]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PYTHIA8/pythia8130/xmldoc/CouplingsAndScales.xml
using option '-treename HLTesdTree' for EsdCollector, adding default parameter for...
[u/mrichter/AliRoot.git] / PYTHIA8 / pythia8130 / xmldoc / CouplingsAndScales.xml
CommitLineData
5ad4eb21 1<chapter name="Couplings and Scales">
2
3<h2>Couplings and Scales</h2>
4
5Here is collected some possibilities to modify the scale choices
6of couplings and parton densities for all internally implemented
7hard processes. This is based on them all being derived from the
8<code>SigmaProcess</code> base class. The matrix-element coding is
9also used by the multiple-interactions machinery, but there with a
10separate choice of <ei>alpha_strong(M_Z^2)</ei> value and running,
11and separate PDF scale choices. Also, in <ei>2 -> 2</ei> and
12<ei>2 -> 3</ei> processes where resonances are produced, their
13couplings and thereby their Breit-Wigner shapes are always evaluated
14with the resonance mass as scale, irrespective of the choices below.
15
16<h3>Couplings and K factor</h3>
17
18The size of QCD cross sections is mainly determined by
19<parm name="SigmaProcess:alphaSvalue" default="0.1265"
20min="0.06" max="0.25">
21The <ei>alpha_strong</ei> value at scale <ei>M_Z^2</ei>.
22</parm>
23
24<p/>
25The actual value is then regulated by the running to the <ei>Q^2</ei>
26renormalization scale, at which <ei>alpha_strong</ei> is evaluated
27<modepick name="SigmaProcess:alphaSorder" default="1" min="0" max="2">
28Order at which <ei>alpha_strong</ei> runs,
29<option value="0">zeroth order, i.e. <ei>alpha_strong</ei> is kept
30fixed.</option>
31<option value="1">first order, which is the normal value.</option>
32<option value="2">second order. Since other parts of the code do
33not go to second order there is no strong reason to use this option,
34but there is also nothing wrong with it.</option>
35</modepick>
36
37<p/>
38QED interactions are regulated by the <ei>alpha_electromagnetic</ei>
39value at the <ei>Q^2</ei> renormalization scale of an interaction.
40<modepick name="SigmaProcess:alphaEMorder" default="1" min="-1" max="1">
41The running of <ei>alpha_em</ei> used in hard processes.
42<option value="1">first-order running, constrained to agree with
43<code>StandardModel:alphaEMmZ</code> at the <ei>Z^0</ei> mass.
44</option>
45<option value="0">zeroth order, i.e. <ei>alpha_em</ei> is kept
46fixed at its value at vanishing momentum transfer.</option>
47<option value="-1">zeroth order, i.e. <ei>alpha_em</ei> is kept
48fixed, but at <code>StandardModel:alphaEMmZ</code>, i.e. its value
49at the <ei>Z^0</ei> mass.
50</option>
51</modepick>
52
53<p/>
54In addition there is the possibility of a global rescaling of
55cross sections (which could not easily be accommodated by a
56changed <ei>alpha_strong</ei>, since <ei>alpha_strong</ei> runs)
57<parm name="SigmaProcess:Kfactor" default="1.0" min="0.5" max="4.0">
58Multiply almost all cross sections by this common fix factor. Excluded
59are only unresolved processes, where cross sections are better
60<aloc href="TotalCrossSections">set directly</aloc>, and
61multiple interactions, which have a separate <ei>K</ei> factor
62<aloc href="MultipleInteractions">of their own</aloc>.
63This degree of freedom is primarily intended for hadron colliders, and
64should not normally be used for <ei>e^+e^-</ei> annihilation processes.
65</parm>
66
67<h3>Renormalization scales</h3>
68
69The <ei>Q^2</ei> renormalization scale can be chosen among a few different
70alternatives, separately for <ei>2 -> 1</ei>, <ei>2 -> 2</ei> and two
71different kinds of <ei>2 -> 3</ei> processes. In addition a common
72multiplicative factor may be imposed.
73
74<modepick name="SigmaProcess:renormScale1" default="1" min="1" max="2">
75The <ei>Q^2</ei> renormalization scale for <ei>2 -> 1</ei> processes.
76The same options also apply for those <ei>2 -> 2</ei> and <ei>2 -> 3</ei>
77processes that have been specially marked as proceeding only through
78an <ei>s</ei>-channel resonance, by the <code>isSChannel()</code> virtual
79method of <code>SigmaProcess</code>.
80<option value="1">the squared invariant mass, i.e. <ei>sHat</ei>.
81</option>
82<option value="2">fix scale set in <code>SigmaProcess:renormFixScale</code>
83below.
84</option>
85</modepick>
86
87<modepick name="SigmaProcess:renormScale2" default="2" min="1" max="5">
88The <ei>Q^2</ei> renormalization scale for <ei>2 -> 2</ei> processes.
