s", didacticCounterBest, CDF, fInCentralitySelection, detector.Data()));
1592 TF1* didacticFit = (TF1*)fFitModulation->Clone(Form("fit_%i_CDF_%.3f_cen_%i_%s", didacticCounterBest, CDF, fInCentralitySelection, detector.Data()));
1593 switch(fFitModulationType) {
1594 case kCombined : {
1595 // to make a nice picture also plot the separate components (v2 and v3) of the fit
1596 // only done for cobined fit where there are actually components to split ...
1597 TF1* v0(new TF1("dfit_kV2", "[0]", 0, TMath::TwoPi()));
1598 v0->SetParameter(0, didacticFit->GetParameter(0)); // normalization
1599 v0->SetLineColor(kMagenta);
1600 v0->SetLineStyle(7);
1601 didacticProfile->GetListOfFunctions()->Add(v0);
1602 TF1* v2(new TF1("dfit_kV2", "[0]*([1]+[2]*[3]*TMath::Cos([2]*(x-[4])))", 0, TMath::TwoPi()));
1603 v2->SetParameter(0, didacticFit->GetParameter(0)); // normalization
1604 v2->SetParameter(3, didacticFit->GetParameter(3)); // v2
1605 v2->FixParameter(1, 1.); // constant
1606 v2->FixParameter(2, 2.); // constant
1607 v2->FixParameter(4, didacticFit->GetParameter(4)); // psi2
1608 v2->SetLineColor(kGreen);
1609 didacticProfile->GetListOfFunctions()->Add(v2);
1610 TF1* v3(new TF1("dfit_kV3", "[0]*([1]+[2]*[3]*TMath::Cos([5]*(x-[4])))", 0, TMath::TwoPi()));
1611 v3->SetParameter(0, didacticFit->GetParameter(0)); // normalization
1612 v3->SetParameter(3, didacticFit->GetParameter(7)); // v3
1613 v3->FixParameter(1, 1.); // constant
1614 v3->FixParameter(2, 2.); // constant
1615 v3->FixParameter(4, didacticFit->GetParameter(6)); // psi3
1616 v3->FixParameter(5, 3.); // constant
1617 v3->SetLineColor(kCyan);
1618 didacticProfile->GetListOfFunctions()->Add(v3);
1619 }
1620 default : break;
1621 }
1622 didacticProfile->GetListOfFunctions()->Add(didacticFit);
1623 didacticProfile->GetYaxis()->SetTitle("#frac{d #sum #it{p}_{T}}{d #varphi} [GeV/#it{c}]");
1624 didacticProfile->GetXaxis()->SetTitle("#varphi");
1625 fOutputListGood->Add(didacticProfile);
1626 didacticCounterBest++;
1627 TH2F* didacticSurface = BookTH2F(Form("surface_%s", didacticProfile->GetName()), "#phi", "#eta", 50, 0, TMath::TwoPi(), 50, -1, 1, -1, kFALSE);
1628 for(Int_t i(0); i < iTracks; i++) {
1629 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(i));
1630 if(PassesCuts(track)) {
1631 if(fUsePtWeight) didacticSurface->Fill(track->Phi(), track->Eta(), track->Pt());
1632 else didacticSurface->Fill(track->Phi(), track->Eta());
1633 }
1634 }
1635 if(fExcludeLeadingJetsFromFit) { // visualize the excluded region
1636 TF2 *f2 = new TF2(Form("%s_LJ", didacticSurface->GetName()),"[0]*TMath::Gaus(x,[1],[2])*TMath::Gaus(y,[3],[4])", 0, TMath::TwoPi(), -1, 1);
1637 f2->SetParameters(excludeInPt/3.,excludeInPhi,.1,excludeInEta,.1);
1638 didacticSurface->GetListOfFunctions()->Add(f2);
1639 }
1640 fOutputListGood->Add(didacticSurface);
1641 } break;
1642 default : break;
1643 }
1644 } else { // if the fit is of poor quality revert to the original rho estimate
1645 switch (fRunModeType) { // again see if we want to save the fit
1646 case kLocal : {
1647 static Int_t didacticCounterWorst(0);
1648 if(fRandom->Uniform(0, 100) > fPercentageOfFits) break;
1649 TProfile* didacticProfile = (TProfile*)_tempSwap.Clone(Form("Fit_%i_1-CDF_%.3f_cen_%i_%s", didacticCounterWorst, CDF, fInCentralitySelection, detector.Data() ));
1650 TF1* didacticFit = (TF1*)fFitModulation->Clone(Form("fit_%i_p_%.3f_cen_%i_%s", didacticCounterWorst, CDF, fInCentralitySelection, detector.Data()));
1651 didacticProfile->GetListOfFunctions()->Add(didacticFit);
1652 fOutputListBad->Add(didacticProfile);
1653 didacticCounterWorst++;
1654 } break;
1655 default : break;
1656 }
1657 switch (fFitModulationType) {
1658 case kNoFit : break; // nothing to do
1659 case kCombined : fFitModulation->SetParameter(7, 0); // no break
1660 case kFourierSeries : fFitModulation->SetParameter(7, 0); // no break
1661 default : { // needs to be done if there was a poor fit
1662 fFitModulation->SetParameter(3, 0);
1663 fFitModulation->SetParameter(0, fLocalRho->GetVal());
1664 } break;
1665 }
1666 if(CDF > -.5) fHistRhoStatusCent->Fill(fCent, 1.);
1667 return kFALSE; // return false if the fit is rejected
1668 }
1669 return kTRUE;
1670}
