]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PWGLF/FORWARD/analysis2/AliForwardUtil.h
Mega commit of many changes to PWGLFforward
[u/mrichter/AliRoot.git] / PWGLF / FORWARD / analysis2 / AliForwardUtil.h
CommitLineData
7984e5f7 1//
2// Utilities used in the forward multiplcity analysis
3//
4//
5#ifndef ALIFORWARDUTIL_H
6#define ALIFORWARDUTIL_H
ffca499d 7/**
8 * @file AliForwardUtil.h
9 * @author Christian Holm Christensen <cholm@dalsgaard.hehi.nbi.dk>
10 * @date Wed Mar 23 14:06:54 2011
11 *
12 * @brief
13 *
14 *
bd6f5206 15 * @ingroup pwglf_forward
ffca499d 16 */
7e4038b5 17#include <TObject.h>
9d99b0dd 18#include <TString.h>
7f759bb7 19#include <TObjArray.h>
7e4038b5 20class TH2D;
9d99b0dd 21class TH1I;
22class TH1;
7f759bb7 23class TF1;
7e4038b5 24class TAxis;
9d99b0dd 25class AliESDEvent;
290052e7 26class AliAODEvent;
27class AliAnalysisTaskSE;
7e4038b5 28
29/**
30 * Utilities used in the forward multiplcity analysis
31 *
bd6f5206 32 * @ingroup pwglf_forward
7e4038b5 33 */
34class AliForwardUtil : public TObject
35{
9d99b0dd 36public:
ffca499d 37 /**
38 * Get the standard color for a ring
39 *
40 * @param d Detector
41 * @param r Ring
42 *
43 * @return
44 */
cc83fca2 45 static Color_t RingColor(UShort_t d, Char_t r)
46 {
47 return ((d == 1 ? kRed : (d == 2 ? kGreen : kBlue))
5bb5d1f6 48 + ((r == 'I' || r == 'i') ? 2 : -3));
cc83fca2 49 }
0bd4b00f 50 //==================================================================
1ff25622 51 /**
52 * @{
53 * @name AliROOT version
54 */
55 /**
56 * Get the revision number of AliROOT
57 *
58 * @return Subversion revision number of AliROOT used
59 */
60 static ULong_t AliROOTRevision();
61 /**
62 * Get the branch identifier of AliROOT. In case of trunk, return
63 * 0xFFFFFFFF, while for @b vM-N-R{-S}, we get
64 *
65 * @code
66 * ((M & 0xFF) << 12 | (N & 0xFF) << 8 | (R & 0xFF) << 3 | (X))
67 * @endcode
68 * where @c X is 0xAA if @b S is specified (e.g., analysis tag).
69 *
70 * @return branch identifer encoded in bits
71 */
72 static ULong_t AliROOTBranch();
73 //==================================================================
0bd4b00f 74 /**
75 * @{
7c1a1f1d 76 * @name Collision/run parameters
0bd4b00f 77 */
78 /**
79 * Defined collision types
80 */
81 enum ECollisionSystem {
82 kUnknown,
83 kPP,
0151a6c6 84 kPbPb,
85 kPPb
0bd4b00f 86 };
87 //__________________________________________________________________
38229ecd 88 /**
89 * Calculate the beam rapidity.
90 *
91 * @b Note: The beam energy is given in GeV/charge
92 *
93 * @param beam Beam energy in GeV/charge
94 * @param z Charge number of projectile
95 * @param a Mass number of projectile
96 *
97 * @return The rapidity of the beam
98 */
99 static Float_t BeamRapidity(Float_t beam, UShort_t z, UShort_t a);
100 /**
101 * Calculate the center of mass energy from the beam energy per
102 * charge and the nucleus numbers.