89<option value="1">the smaller of the squared transverse masses of the two
90outgoing particles, i.e. <ei>min(mT_3^2, mT_4^2) =
91pT^2 + min(m_3^2, m_4^2)</ei>.
92</option>
93<option value="2">the geometric mean of the squared transverse masses of
94the two outgoing particles, i.e. <ei>mT_3 * mT_4 =
95sqrt((pT^2 + m_3^2) * (pT^2 + m_4^2))</ei>.
96</option>
97<option value="3">the arithmetic mean of the squared transverse masses of
98the two outgoing particles, i.e. <ei>(mT_3^2 + mT_4^2) / 2 =
99pT^2 + 0.5 * (m_3^2 + m_4^2)</ei>. Useful for comparisons
100with PYTHIA 6, where this is the default.
101</option>
102<option value="4">squared invariant mass of the system,
103i.e. <ei>sHat</ei>. Useful for processes dominated by
104<ei>s</ei>-channel exchange.
105</option>
106<option value="5">fix scale set in <code>SigmaProcess:renormFixScale</code>
107below.
108</option>
109</modepick>
110
111<modepick name="SigmaProcess:renormScale3" default="3" min="1" max="6">
112The <ei>Q^2</ei> renormalization scale for "normal" <ei>2 -> 3</ei>
113processes, i.e excepting the vector-boson-fusion processes below.
114Here it is assumed that particle masses in the final state either match
115or are heavier than that of any <ei>t</ei>-channel propagator particle.
116(Currently only <ei>g g / q qbar -> H^0 Q Qbar</ei> processes are
117implemented, where the "match" criterion holds.)
118<option value="1">the smaller of the squared transverse masses of the three
119outgoing particles, i.e. min(mT_3^2, mT_4^2, mT_5^2).
120</option>
121<option value="2">the geometric mean of the two smallest squared transverse
122masses of the three outgoing particles, i.e.
123<ei>sqrt( mT_3^2 * mT_4^2 * mT_5^2 / max(mT_3^2, mT_4^2, mT_5^2) )</ei>.
124</option>
125<option value="3">the geometric mean of the squared transverse masses of the
126three outgoing particles, i.e. <ei>(mT_3^2 * mT_4^2 * mT_5^2)^(1/3)</ei>.
127</option>
128<option value="4">the arithmetic mean of the squared transverse masses of
129the three outgoing particles, i.e. <ei>(mT_3^2 + mT_4^2 + mT_5^2)/3</ei>.
130</option>
131<option value="5">squared invariant mass of the system,
132i.e. <ei>sHat</ei>.
133</option>
134<option value="6">fix scale set in <code>SigmaProcess:renormFixScale</code>
135below.
136</option>
137</modepick>
138
139<modepick name="SigmaProcess:renormScale3VV" default="3" min="1" max="6">
140The <ei>Q^2</ei> renormalization scale for <ei>2 -> 3</ei>
141vector-boson-fusion processes, i.e. <ei>f_1 f_2 -> H^0 f_3 f_4</ei>
142with <ei>Z^0</ei> or <ei>W^+-</ei> <ei>t</ei>-channel propagators.
143Here the transverse masses of the outgoing fermions do not reflect the
144virtualities of the exchanged bosons. A better estimate is obtained
145by replacing the final-state fermion masses by the vector-boson ones
146in the definition of transverse masses. We denote these combinations
147<ei>mT_Vi^2 = m_V^2 + pT_i^2</ei>.
148<option value="1">the squared mass <ei>m_V^2</ei> of the exchanged
149vector boson.
150</option>
151<option value="2">the geometric mean of the two propagator virtuality
152estimates, i.e. <ei>sqrt(mT_V3^2 * mT_V4^2)</ei>.
153</option>
154<option value="3">the geometric mean of the three relevant squared
155transverse masses, i.e. <ei>(mT_V3^2 * mT_V4^2 * mT_H^2)^(1/3)</ei>.
156</option>
157<option value="4">the arithmetic mean of the three relevant squared
158transverse masses, i.e. <ei>(mT_V3^2 + mT_V4^2 + mT_H^2)/3</ei>.
159</option>
160<option value="5">squared invariant mass of the system,
161i.e. <ei>sHat</ei>.
162</option>
163<option value="6">fix scale set in <code>SigmaProcess:renormFixScale</code>
164below.
165</option>
166</modepick>
167
168<parm name="SigmaProcess:renormMultFac" default="1." min="0.1" max="10.">
169The <ei>Q^2</ei> renormalization scale for <ei>2 -> 1</ei>,
170<ei>2 -> 2</ei> and <ei>2 -> 3</ei> processes is multiplied by
171this factor relative to the scale described above (except for the options
172with a fix scale). Should be use sparingly for <ei>2 -> 1</ei> processes.