1671//_____________________________________________________________________________
1672Bool_t AliAnalysisTaskJetV2::PassesCuts(AliVEvent* event)
1673{
1674 // event cuts
1675 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
06d2671d 1676 switch (fCollisionType) {
1677 case kJetFlowMC : {
1678 fInCentralitySelection = 0;
1679 return kTRUE;
1680 } break;
1681 default : break;
1682 }
eae37c5c 1683 if(!event || !AliAnalysisTaskEmcal::IsEventSelected()) return kFALSE;
1684 if(TMath::Abs(InputEvent()->GetPrimaryVertex()->GetZ()) > 10.) return kFALSE;
1685 // aod and esd specific checks
1686 switch (fDataType) {
1687 case kESD: {
1688 AliESDEvent* esdEvent = static_cast<AliESDEvent*>(InputEvent());
1689 if( (!esdEvent) || (TMath::Abs(esdEvent->GetPrimaryVertexSPD()->GetZ() - esdEvent->GetPrimaryVertex()->GetZ()) > .5) ) return kFALSE;
1690 } break;
1691 case kAOD: {
1692 AliAODEvent* aodEvent = static_cast<AliAODEvent*>(InputEvent());
1693 if( (!aodEvent) || (TMath::Abs(aodEvent->GetPrimaryVertexSPD()->GetZ() - aodEvent->GetPrimaryVertex()->GetZ()) > .5) ) return kFALSE;
1694 } break;
1695 default: break;
1696 }
1697 fCent = InputEvent()->GetCentrality()->GetCentralityPercentile("V0M");
1698 if(fCent <= fCentralityClasses->At(0) || fCent >= fCentralityClasses->At(fCentralityClasses->GetSize()-1) || TMath::Abs(fCent-InputEvent()->GetCentrality()->GetCentralityPercentile("TRK")) > 5.) return kFALSE;
1699 // determine centrality class
1700 fInCentralitySelection = -1;
1701 for(Int_t i(0); i < fCentralityClasses->GetSize()-1; i++) {
1702 if(fCent >= fCentralityClasses->At(i) && fCent <= fCentralityClasses->At(1+i)) {
1703 fInCentralitySelection = i;
1704 break; }
1705 }
1706 if(fInCentralitySelection<0) return kFALSE; // should be null op
eae37c5c 1707 // see if input containers are filled
1708 if(fTracks->GetEntries() < 1) return kFALSE;
1709 if(fRho->GetVal() <= 0 ) return kFALSE;
1710 if(fAnalysisType == AliAnalysisTaskJetV2::kFull && !fClusterCont) return kFALSE;
1711 return kTRUE;
1712}
1713//_____________________________________________________________________________
eae37c5c 1714void AliAnalysisTaskJetV2::FillHistogramsAfterSubtraction(Double_t psi2, Double_t vzero[2][2], Double_t* vzeroComb, Double_t* tpc)
1715{
1716 // fill histograms
1717 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1718 FillTrackHistograms();
1719 if(fAnalysisType == AliAnalysisTaskJetV2::kFull) FillClusterHistograms();
1720 FillJetHistograms(psi2);
1721 if(fFillQAHistograms) FillEventPlaneHistograms(vzero, vzeroComb, tpc);
1722 FillRhoHistograms();
1723 FillDeltaPtHistograms(psi2);
1724}
1725//_____________________________________________________________________________
1726void AliAnalysisTaskJetV2::FillTrackHistograms() const
1727{
1728 // fill track histograms
1729 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1730 Int_t iTracks(fTracks->GetEntriesFast()), iAcceptedTracks(0);
1731 for(Int_t i(0); i < iTracks; i++) {
1732 AliVTrack* track = static_cast<AliVTrack*>(fTracks->At(i));
1733 if(!PassesCuts(track)) continue;
1734 iAcceptedTracks++;
1735 fHistPicoTrackPt[fInCentralitySelection]->Fill(track->Pt());
1736 if(fFillQAHistograms) FillQAHistograms(track);
1737 }
1738 fHistPicoTrackMult[fInCentralitySelection]->Fill(iAcceptedTracks);
1739}
1740//_____________________________________________________________________________
1741void AliAnalysisTaskJetV2::FillClusterHistograms() const
1742{
1743 // fill cluster histograms
1744 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1745 if(!fClusterCont) return;
1746 Int_t iClusters(fClusterCont->GetNClusters());
1747 for(Int_t i(0); i < iClusters; i++) {
1748 AliVCluster* cluster = fClusterCont->GetCluster(i);
1749 if (!PassesCuts(cluster)) continue;
1750 TLorentzVector clusterLorentzVector;
1751 cluster->GetMomentum(clusterLorentzVector, const_cast<Double_t*>(fVertex));
1752 fHistClusterPt[fInCentralitySelection]->Fill(clusterLorentzVector.Pt());
1753 fHistClusterEtaPhi[fInCentralitySelection]->Fill(clusterLorentzVector.Eta(), clusterLorentzVector.Phi());
1754 fHistClusterEtaPhiWeighted[fInCentralitySelection]->Fill(clusterLorentzVector.Eta(), clusterLorentzVector.Phi(), clusterLorentzVector.Pt());
1755 }
1756 return;
1757}