103 *
104 * @param beam Beam energy in GeV/charge
105 * @param z1 Charge number of projectile
106 * @param a1 Mass number of projectile
107 * @param z2 Charge number of projectile
108 * @param a2 Mass number of projectile
109 *
110 * @return The center of mass energy in GeV/nucleon
111 */
112 static Float_t CenterOfMassEnergy(Float_t beam, UShort_t z1, UShort_t a1,
113 Short_t z2=-1, Short_t a2=-1);
114 /**
115 * Calculate the center of mass rapidity (shift)
116 *
117 * @param z1 Charge number of projectile
118 * @param a1 Mass number of projectile
119 * @param z2 Charge number of projectile
120 * @param a2 Mass number of projectile
121 * x
122 * @return Rapidity of the center of mass
123 */
124 static Float_t CenterOfMassRapidity(UShort_t z1, UShort_t a1,
125 Short_t z2=-1, Short_t a2=-1);
0bd4b00f 126 /**
127 * Parse a collision system spec given in a string. Known values are
128 *
129 * - "pp", "p-p" which returns kPP
0151a6c6 130 * - "PbPb", "Pb-Pb", "A-A", which returns kPbPb
131 * - "pPb", "p-Pb", "pA", p-A" which returns kPPb
0bd4b00f 132 * - Everything else gives kUnknown
133 *
134 * @param sys Collision system spec
135 *
136 * @return Collision system id
137 */
138 static UShort_t ParseCollisionSystem(const char* sys);
139 /**
140 * Get a string representation of the collision system
141 *
142 * @param sys Collision system
143 * - kPP -> "pp"
144 * - kPbPb -> "PbPb"
0151a6c6 145 * - kPPb -> "pPb"
0bd4b00f 146 * - anything else gives "unknown"
147 *
148 * @return String representation of the collision system
149 */
150 static const char* CollisionSystemString(UShort_t sys);
151 //__________________________________________________________________
152 /**
153 * Parse the center of mass energy given as a float and return known
154 * values as a unsigned integer
155 *
156 * @param sys Collision system (needed for AA)
157 * @param cms Center of mass energy * total charge
158 *
159 * @return Center of mass energy per nucleon
160 */
161 static UShort_t ParseCenterOfMassEnergy(UShort_t sys, Float_t cms);
162 /**
163 * Get a string representation of the center of mass energy per nuclean
164 *
7c1a1f1d 165 * @param cms Center of mass energy per nucleon
0bd4b00f 166 *
167 * @return String representation of the center of mass energy per nuclean
168 */
169 static const char* CenterOfMassEnergyString(UShort_t cms);
170 //__________________________________________________________________
171 /**
172 * Parse the magnetic field (in kG) as given by a floating point number
173 *
174 * @param field Magnetic field in kG
175 *
176 * @return Short integer value of magnetic field in kG
177 */
178 static Short_t ParseMagneticField(Float_t field);
2e658fb9 179 /**
180 * Get a string representation of the magnetic field
181 *
182 * @param field Magnetic field in kG
183 *
184 * @return String representation of the magnetic field
185 */
186 static const char* MagneticFieldString(Short_t field);
187 /* @} */
188
189 //==================================================================
190 /**
191 * @{
192 * @name Recalculate @f$\eta@f$, @f$\phi@f$, etc.
193 */
5ca83fee 194 /**
195 * Get the radius of a strip.
196 *
197 * @param ring Ring identifier 'I' or 'O'
198 * @param strip Strip number
199 *
200 * @return Radial distance from beam of the strip
201 */
202 static Double_t GetStripR(Char_t ring, UShort_t strip);
6f4a5c0d 203 /**
204 * Get eta from strip
205 *
206 * @param det, ring, sec, strip, zvtx
207 *
208 * @return eta
209 */
5ca83fee 210 static Double_t GetEtaFromStrip(UShort_t det, Char_t ring,
211 UShort_t sec, UShort_t strip, Double_t zvtx);
212 /**
213 * Get the azimuthal angle of a strip
214 *
215 * @param ring Ring identifier 'I' or 'O'
216 * @param strip Strip number
217 * @param phi Straight forward strip phi
218 * @param xvtx Ip X coordinate
219 * @param yvtx Ip Y coordinate
220 *
221 * @return The phi angle correctef for (X,Y) off set.
222 */
223 static Double_t GetPhiFromStrip(Char_t ring, UShort_t strip,
224 Double_t phi, Double_t xvtx, Double_t yvtx);
0bd4b00f 225 /* @} */
226
2e658fb9 227 //==================================================================
228 /**
229 * @{
230 * @name Manager related tasks
231 */
290052e7 232 /**
233 * Get the AOD event - either from the input (AOD analysis) or the
234 * output (ESD analysis)
235 *
236 * @param task Task to do the investigation for
237 *
238 * @return Found AOD event or null
239 */
240 static AliAODEvent* GetAODEvent(AliAnalysisTaskSE* task);
241 /**
242 * Check if we have something that will provide and AOD event
243 *
244 * @return 0 if there's nothing that provide an AOD event, 1 if it
245 * is provided on the input (AOD analysis) or 2 if it is provided on
246 * the output (ESD analysis)
247 */
248 static UShort_t CheckForAOD();
249 /**
250 * Check if we have a particular (kind) of task in our train
251 *
252 * @param clsOrName Class name or name of task
253 * @param cls If true, look for a task of a particular class -
254 * otherwise search for a speficially name task
255 *
256 * @return true if the needed task was found
257 */
258 static Bool_t CheckForTask(const char* clsOrName, Bool_t cls=true);
2e658fb9 259 /* @} */
290052e7 260
2e658fb9 261 //==================================================================
241cca4d 262 /**
263 * @{
264 * @name Member functions to store and retrieve analysis parameters
265 */
266 static TObject* MakeParameter(const char* name, UShort_t value);
267 static TObject* MakeParameter(const char* name, Int_t value);
268 static TObject* MakeParameter(const char* name, Double_t value);
269 static TObject* MakeParameter(const char* name, Bool_t value);
1ff25622 270 static TObject* MakeParameter(const char* name, ULong_t value);
241cca4d 271 static void GetParameter(TObject* o, UShort_t& value);
272 static void GetParameter(TObject* o, Int_t& value);
273 static void GetParameter(TObject* o, Double_t& value);
274 static void GetParameter(TObject* o, Bool_t& value);
1ff25622 275 static void GetParameter(TObject* o, ULong_t& value);
241cca4d 276 /* @} */
277
2e658fb9 278 //==================================================================
0bd4b00f 279 /**
280 * @{
281 * @name Energy stragling functions
282 */
7f759bb7 283 //__________________________________________________________________
284 /**
285 * Number of steps to do in the Landau, Gaussiam convolution
286 */
fb3430ac 287 static Int_t fgConvolutionSteps; // Number of convolution steps
7f759bb7 288 //------------------------------------------------------------------
289 /**
290 * How many sigma's of the Gaussian in the Landau, Gaussian
291 * convolution to integrate over
292 */
fb3430ac 293 static Double_t fgConvolutionNSigma; // Number of convolution sigmas
7f759bb7 294 //------------------------------------------------------------------
295 /**
296 * Calculate the shifted Landau
297 * @f[
298 * f'_{L}(x;\Delta,\xi) = f_L(x;\Delta+0.22278298\xi)
299 * @f]
300 *
301 * where @f$ f_{L}@f$ is the ROOT implementation of the Landau
302 * distribution (known to have @f$ \Delta_{p}=-0.22278298@f$ for
303 * @f$\Delta=0,\xi=1@f$.
304 *
305 * @param x Where to evaluate @f$ f'_{L}@f$
306 * @param delta Most probable value
307 * @param xi The 'width' of the distribution
308 *
c389303e 309 * @return @f$ f'_{L}(x;\Delta,\xi) @f$
7f759bb7 310 */
311 static Double_t Landau(Double_t x, Double_t delta, Double_t xi);
312
313 //------------------------------------------------------------------
9d99b0dd 314 /**
7f759bb7 315 * Calculate the value of a Landau convolved with a Gaussian
9d99b0dd 316 *
7f759bb7 317 * @f[
c389303e 318 * f(x;\Delta,\xi,\sigma') = \frac{1}{\sigma' \sqrt{2 \pi}}
7f759bb7 319 * \int_{-\infty}^{+\infty} d\Delta' f'_{L}(x;\Delta',\xi)
c389303e 320 * \exp{-\frac{(\Delta-\Delta')^2}{2\sigma'^2}}
7f759bb7 321 * @f]
9d99b0dd 322 *
c389303e 323 * where @f$ f'_{L}@f$ is the Landau distribution, @f$ \Delta@f$ the
324 * energy loss, @f$ \xi@f$ the width of the Landau, and
325 * @f$ \sigma'^2=\sigma^2-\sigma_n^2 @f$. Here, @f$\sigma@f$ is the
7f759bb7 326 * variance of the Gaussian, and @f$\sigma_n@f$ is a parameter modelling
327 * noise in the detector.