1758//_____________________________________________________________________________
1759void AliAnalysisTaskJetV2::FillEventPlaneHistograms(Double_t vzero[2][2], Double_t* vzeroComb, Double_t* tpc) const
1760{
1761 // fill event plane histograms
1762 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1763 fHistPsiControl->Fill(0.5, vzero[0][0]); // vzero a psi2
1764 fHistPsiControl->Fill(1.5, vzero[1][0]); // vzero c psi2
1765 fHistPsiControl->Fill(2.5, tpc[0]); // tpc psi 2
1766 fHistPsiControl->Fill(5.5, vzero[0][1]); // vzero a psi3
1767 fHistPsiControl->Fill(6.5, vzero[1][1]); // vzero b psi3
1768 fHistPsiControl->Fill(7.5, tpc[1]); // tpc psi 3
1769 fHistPsiVZEROA->Fill(vzero[0][0]);
1770 fHistPsiVZEROC->Fill(vzero[1][0]);
1771 fHistPsiVZERO->Fill(vzeroComb[0]);
1772 fHistPsiTPC->Fill(tpc[0]);
1773 fHistPsiSpread->Fill(0.5, TMath::Abs(vzero[0][0]-vzero[1][0]));
1774 fHistPsiSpread->Fill(1.5, TMath::Abs(vzero[0][0]-tpc[0]));
1775 fHistPsiSpread->Fill(2.5, TMath::Abs(vzero[1][0]-tpc[0]));
1776 // event plane vs centrality QA histo's to check recentering
1777 Double_t TRK(InputEvent()->GetCentrality()->GetCentralityPercentile("TRK"));
1778 Double_t V0M(InputEvent()->GetCentrality()->GetCentralityPercentile("V0M"));
1779 fHistPsiVZEROAV0M->Fill(V0M, vzero[0][0]);
1780 fHistPsiVZEROCV0M->Fill(V0M, vzero[1][0]);
1781 fHistPsiVZEROVV0M->Fill(V0M, vzeroComb[0]);
9aa4c594 1782 fHistPsiTPCV0M->Fill(V0M, tpc[0]);
eae37c5c 1783 fHistPsiVZEROATRK->Fill(TRK, vzero[0][0]);
1784 fHistPsiVZEROCTRK->Fill(TRK, vzero[1][0]);
1785 fHistPsiVZEROTRK->Fill(TRK, vzeroComb[0]);
1786 fHistPsiTPCTRK->Fill(TRK, tpc[0]);
9aa4c594 1787 // leading jet vs event plane bias
1788 if(fLeadingJet) {
1789 Double_t rho(fLocalRho->GetLocalVal(fLeadingJet->Phi(), GetJetContainer()->GetJetRadius(), fLocalRho->GetVal()));
9aa4c594 1790 Double_t pt = fLeadingJet->Pt() - fLeadingJet->Area()*rho;
1791 fHistPsiTPCLeadingJet[fInCentralitySelection]->Fill(pt, tpc[0]);
1792 fHistPsiVZEROALeadingJet[fInCentralitySelection]->Fill(pt, vzero[0][0]);
1793 fHistPsiVZEROCLeadingJet[fInCentralitySelection]->Fill(pt, vzero[1][0]);
1794 fHistPsiVZEROCombLeadingJet[fInCentralitySelection]->Fill(pt, vzeroComb[0]);
1795 }
1796
eae37c5c 1797}
1798//_____________________________________________________________________________
1799void AliAnalysisTaskJetV2::FillRhoHistograms()
1800{
1801 // fill rho histograms
1802 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1803 fHistRhoPackage[fInCentralitySelection]->Fill(fLocalRho->GetVal()); // save the rho estimate from the emcal jet package
1804 // get multiplicity FIXME inefficient
1805 Int_t iJets(fJets->GetEntriesFast());
1806 Double_t rho(fLocalRho->GetLocalVal(TMath::Pi(), TMath::Pi(), fLocalRho->GetVal()));
1807 fHistRho[fInCentralitySelection]->Fill(rho);
1808 fHistRhoVsMult->Fill(fTracks->GetEntries(), rho);
1809 fHistRhoVsCent->Fill(fCent, rho);
1810 for(Int_t i(0); i < iJets; i++) {
1811 AliEmcalJet* jet = static_cast<AliEmcalJet*>(fJets->At(i));
1812 if(!PassesCuts(jet)) continue;
1813 fHistRhoAVsMult->Fill(fTracks->GetEntries(), rho * jet->Area());
1814 fHistRhoAVsCent->Fill(fCent, rho * jet->Area());
1815 }
1816}
1817//_____________________________________________________________________________
1818void AliAnalysisTaskJetV2::FillDeltaPtHistograms(Double_t psi2) const
1819{
1820 // fill delta pt histograms
1821 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1822 Int_t i(0);
1823 const Float_t areaRC = GetJetRadius()*GetJetRadius()*TMath::Pi();
1824 // we're retrieved the leading jet, now get a random cone
1825 for(i = 0; i < fMaxCones; i++) {
1826 Float_t pt(0), eta(0), phi(0);
1827 // get a random cone without constraints on leading jet position
1828 CalculateRandomCone(pt, eta, phi, fTracksCont, fClusterCont, 0x0);
1829 if(pt > 0) {
1830 if(fFillQAHistograms) fHistRCPhiEta[fInCentralitySelection]->Fill(phi, eta);
1831 fHistRhoVsRCPt[fInCentralitySelection]->Fill(pt, fLocalRho->GetLocalVal(phi, GetJetContainer()->GetJetRadius(), fLocalRho->GetVal())*areaRC);
1832 fHistRCPt[fInCentralitySelection]->Fill(pt);
1833 fHistDeltaPtDeltaPhi2[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt - areaRC*fLocalRho->GetLocalVal(phi, GetJetContainer()->GetJetRadius(), fLocalRho->GetVal()));