328 *
329 * Note that this function uses the constants fgConvolutionSteps and
330 * fgConvolutionNSigma
331 *
332 * References:
333 * - <a href="http://dx.doi.org/10.1016/0168-583X(84)90472-5">Nucl.Instrum.Meth.B1:16</a>
334 * - <a href="http://dx.doi.org/10.1103/PhysRevA.28.615">Phys.Rev.A28:615</a>
335 * - <a href="http://root.cern.ch/root/htmldoc/tutorials/fit/langaus.C.html">ROOT implementation</a>
336 *
337 * @param x where to evaluate @f$ f@f$
338 * @param delta @f$ \Delta@f$ of @f$ f(x;\Delta,\xi,\sigma')@f$
339 * @param xi @f$ \xi@f$ of @f$ f(x;\Delta,\xi,\sigma')@f$
c389303e 340 * @param sigma @f$ \sigma@f$ of @f$\sigma'^2=\sigma^2-\sigma_n^2 @f$
341 * @param sigma_n @f$ \sigma_n@f$ of @f$\sigma'^2=\sigma^2-\sigma_n^2 @f$
7f759bb7 342 *
343 * @return @f$ f@f$ evaluated at @f$ x@f$.
9d99b0dd 344 */
7f759bb7 345 static Double_t LandauGaus(Double_t x, Double_t delta, Double_t xi,
346 Double_t sigma, Double_t sigma_n);
0bd4b00f 347
348 //------------------------------------------------------------------
349 /**
350 * Evaluate
351 * @f[
352 * f_i(x;\Delta,\xi,\sigma') = f(x;\Delta_i,\xi_i,\sigma_i')
353 * @f]
354 * corresponding to @f$ i@f$ particles i.e., with the substitutions
7c1a1f1d 355 * @f{eqnarray*}{
356 * \Delta \rightarrow \Delta_i &=& i(\Delta + \xi\log(i))\\
357 * \xi \rightarrow \xi_i &=& i \xi\\
358 * \sigma \rightarrow \sigma_i &=& \sqrt{i}\sigma\\
359 * \sigma'^2 \rightarrow \sigma_i'^2 &=& \sigma_n^2 + \sigma_i^2
360 * @f}
0bd4b00f 361 *
362 * @param x Where to evaluate
363 * @param delta @f$ \Delta@f$
364 * @param xi @f$ \xi@f$
365 * @param sigma @f$ \sigma@f$
366 * @param sigma_n @f$ \sigma_n@f$
7c1a1f1d 367 * @param i @f$ i @f$
0bd4b00f 368 *
7c1a1f1d 369 * @return @f$ f_i @f$ evaluated
0bd4b00f 370 */
371 static Double_t ILandauGaus(Double_t x, Double_t delta, Double_t xi,
372 Double_t sigma, Double_t sigma_n, Int_t i);
373
374 //------------------------------------------------------------------
375 /**
376 * Numerically evaluate
377 * @f[
378 * \left.\frac{\partial f_i}{\partial p_i}\right|_{x}
379 * @f]
380 * where @f$ p_i@f$ is the @f$ i^{\mbox{th}}@f$ parameter. The mapping
381 * of the parameters is given by
382 *
383 * - 0: @f$\Delta@f$
384 * - 1: @f$\xi@f$
385 * - 2: @f$\sigma@f$
386 * - 3: @f$\sigma_n@f$
387 *
388 * This is the partial derivative with respect to the parameter of
389 * the response function corresponding to @f$ i@f$ particles i.e.,
390 * with the substitutions
391 * @f[
392 * \Delta \rightarrow \Delta_i = i(\Delta + \xi\log(i))\\
393 * \xi \rightarrow \xi_i = i \xi\\
394 * \sigma \rightarrow \sigma_i = \sqrt{i}\sigma\\
395 * \sigma'^2 \rightarrow \sigma_i'^2 = \sigma_n^2 + \sigma_i^2
396 * @f]
397 *
398 * @param x Where to evaluate
399 * @param ipar Parameter number
7c1a1f1d 400 * @param dp @f$ \epsilon\delta p_i@f$ for some value of @f$\epsilon@f$
0bd4b00f 401 * @param delta @f$ \Delta@f$
402 * @param xi @f$ \xi@f$
403 * @param sigma @f$ \sigma@f$
404 * @param sigma_n @f$ \sigma_n@f$
405 * @param i @f$ i@f$
406 *
407 * @return @f$ f_i@f$ evaluated
408 */
409 static Double_t IdLandauGausdPar(Double_t x, UShort_t ipar, Double_t dp,
410 Double_t delta, Double_t xi,
411 Double_t sigma, Double_t sigma_n, Int_t i);
412
7f759bb7 413 //------------------------------------------------------------------
9d99b0dd 414 /**
7f759bb7 415 * Evaluate
c389303e 416 * @f[
0bd4b00f 417 * f_N(x;\Delta,\xi,\sigma') = \sum_{i=1}^N a_i f_i(x;\Delta,\xi,\sigma'a)
418 * @f]
9d99b0dd 419 *
7f759bb7 420 * where @f$ f(x;\Delta,\xi,\sigma')@f$ is the convolution of a
421 * Landau with a Gaussian (see LandauGaus). Note that
c389303e 422 * @f$ a_1 = 1@f$, @f$\Delta_i = i(\Delta_1 + \xi\log(i))@f$,
423 * @f$\xi_i=i\xi_1@f$, and @f$\sigma_i'^2 = \sigma_n^2 + i\sigma_1^2@f$.