1834 fHistDeltaPtDeltaPhi2Rho0[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt - areaRC*fLocalRho->GetVal());
1835
1836 }
1837 // get a random cone excluding leading jet area
1838 CalculateRandomCone(pt, eta, phi, fTracksCont, fClusterCont, fLeadingJet);
1839 if(pt > 0) {
1840 if(fFillQAHistograms) fHistRCPhiEtaExLJ[fInCentralitySelection]->Fill(phi, eta);
1841 fHistRhoVsRCPtExLJ[fInCentralitySelection]->Fill(pt, fLocalRho->GetLocalVal(phi, GetJetContainer()->GetJetRadius(), fLocalRho->GetVal())*areaRC);
1842 fHistRCPtExLJ[fInCentralitySelection]->Fill(pt);
1843 fHistDeltaPtDeltaPhi2ExLJ[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt - areaRC*fLocalRho->GetLocalVal(phi, GetJetContainer()->GetJetRadius(), fLocalRho->GetVal()));
1844 fHistDeltaPtDeltaPhi2ExLJRho0[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt - areaRC*fLocalRho->GetVal());
1845 }
1846 }
1847}
1848//_____________________________________________________________________________
1849void AliAnalysisTaskJetV2::FillJetHistograms(Double_t psi2)
1850{
1851 // fill jet histograms
1852 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1853 Int_t iJets(fJets->GetEntriesFast());
1854 for(Int_t i(0); i < iJets; i++) {
1855 AliEmcalJet* jet = static_cast<AliEmcalJet*>(fJets->At(i));
1856 if(PassesCuts(jet)) {
1857 Double_t pt(jet->Pt()), area(jet->Area()), eta(jet->Eta()), phi(jet->Phi());
1858 Double_t rho(fLocalRho->GetLocalVal(phi, GetJetContainer()->GetJetRadius(), fLocalRho->GetVal()));
1859 fHistJetPtRaw[fInCentralitySelection]->Fill(pt);
1860 fHistJetPt[fInCentralitySelection]->Fill(pt-area*rho);
1861 if(fFillQAHistograms) fHistJetEtaPhi[fInCentralitySelection]->Fill(eta, phi);
1862 fHistJetPtArea[fInCentralitySelection]->Fill(pt-area*rho, area);
1863 fHistJetPtEta[fInCentralitySelection]->Fill(pt-area*rho, eta);
1864 fHistJetPsi2Pt[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt-area*rho);
1865 fHistJetPsi2PtRho0[fInCentralitySelection]->Fill(PhaseShift(phi-psi2, 2.), pt-area*fLocalRho->GetVal());
9aa4c594 1866 fHistJetPtConstituents[fInCentralitySelection]->Fill(pt-area*rho, jet->GetNumberOfConstituents());
eae37c5c 1867 fHistJetEtaRho[fInCentralitySelection]->Fill(eta, pt/area);
1868 }
1869 }
1870}
1871//_____________________________________________________________________________
1872void AliAnalysisTaskJetV2::FillQAHistograms(AliVTrack* vtrack) const
1873{
1874 // fill qa histograms for pico tracks
028d6739 1875 if(fDebug > 1) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1876 if(!vtrack) return;
eae37c5c 1877 AliPicoTrack* track = static_cast<AliPicoTrack*>(vtrack);
1878 fHistRunnumbersPhi->Fill(fMappedRunNumber, track->Phi());
1879 fHistRunnumbersEta->Fill(fMappedRunNumber, track->Eta());
1880 Int_t type((int)(track->GetTrackType()));
1881 switch (type) {
1882 case 0:
1883 fHistPicoCat1[fInCentralitySelection]->Fill(track->Eta(), track->Phi());
1884 break;
1885 case 1:
1886 fHistPicoCat2[fInCentralitySelection]->Fill(track->Eta(), track->Phi());
1887 break;
1888 case 2:
1889 fHistPicoCat3[fInCentralitySelection]->Fill(track->Eta(), track->Phi());
1890 break;
1891 default: break;
1892 }
1893}
1894//_____________________________________________________________________________
1895void AliAnalysisTaskJetV2::FillQAHistograms(AliVEvent* vevent)
1896{
1897 // fill qa histograms for events
9e1c2f31 1898 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 1899 if(!vevent) return;
1900 fHistVertexz->Fill(vevent->GetPrimaryVertex()->GetZ());
1901 fHistCentrality->Fill(fCent);
1902 Int_t runNumber(InputEvent()->GetRunNumber());
028d6739 1903 for(fMappedRunNumber = 0; fMappedRunNumber < fExpectedRuns->GetSize(); fMappedRunNumber++) {
9e1c2f31 1904 if(fExpectedRuns->At(fMappedRunNumber) == runNumber) return;
eae37c5c 1905 }
028d6739 1906 if(fDebug > 0) printf("\n > TASK %s CANNOT IDENTIFY RUN - CONFIGURATION COULD BE INCORRECT < \n", GetName());
eae37c5c 1907}
1908//_____________________________________________________________________________
1909void AliAnalysisTaskJetV2::FillAnalysisSummaryHistogram() const
1910{
1911 // fill the analysis summary histrogram, saves all relevant analysis settigns
1912 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