7f759bb7 424 *
425 * References:
426 * - <a href="http://dx.doi.org/10.1016/0168-583X(84)90472-5">Nucl.Instrum.Meth.B1:16</a>
427 * - <a href="http://dx.doi.org/10.1103/PhysRevA.28.615">Phys.Rev.A28:615</a>
428 * - <a href="http://root.cern.ch/root/htmldoc/tutorials/fit/langaus.C.html">ROOT implementation</a>
9d99b0dd 429 *
7f759bb7 430 * @param x Where to evaluate @f$ f_N@f$
431 * @param delta @f$ \Delta_1@f$
432 * @param xi @f$ \xi_1@f$
433 * @param sigma @f$ \sigma_1@f$
434 * @param sigma_n @f$ \sigma_n@f$
435 * @param n @f$ N@f$ in the sum above.
436 * @param a Array of size @f$ N-1@f$ of the weights @f$ a_i@f$ for
437 * @f$ i > 1@f$
438 *
439 * @return @f$ f_N(x;\Delta,\xi,\sigma')@f$
9d99b0dd 440 */
7f759bb7 441 static Double_t NLandauGaus(Double_t x, Double_t delta, Double_t xi,
442 Double_t sigma, Double_t sigma_n, Int_t n,
fb3430ac 443 const Double_t* a);
0bd4b00f 444 /**
445 * Generate a TF1 object of @f$ f_I@f$
446 *
447 * @param c Constant
448 * @param delta @f$ \Delta@f$
449 * @param xi @f$ \xi_1@f$
450 * @param sigma @f$ \sigma_1@f$
451 * @param sigma_n @f$ \sigma_n@f$
452 * @param i @f$ i@f$ - the number of particles
453 * @param xmin Least value of range
454 * @param xmax Largest value of range
455 *
456 * @return Newly allocated TF1 object
457 */
458 static TF1* MakeILandauGaus(Double_t c,
459 Double_t delta, Double_t xi,
460 Double_t sigma, Double_t sigma_n,
461 Int_t i,
462 Double_t xmin, Double_t xmax);
463 /**
464 * Generate a TF1 object of @f$ f_N@f$
465 *
466 * @param c Constant
467 * @param delta @f$ \Delta@f$
468 * @param xi @f$ \xi_1@f$
469 * @param sigma @f$ \sigma_1@f$
470 * @param sigma_n @f$ \sigma_n@f$
471 * @param n @f$ N@f$ - how many particles to sum to
472 * @param a Array of size @f$ N-1@f$ of the weights @f$ a_i@f$ for
473 * @f$ i > 1@f$
474 * @param xmin Least value of range
475 * @param xmax Largest value of range
476 *
477 * @return Newly allocated TF1 object
478 */
479 static TF1* MakeNLandauGaus(Double_t c,
480 Double_t delta, Double_t xi,
481 Double_t sigma, Double_t sigma_n,
fb3430ac 482 Int_t n, const Double_t* a,
0bd4b00f 483 Double_t xmin, Double_t xmax);
484
7f759bb7 485 //__________________________________________________________________
486 /**
487 * Structure to do fits to the energy loss spectrum
488 *
bd6f5206 489 * @ingroup pwglf_forward
7f759bb7 490 */
491 struct ELossFitter
492 {
c389303e 493 enum {
494 kC = 0,
495 kDelta,
496 kXi,
497 kSigma,
498 kSigmaN,
499 kN,
500 kA
501 };
7f759bb7 502 /**
503 * Constructor
504 *
505 * @param lowCut Lower cut of spectrum - data below this cuts is ignored
506 * @param maxRange Maximum range to fit to
507 * @param minusBins The number of bins below maximum to use
508 */
509 ELossFitter(Double_t lowCut, Double_t maxRange, UShort_t minusBins);
7984e5f7 510 /**
511 * Destructor
512 *
513 */
7f759bb7 514 virtual ~ELossFitter();
515 /**
516 * Clear internal arrays
517 *
518 */
519 void Clear();
520 /**
521 * Fit a 1-particle signal to the passed energy loss distribution
522 *
523 * Note that this function clears the internal arrays first
524 *
525 * @param dist Data to fit the function to
526 * @param sigman If larger than zero, the initial guess of the
527 * detector induced noise. If zero or less, then this
528 * parameter is ignored in the fit (fixed at 0)
529 *
530 * @return The function fitted to the data