1913 fHistAnalysisSummary->GetXaxis()->SetBinLabel(2, "fJetRadius");
1914 fHistAnalysisSummary->SetBinContent(2, GetJetContainer()->GetJetRadius());
1915 fHistAnalysisSummary->GetXaxis()->SetBinLabel(3, "fJetEtaMin");
1916 fHistAnalysisSummary->SetBinContent(3, GetJetContainer()->GetJetEtaMin());
1917 fHistAnalysisSummary->GetXaxis()->SetBinLabel(4, "fJetEtaMax");
1918 fHistAnalysisSummary->SetBinContent(4, GetJetContainer()->GetJetEtaMax());
1919 fHistAnalysisSummary->GetXaxis()->SetBinLabel(5, "fJetPhiMin");
1920 fHistAnalysisSummary->SetBinContent(5, GetJetContainer()->GetJetPhiMin());
1921 fHistAnalysisSummary->GetXaxis()->SetBinLabel(6, "fJetPhiMax");
1922 fHistAnalysisSummary->SetBinContent(6, GetJetContainer()->GetJetPhiMin());
1923 fHistAnalysisSummary->GetXaxis()->SetBinLabel(16, "fForceBeamType");
1924 fHistAnalysisSummary->SetBinContent(16, fForceBeamType);
1925 fHistAnalysisSummary->GetXaxis()->SetBinLabel(17, "fMinCent");
1926 fHistAnalysisSummary->SetBinContent(17, fMinCent);
1927 fHistAnalysisSummary->GetXaxis()->SetBinLabel(18, "fMaxCent");
1928 fHistAnalysisSummary->SetBinContent(18, fMaxCent);
1929 fHistAnalysisSummary->GetXaxis()->SetBinLabel(19, "fMinVz");
1930 fHistAnalysisSummary->SetBinContent(19, fMinVz);
1931 fHistAnalysisSummary->GetXaxis()->SetBinLabel(20, "fMaxVz");
1932 fHistAnalysisSummary->SetBinContent(20, fMaxVz);
1933 fHistAnalysisSummary->GetXaxis()->SetBinLabel(21, "fOffTrigger");
1934 fHistAnalysisSummary->SetBinContent(21, fOffTrigger);
1935 fHistAnalysisSummary->GetXaxis()->SetBinLabel(34, "fitModulationType");
1936 fHistAnalysisSummary->SetBinContent(34, (int)fFitModulationType);
1937 fHistAnalysisSummary->GetXaxis()->SetBinLabel(35, "runModeType");
1938 fHistAnalysisSummary->SetBinContent(35, (int)fRunModeType);
1939 fHistAnalysisSummary->GetXaxis()->SetBinLabel(36, "data type");
1940 fHistAnalysisSummary->SetBinContent(36, (int)fDataType);
1941 fHistAnalysisSummary->GetXaxis()->SetBinLabel(37, "iterator");
1942 fHistAnalysisSummary->SetBinContent(37, 1.);
1943 fHistAnalysisSummary->GetXaxis()->SetBinLabel(38, "fMinPvalue");
1944 fHistAnalysisSummary->SetBinContent(38, fMinPvalue);
1945 fHistAnalysisSummary->GetXaxis()->SetBinLabel(39, "fMaxPvalue");
1946 fHistAnalysisSummary->SetBinContent(39, fMaxPvalue);
1947 fHistAnalysisSummary->GetXaxis()->SetBinLabel(40, "fExcludeLeadingJetsFromFit");
1948 fHistAnalysisSummary->SetBinContent(40, fExcludeLeadingJetsFromFit);
1949 fHistAnalysisSummary->GetXaxis()->SetBinLabel(41, "fRebinSwapHistoOnTheFly");
1950 fHistAnalysisSummary->SetBinContent(41, (int)fRebinSwapHistoOnTheFly);
1951 fHistAnalysisSummary->GetXaxis()->SetBinLabel(42, "fUsePtWeight");
1952 fHistAnalysisSummary->SetBinContent(42, (int)fUsePtWeight);
eae37c5c 1953 fHistAnalysisSummary->GetXaxis()->SetBinLabel(44, "fSoftTrackMinPt");
1954 fHistAnalysisSummary->SetBinContent(44, fSoftTrackMinPt);
1955 fHistAnalysisSummary->GetXaxis()->SetBinLabel(45, "fSoftTrackMaxPt");
1956 fHistAnalysisSummary->SetBinContent(45, fSoftTrackMaxPt);
1957 fHistAnalysisSummary->GetXaxis()->SetBinLabel(46, "fMaxCones");
1958 fHistAnalysisSummary->SetBinContent(46, fMaxCones);
1959 fHistAnalysisSummary->GetXaxis()->SetBinLabel(47, "used rho");
1960 fHistAnalysisSummary->GetXaxis()->SetBinLabel(48, "used small rho");
1961}
1962//_____________________________________________________________________________
1963void AliAnalysisTaskJetV2::Terminate(Option_t *)
1964{
1965 // terminate
1966 switch (fRunModeType) {
1967 case kLocal : {
9e1c2f31 1968 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 1969 AliAnalysisTaskJetV2::Dump();
1970 for(Int_t i(0); i < fHistAnalysisSummary->GetXaxis()->GetNbins(); i++) printf( " > flag: %s \t content %.2f \n", fHistAnalysisSummary->GetXaxis()->GetBinLabel(1+i), fHistAnalysisSummary->GetBinContent(1+i));
1971 } break;
1972 default : break;
1973 }
1974}
1975//_____________________________________________________________________________
1976void AliAnalysisTaskJetV2::SetModulationFit(TF1* fit)
1977{
1978 // set modulation fit
9e1c2f31 1979 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 1980 if (fFitModulation) delete fFitModulation;
1981 fFitModulation = fit;
1982}
1983//_____________________________________________________________________________