531 */
532 TF1* Fit1Particle(TH1* dist, Double_t sigman=-1);
533 /**
534 * Fit a N-particle signal to the passed energy loss distribution
535 *
536 * If there's no 1-particle fit present, it does that first
537 *
538 * @param dist Data to fit the function to
c389303e 539 * @param n Number of particle signals to fit
7f759bb7 540 * @param sigman If larger than zero, the initial guess of the
541 * detector induced noise. If zero or less, then this
542 * parameter is ignored in the fit (fixed at 0)
543 *
544 * @return The function fitted to the data
545 */
546 TF1* FitNParticle(TH1* dist, UShort_t n, Double_t sigman=-1);
2e658fb9 547 /**
548 * Fit a composite distribution of energy loss from both primaries
549 * and secondaries
550 *
551 * @param dist Distribution
552 * @param sigman If larger than zero, the initial guess of the
553 * detector included noise. If zero or less this
554 * parameter is fixed to 0.
555 *
556 * @return Function fitted to the data
557 */
558 TF1* FitComposite(TH1* dist, Double_t sigman);
fb3430ac 559 /**
560 * Get Lower cut on data
561 *
562 * @return Lower cut on data
563 */
564 Double_t GetLowCut() const { return fLowCut; }
565 /**
566 * Get Maximum range to fit
567 *
568 * @return Maximum range to fit
569 */
570 Double_t GetMaxRange() const { return fMaxRange; }
571 /**
572 * Get Number of bins from maximum to fit 1st peak
573 *
574 * @return Number of bins from maximum to fit 1st peak
575 */
576 UShort_t GetMinusBins() const { return fMinusBins; }
577 /**
578 * Get Array of fit results
579 *
580 * @return Array of fit results
581 */
582 const TObjArray& GetFitResults() const { return fFitResults; }
583 /**
584 * Get Array of fit results
585 *
586 * @return Array of fit results
587 */
588 TObjArray& GetFitResults() { return fFitResults; }
589 /**
590 * Get Array of functions
591 *
592 * @return Array of functions
593 */
594 const TObjArray& GetFunctions() const { return fFunctions; }
595 /**
596 * Get Array of functions
597 *
598 * @return Array of functions
599 */
600 TObjArray& GetFunctions() { return fFunctions; }
601 private:
7f759bb7 602 const Double_t fLowCut; // Lower cut on data
603 const Double_t fMaxRange; // Maximum range to fit
604 const UShort_t fMinusBins; // Number of bins from maximum to fit 1st peak
605 TObjArray fFitResults; // Array of fit results
606 TObjArray fFunctions; // Array of functions
607 };
0bd4b00f 608 /* @} */
7f759bb7 609
610
0bd4b00f 611 //==================================================================
612 /**
613 * @{
614 * @name Convenience containers
615 */
7e4038b5 616 /**
617 * Structure to hold histograms
618 *
bd6f5206 619 * @ingroup pwglf_forward
7e4038b5 620 */
621 struct Histos : public TObject
622 {
623 /**
624 * Constructor
625 *
626 *
627 */
628 Histos() : fFMD1i(0), fFMD2i(0), fFMD2o(0), fFMD3i(0), fFMD3o(0) {}
629 /**
630 * Copy constructor
631 *
632 * @param o Object to copy from
633 */
634 Histos(const Histos& o)
635 : TObject(o),
636 fFMD1i(o.fFMD1i),
637 fFMD2i(o.fFMD2i),
638 fFMD2o(o.fFMD2o),
639 fFMD3i(o.fFMD3i),
640 fFMD3o(o.fFMD3o)
641 {}
642 /**
643 * Assignement operator
644 *
645 * @return Reference to this
646 */
647 Histos& operator=(const Histos&) { return *this;}
648 /**
b7ab8a2c 649 * Destructor. This does not delete the interally allocated
650 * memory. Use the member function Delete for that.
7e4038b5 651 */
652 ~Histos();
b7ab8a2c 653 /**
654 * Clear internal memory. Note, if the internal histograms are
655 * added to an output container, then we must not free this
656 * memory.
657 */
658 void Delete(Option_t* opt="");
7e4038b5 659 /**
660 * Initialize the object
661 *
662 * @param etaAxis Eta axis to use
663 */
664 void Init(const TAxis& etaAxis);
8449e3e0 665 /**
666 * Re-initialize the object with new @f$\eta@f$ axis
667 *
668 * @param etaAxis Eta axis to use
669 */
670 void ReInit(const TAxis& etaAxis);
7e4038b5 671 /**
672 * Make a histogram
673 *
674 * @param d Detector
675 * @param r Ring
676 * @param etaAxis Eta axis to use
677 *
678 * @return Newly allocated histogram
679 */
8449e3e0 680 static TH2D* Make(UShort_t d, Char_t r, const TAxis& etaAxis);
681 /**
682 * Set the @f$\eta@f$ axis
683 *
684 * @param hist Histogram
685 * @param etaAxis @f$\eta@f$ axis to use
686 */
687 static void RebinEta(TH2D* hist, const TAxis& etaAxis);
7e4038b5 688 /**
689 * Clear data
690 *
691 * @param option Not used
692 */
693 void Clear(Option_t* option="");
694 // const TH2D* Get(UShort_t d, Char_t r) const;
695 /**
696 * Get the histogram for a particular detector,ring
697 *
698 * @param d Detector
699 * @param r Ring
700 *
701 * @return Histogram for detector,ring or nul
702 */
703 TH2D* Get(UShort_t d, Char_t r) const;
704 TH2D* fFMD1i; // Histogram for FMD1i
705 TH2D* fFMD2i; // Histogram for FMD2i
706 TH2D* fFMD2o; // Histogram for FMD2o
707 TH2D* fFMD3i; // Histogram for FMD3i
708 TH2D* fFMD3o; // Histogram for FMD3o
9d99b0dd 709
5934a3e3 710 ClassDef(Histos,2)
7e4038b5 711 };
712
9d99b0dd 713 //__________________________________________________________________
ca610c5c 714 /**
715 * Base class for structure holding ring specific histograms
716 *
bd6f5206 717 * @ingroup pwglf_forward
ca610c5c 718 */
9d99b0dd 719 struct RingHistos : public TObject
720 {
ca610c5c 721 /**
722 * Constructor
723 *
724 */
9d99b0dd 725 RingHistos() : fDet(0), fRing('\0'), fName("") {}
ca610c5c 726 /**
727 *
728 *
729 * @param d Detector
730 * @param r Ring
731 */
9d99b0dd 732 RingHistos(UShort_t d, Char_t r)
733 : fDet(d), fRing(r), fName(TString::Format("FMD%d%c", d, r))
734 {}
ca610c5c 735 /**
736 * Copy constructor
737 *
738 * @param o Object to copy from
739 */
9d99b0dd 740 RingHistos(const RingHistos& o)
741 : TObject(o), fDet(o.fDet), fRing(o.fRing), fName(o.fName)
742 {}
ca610c5c 743 /**
744 *
745 */
9d99b0dd 746 virtual ~RingHistos() {}
ca610c5c 747 /**
748 * Assignement operator
749 *
750 * @param o Object to assign from
751 *
752 * @return Reference to this
753 */
9d99b0dd 754 RingHistos& operator=(const RingHistos& o)
755 {
d015ecfe 756 if (&o == this) return *this;
9d99b0dd 757 TObject::operator=(o);
758 fDet = o.fDet;
759 fRing = o.fRing;
760 fName = o.fName;
761 return *this;
762 }
ca610c5c 763 /**
7984e5f7 764 * Define the outout list in @a d
ca610c5c 765 *
7984e5f7 766 * @param d Where to put the output list
ca610c5c 767 *
7984e5f7 768 * @return Newly allocated TList object or null
ca610c5c 769 */
9d99b0dd 770 TList* DefineOutputList(TList* d) const;
ca610c5c 771 /**
7984e5f7 772 * Get our output list from the container @a d
ca610c5c 773 *
7984e5f7 774 * @param d where to get the output list from
ca610c5c 775 *
7984e5f7 776 * @return The found TList or null
ca610c5c 777 */
fb3430ac 778 TList* GetOutputList(const TList* d) const;
ca610c5c 779 /**