1984void AliAnalysisTaskJetV2::SetUseControlFit(Bool_t c)
1985{
1986 // set control fit
9e1c2f31 1987 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 1988 if (fFitControl) delete fFitControl;
1989 if (c) {
1990 fFitControl = new TF1("controlFit", "pol0", 0, TMath::TwoPi());
1991 } else fFitControl = 0x0;
1992}
1993//_____________________________________________________________________________
1994TH1F* AliAnalysisTaskJetV2::GetResolutionFromOuptutFile(detectorType det, Int_t h, TArrayD* cen)
1995{
1996 // INTERFACE METHOD FOR OUTPUTFILE
1997 // get the detector resolution, user has ownership of the returned histogram
9e1c2f31 1998 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 1999 if(!fOutputList) {
2000 printf(" > Please add fOutputList first < \n");
2001 return 0x0;
2002 }
2003 TH1F* r(0x0);
2004 (cen) ? r = new TH1F("R", "R", cen->GetSize()-1, cen->GetArray()) : r = new TH1F("R", "R", 10, 0, 10);
2005 if(!cen) r->GetXaxis()->SetTitle("number of centrality bin");
2006 r->GetYaxis()->SetTitle(Form("Resolution #Psi_{%i}", h));
2007 for(Int_t i(0); i < 10; i++) {
2008 TProfile* temp((TProfile*)fOutputList->FindObject(Form("fProfV%iResolution_%i", h, i)));
2009 if(!temp) break;
2010 Double_t a(temp->GetBinContent(3)), b(temp->GetBinContent(5)), c(temp->GetBinContent(7));
2011 Double_t d(temp->GetBinContent(9)), e(temp->GetBinContent(10)), f(temp->GetBinContent(11));
2012 Double_t _a(temp->GetBinError(3)), _b(temp->GetBinError(5)), _c(temp->GetBinError(7));
2013 Double_t _d(temp->GetBinError(9)), _e(temp->GetBinError(10)), _f(temp->GetBinError(11));
2014 if(a <= 0 || b <= 0 || c <= 0 || d <= 0 || e <= 0 || f <= 0) continue;
2015 switch (det) {
2016 case kVZEROA : {
2017 r->SetBinContent(1+i, TMath::Sqrt((a*b)/c));
2018 if(i==0) r->SetNameTitle("VZEROA resolution", "VZEROA resolution");
2019 r->SetBinError(1+i, TMath::Sqrt(_a*_a+_b*_b+_c*_c));
2020 } break;
2021 case kVZEROC : {
2022 r->SetBinContent(1+i, TMath::Sqrt((a*c)/b));
2023 if(i==0) r->SetNameTitle("VZEROC resolution", "VZEROC resolution");
2024 r->SetBinError(1+i, TMath::Sqrt(_a*_a+_b*_b+_c*_c));
2025 } break;
2026 case kTPC : {
2027 r->SetBinContent(1+i, TMath::Sqrt((b*c)/a));
2028 if(i==0) r->SetNameTitle("TPC resolution", "TPC resolution");
2029 r->SetBinError(1+i, TMath::Sqrt(_a*_a+_b*_b+_c*_c));
2030 } break;
2031 case kVZEROComb : {
2032 r->SetBinContent(1+i, TMath::Sqrt((d*e)/f));
2033 if(i==0) r->SetNameTitle("VZEROComb resolution", "VZEROComb resolution");
2034 r->SetBinError(1+i, TMath::Sqrt(_d*_d+_e*_e+_f*_f));
2035 } break;
2036 default : break;
2037 }
2038 }
2039 return r;
2040}
2041//_____________________________________________________________________________
2042TH1F* AliAnalysisTaskJetV2::CorrectForResolutionDiff(TH1F* v, detectorType det, TArrayD* cen, Int_t c, Int_t h)
2043{
2044 // INTERFACE METHOD FOR OUTPUT FILE
2045 // correct the supplied differential vn histogram v for detector resolution
9e1c2f31 2046 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 2047 TH1F* r(GetResolutionFromOuptutFile(det, h, cen));
2048 if(!r) {
2049 printf(" > Couldn't find resolution < \n");
2050 return 0x0;
2051 }
2052 Double_t res(1./r->GetBinContent(1+r->FindBin(c)));
2053 TF1* line = new TF1("line", "pol0", 0, 200);
2054 line->SetParameter(0, res);
2055 v->Multiply(line);
2056 return v;
2057}
2058//_____________________________________________________________________________
2059TH1F* AliAnalysisTaskJetV2::CorrectForResolutionInt(TH1F* v, detectorType det, TArrayD* cen, Int_t h)
2060{
2061 // INTERFACE METHOD FOR OUTPUT FILE
2062 // correct the supplied intetrated vn histogram v for detector resolution
2063 // integrated vn must have the same centrality binning as the resolotion correction
9e1c2f31 2064 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 2065 TH1F* r(GetResolutionFromOuptutFile(det, h, cen));
2066 v->Divide(v, r);
2067 return v;
2068}
2069//_____________________________________________________________________________
2070TH1F* AliAnalysisTaskJetV2::GetDifferentialQC(TProfile* refCumulants, TProfile* diffCumlants, TArrayD* ptBins, Int_t h)
2071{
2072 // get differential QC
9e1c2f31 2073 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
eae37c5c 2074 Double_t r(refCumulants->GetBinContent(h-1)); // v2 reference flow
2075 if(r > 0) r = TMath::Sqrt(r);
2076 TH1F* qc = new TH1F(Form("QC2v%i", h), Form("QC2v%i", h), ptBins->GetSize()-1, ptBins->GetArray());
2077 Double_t a(0), b(0), c(0); // dummy variables
2078 for(Int_t i(0); i < ptBins->GetSize(); i++) {
2079 if(r > 0) {
2080 a = diffCumlants->GetBinContent(1+i);
2081 b = diffCumlants->GetBinError(1+i);
2082 c = a/r;
2083 qc->SetBinContent(1+i, c);
2084 (a <= 0 || b <= 0) ? qc->SetBinError(1+i, b) : qc->SetBinError(1+i, TMath::Sqrt(c*c*b*b/(a*a)));
2085 }
2086 }
2087 return qc;
2088}
2089
2090//_____________________________________________________________________________
9e1c2f31 2091void AliAnalysisTaskJetV2::ReadVZEROCalibration2010h()
2092{
2093 // necessary for calibration of 10h vzero event plane. code copied from flow package
2094 // (duplicate, but i didn't want to introduce an ulgy dependency )
2095 // this function is only called when the runnumber changes
2096 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
2097
2098 // 1) check if the proper chi weights for merging vzero a and vzero c ep are present
2099 // if not, use sane defaults. centrality binning is equal to that given in the fVZEROcentralityBin snippet
2100 //
2101 // chi values can be calculated using the static helper function
2102 // AliAnalysisTaskJetV2::CalculateEventPlaneChi(Double_t res) where res is the event plane
2103 // resolution in a given centrality bin
2104 //
2105 // the resolutions that were used for these defaults are
2106 // this might need a bit of updating as they were read 'by-eye' from a performance plot ..
2107 // Double_t R2VZEROA[] = {.35, .40, .48, .50, .48, .45, .38, .26, .16};
2108 // Double_t R2VZEROC[] = {.45, .60, .70, .73, .68, .60, .40, .36, .17};
2109 // Double_t R3VZEROA[] = {.22, .23, .22, .19, .15, .12, .08, .00, .00};
2110 // Double_t R3VZEROC[] = {.30, .30, .28, .25, .22, .17, .11, .00, .00};
2111
2112 Double_t chiC2[] = {0.771423, 1.10236, 1.38116, 1.48077, 1.31964, 1.10236, 0.674622, 0.600403, 0.273865};
2113 Double_t chiA2[] = {0.582214, 0.674622, 0.832214, 0.873962, 0.832214, 0.771423, 0.637146, 0.424255, 0.257385};
2114 Double_t chiC3[] = {0.493347, 0.493347, 0.458557, 0.407166, 0.356628, 0.273865, 0.176208, 6.10352e-05, 6.10352e-05};
2115 Double_t chiA3[] = {0.356628, 0.373474, 0.356628, 0.306702, 0.24115, 0.192322, 0.127869, 6.10352e-05, 6.10352e-05};
2116
2117 if(!fChi2A) fChi2A = new TArrayD(9, chiA2);
2118 if(!fChi2C) fChi2C = new TArrayD(9, chiC2);
2119 if(!fChi3A) fChi3A = new TArrayD(9, chiA3);
2120 if(!fChi3C) fChi3C = new TArrayD(9, chiC3);
2121
2122 // 2) open database file
2123 fOADB = TFile::Open("$ALICE_ROOT/OADB/PWGCF/VZERO/VZEROcalibEP.root");
2124 if(fOADB->IsZombie()){
2125 printf("OADB file $ALICE_ROOT/OADB/PWGCF/VZERO/VZEROcalibEP.root cannot be opened, CALIBRATION FAILED !");
2126 return;
2127 }
2128
2129 AliOADBContainer *cont = (AliOADBContainer*) fOADB->Get("hMultV0BefCorr");
2130 if(!cont){
2131 // see if database is readable
2132 printf("OADB object hMultV0BefCorr is not available in the file\n");
2133 return;
2134 }
2135 Int_t run(fRunNumber);
2136 if(!(cont->GetObject(run))){
2137 // if the run isn't recognized fall back to a default run
2138 printf("OADB object hMultVZEROBefCorr is not available for run %i (used default run 137366)\n",run);
2139 run = 137366;
2140 }
2141 // step 3) get the proper multiplicity weights from the vzero signal
2142 fVZEROgainEqualization = ((TH2F*)cont->GetObject(run))->ProfileX();
2143 if(!fVZEROgainEqualization) {
2144 AliFatal(Form("%s: Fatal error, couldn't read fVZEROgainEqualization from OADB object < \n", GetName()));
2145 return;
2146 }
2147
2148 TF1* fpol0 = new TF1("fpol0","pol0");
2149 if(fVZEROgainEqualizationPerRing) {
2150 // do the calibration per ring
2151 // start with the vzero c rings (segments 0 through 31)
2152 fVZEROgainEqualization->Fit(fpol0, "", "", 0, 8);
2153 (fUseVZERORing[0]) ? SetVZEROCpol(0, fpol0->GetParameter(0)) : SetVZEROCpol(0, 0.);
2154 fVZEROgainEqualization->Fit(fpol0, "", "", 8, 16);
2155 (fUseVZERORing[1]) ? SetVZEROCpol(1, fpol0->GetParameter(0)) : SetVZEROCpol(1, 0.);
2156 fVZEROgainEqualization->Fit(fpol0, "", "", 16, 24);