7984e5f7 780 * Find a specific histogram in the source list @a d
ca610c5c 781 *
7984e5f7 782 * @param d (top)-container
783 * @param name Name of histogram
ca610c5c 784 *
7984e5f7 785 * @return Found histogram or null
ca610c5c 786 */
fb3430ac 787 TH1* GetOutputHist(const TList* d, const char* name) const;
ca610c5c 788 /**
2e658fb9 789 * Get the colour of this ring
ca610c5c 790 *
791 *
792 * @return
793 */
7f759bb7 794 Color_t Color() const
795 {
cc83fca2 796 return AliForwardUtil::RingColor(fDet, fRing);
7f759bb7 797 }
290052e7 798 /**
799 * The name of this ring
800 *
801 * @return Name of this ring
802 */
5bb5d1f6 803 const char* GetName() const { return fName.Data(); }
ca610c5c 804 UShort_t fDet; // Detector
805 Char_t fRing; // Ring
806 TString fName; // Name
9d99b0dd 807
808 ClassDef(RingHistos,1)
809 };
0bd4b00f 810 /* @} */
f53fb4f6 811
812 //__________________________________________________________________
290052e7 813 /**
814 * A guard idom for producing debug output
815 *
816 */
f53fb4f6 817 struct DebugGuard
818 {
290052e7 819 /**
820 * Constructor
821 *
822 * @param lvl Current level
823 * @param msgLvl Target level
824 * @param format @c printf -like format
825 *
826 * @return
827 */
f53fb4f6 828 DebugGuard(Int_t lvl, Int_t msgLvl, const char* format, ...);
290052e7 829 /**
830 * Destructor
831 */
f53fb4f6 832 ~DebugGuard();
290052e7 833 /**
834 * Make a message
835 *
836 * @param lvl Current level
837 * @param msgLvl Target level
838 * @param format @c printf -like format
839 */
40e32ce9 840 static void Message(Int_t lvl, Int_t msgLvl, const char* format, ...);
f53fb4f6 841 private:
290052e7 842 /**
843 * Output the message
844 *
845 * @param in Direction
846 * @param msg Message
847 */
40e32ce9 848 static void Output(int in, TString& msg);
290052e7 849 /**
850 * Format a message
851 *
852 * @param out Output is stored here
853 * @param format @c printf -like format
854 * @param ap List of arguments
855 */
40e32ce9 856 static void Format(TString& out, const char* format, va_list ap);
f53fb4f6 857 TString fMsg;
858 };
8e400b14 859private:
290052e7 860 /**
861 * Constructor
862 */
8e400b14 863 AliForwardUtil() {}
290052e7 864 /**
865 * Copy constructor
866 *
867 * @param o Object to copy from
868 */
8e400b14 869 AliForwardUtil(const AliForwardUtil& o) : TObject(o) {}
290052e7 870 /**
871 * Assingment operator
872 *
873 *
874 * @return Reference to this object
875 */
8e400b14 876 AliForwardUtil& operator=(const AliForwardUtil&) { return *this; }
290052e7 877 /**
878 * Destructor
879 */
8e400b14 880 ~AliForwardUtil() {}
881
882
883 ClassDef(AliForwardUtil,1) // Utilities - do not make object
7e4038b5 884};
885
40e32ce9 886// #ifdef LOG_NO_DEBUG
887// # define DGUARD(L,N,F,...) do {} while(false)
888// #else
290052e7 889/**
890 * Macro to declare a DebugGuard
891 *
892 * @param L Current debug level
893 * @param N Target debug level
894 * @param F @c printf -like Format
895 */
f53fb4f6 896# define DGUARD(L,N,F,...) \
897 AliForwardUtil::DebugGuard _GUARD(L,N,F, ## __VA_ARGS__)
290052e7 898/**
899 * Macro to make a debug message, using DebugGuard::Message
900 *
901 * @param L Current debug level
902 * @param N Target debug level
903 * @param F @c printf -like Format
904 */
40e32ce9 905# define DMSG(L,N,F,...) \
906 AliForwardUtil::DebugGuard::Message(L,N,F, ## __VA_ARGS__)
907// #endif
7e4038b5 908#endif
909// Local Variables:
910// mode: C++
911// End:
912