2157 (fUseVZERORing[2]) ? SetVZEROCpol(2, fpol0->GetParameter(0)) : SetVZEROCpol(2, 0.);
2158 fVZEROgainEqualization->Fit(fpol0, "", "", 24, 32);
2159 (fUseVZERORing[3]) ? SetVZEROCpol(3, fpol0->GetParameter(0)) : SetVZEROCpol(3, 0.);
2160 // same thing for vero A
2161 fVZEROgainEqualization->Fit(fpol0, "", "", 32, 40);
2162 (fUseVZERORing[4]) ? SetVZEROApol(0, fpol0->GetParameter(0)) : SetVZEROApol(0, 0.);
2163 fVZEROgainEqualization->Fit(fpol0, "", "", 40, 48);
2164 (fUseVZERORing[5]) ? SetVZEROApol(1, fpol0->GetParameter(0)) : SetVZEROApol(1, 0.);
2165 fVZEROgainEqualization->Fit(fpol0, "", "", 48, 56);
2166 (fUseVZERORing[6]) ? SetVZEROApol(2, fpol0->GetParameter(0)) : SetVZEROApol(2, 0.);
2167 fVZEROgainEqualization->Fit(fpol0, "", "", 56, 64);
2168 (fUseVZERORing[7]) ? SetVZEROApol(3, fpol0->GetParameter(0)) : SetVZEROApol(3, 0.);
2169 } else {
2170 // do the calibration in one go. the calibration will still be
2171 // stored per ring, but each ring has the same weight now
2172 // this should be the default for the analysis as the database is tuned to this configuration
2173 fVZEROgainEqualization->Fit(fpol0,"","",0,31);
2174 for(Int_t i(0); i < 4; i++) SetVZEROCpol(i, fpol0->GetParameter(0));
2175 fVZEROgainEqualization->Fit(fpol0,"","",32,64);
2176 for(Int_t i(0); i < 4; i++) SetVZEROApol(i, fpol0->GetParameter(0));
2177 }
2178
2179 // step 4) extract the information to re-weight the q-vectors
2180 for(Int_t iside=0;iside<2;iside++){
2181 for(Int_t icoord=0;icoord<2;icoord++){
2182 for(Int_t i=0;i < 9;i++){
2183 char namecont[100];
2184 if(iside==0 && icoord==0)
2185 snprintf(namecont,100,"hQxc2_%i",i);
2186 else if(iside==1 && icoord==0)
2187 snprintf(namecont,100,"hQxa2_%i",i);
2188 else if(iside==0 && icoord==1)
2189 snprintf(namecont,100,"hQyc2_%i",i);
2190 else if(iside==1 && icoord==1)
2191 snprintf(namecont,100,"hQya2_%i",i);
2192
2193 cont = (AliOADBContainer*) fOADB->Get(namecont);
2194 if(!cont){
2195 printf("OADB object %s is not available in the file\n",namecont);
2196 return;
2197 }
2198
2199 if(!(cont->GetObject(run))){
2200 printf("OADB object %s is not available for run %i (used run 137366)\n",namecont,run);
2201 run = 137366;
2202 }
2203
2204 // store info for all centralities to cache
2205 fMeanQ[i][iside][icoord] = ((TH1F *) cont->GetObject(run))->GetMean();
2206 fWidthQ[i][iside][icoord] = ((TH1F *) cont->GetObject(run))->GetRMS();
2207
2208 //for v3
2209 if(iside==0 && icoord==0)
2210 snprintf(namecont,100,"hQxc3_%i",i);
2211 else if(iside==1 && icoord==0)
2212 snprintf(namecont,100,"hQxa3_%i",i);
2213 else if(iside==0 && icoord==1)
2214 snprintf(namecont,100,"hQyc3_%i",i);
2215 else if(iside==1 && icoord==1)
2216 snprintf(namecont,100,"hQya3_%i",i);
2217
2218 cont = (AliOADBContainer*) fOADB->Get(namecont);
2219 if(!cont){
2220 printf("OADB object %s is not available in the file\n",namecont);
2221 return;
2222 }
2223
2224 if(!(cont->GetObject(run))){
2225 printf("OADB object %s is not available for run %i (used run 137366)\n",namecont,run);
2226 run = 137366;
2227 }
2228 // store info for all centralities to cache
2229 fMeanQv3[i][iside][icoord] = ((TH1F *) cont->GetObject(run))->GetMean();
2230 fWidthQv3[i][iside][icoord] = ((TH1F *) cont->GetObject(run))->GetRMS();
2231 }
2232 }
2233 }
2234 // cleanup. the opened file is closed in the destructor, otherwise fVZEROgainEqualization is no longer available
2235 delete fpol0;
2236}
2237//_____________________________________________________________________________
2238Int_t AliAnalysisTaskJetV2::GetVZEROCentralityBin() const
2239{
2240 // return cache index number corresponding to the event centrality
2241 if(fDebug > 0) printf("__FILE__ = %s \n __LINE __ %i , __FUNC__ %s \n ", __FILE__, __LINE__, __func__);
2242 Float_t v0Centr(InputEvent()->GetCentrality()->GetCentralityPercentile("V0M"));
2243 if(v0Centr < 5) return 0;
2244 else if(v0Centr < 10) return 1;
2245 else if(v0Centr < 20) return 2;
2246 else if(v0Centr < 30) return 3;
2247 else if(v0Centr < 40) return 4;
2248 else if(v0Centr < 50) return 5;
2249 else if(v0Centr < 60) return 6;
2250 else if(v0Centr < 70) return 7;
2251 else return 8;
2252}
2253//_____________________________________________________________________________