173</parm>
174
175<parm name="SigmaProcess:renormFixScale" default="10000." min="1.">
176A fix <ei>Q^2</ei> value used as renormalization scale for <ei>2 -> 1</ei>,
177<ei>2 -> 2</ei> and <ei>2 -> 3</ei> processes in some of the options above.
178</parm>
179
180<h3>Factorization scales</h3>
181
182Corresponding options exist for the <ei>Q^2</ei> factorization scale
183used as argument in PDF's. Again there is a choice of form for
184<ei>2 -> 1</ei>, <ei>2 -> 2</ei> and <ei>2 -> 3</ei> processes separately.
185For simplicity we have let the numbering of options agree, for each event
186class separately, between normalization and factorization scales, and the
187description has therefore been slightly shortened. The default values are
188<b>not</b> necessarily the same, however.
189
190<modepick name="SigmaProcess:factorScale1" default="1" min="1" max="2">
191The <ei>Q^2</ei> factorization scale for <ei>2 -> 1</ei> processes.
192The same options also apply for those <ei>2 -> 2</ei> and <ei>2 -> 3</ei>
193processes that have been specially marked as proceeding only through
194an <ei>s</ei>-channel resonance.
195<option value="1">the squared invariant mass, i.e. <ei>sHat</ei>.
196</option>
197<option value="2">fix scale set in <code>SigmaProcess:factorFixScale</code>
198below.
199</option>
200</modepick>
201
202<modepick name="SigmaProcess:factorScale2" default="1" min="1" max="5">
203The <ei>Q^2</ei> factorization scale for <ei>2 -> 2</ei> processes.
204<option value="1">the smaller of the squared transverse masses of the two
205outgoing particles.
206</option>
207<option value="2">the geometric mean of the squared transverse masses of
208the two outgoing particles.
209</option>
210<option value="3">the arithmetic mean of the squared transverse masses of
211the two outgoing particles. Useful for comparisons with PYTHIA 6, where
212this is the default.
213</option>
214<option value="4">squared invariant mass of the system,
215i.e. <ei>sHat</ei>. Useful for processes dominated by
216<ei>s</ei>-channel exchange.
217</option>
218<option value="5">fix scale set in <code>SigmaProcess:factorFixScale</code>
219below.
220</option>
221</modepick>
222
223<modepick name="SigmaProcess:factorScale3" default="2" min="1" max="6">
224The <ei>Q^2</ei> factorization scale for "normal" <ei>2 -> 3</ei>
225processes, i.e excepting the vector-boson-fusion processes below.
226<option value="1">the smaller of the squared transverse masses of the three
227outgoing particles.
228</option>
229<option value="2">the geometric mean of the two smallest squared transverse
230masses of the three outgoing particles.
231</option>
232<option value="3">the geometric mean of the squared transverse masses of the
233three outgoing particles.
234</option>
235<option value="4">the arithmetic mean of the squared transverse masses of
236the three outgoing particles.
237</option>
238<option value="5">squared invariant mass of the system,
239i.e. <ei>sHat</ei>.
240</option>
241<option value="6">fix scale set in <code>SigmaProcess:factorFixScale</code>
242below.
243</option>
244</modepick>
245
246<modepick name="SigmaProcess:factorScale3VV" default="2" min="1" max="6">
247The <ei>Q^2</ei> factorization scale for <ei>2 -> 3</ei>
248vector-boson-fusion processes, i.e. <ei>f_1 f_2 -> H^0 f_3 f_4</ei>
249with <ei>Z^0</ei> or <ei>W^+-</ei> <ei>t</ei>-channel propagators.
250Here we again introduce the combinations <ei>mT_Vi^2 = m_V^2 + pT_i^2</ei>
251as replacements for the normal squared transverse masses of the two
252outgoing quarks.
253<option value="1">the squared mass <ei>m_V^2</ei> of the exchanged
254vector boson.
255</option>
256<option value="2">the geometric mean of the two propagator virtuality
257estimates.
258</option>
259<option value="3">the geometric mean of the three relevant squared
260transverse masses.
261</option>
262<option value="4">the arithmetic mean of the three relevant squared
263transverse masses.
264</option>
265<option value="5">squared invariant mass of the system,
266i.e. <ei>sHat</ei>.
267</option>
268<option value="6">fix scale set in <code>SigmaProcess:factorFixScale</code>
269below.
270</option>
271</modepick>
272
273<parm name="SigmaProcess:factorMultFac" default="1." min="0.1" max="10.">
274The <ei>Q^2</ei> factorization scale for <ei>2 -> 1</ei>,
275<ei>2 -> 2</ei> and <ei>2 -> 3</ei> processes is multiplied by
276this factor relative to the scale described above (except for the options
277with a fix scale). Should be use sparingly for <ei>2 -> 1</ei> processes.
278</parm>
279
280<parm name="SigmaProcess:factorFixScale" default="10000." min="1.">
281A fix <ei>Q^2</ei> value used as factorization scale for <ei>2 -> 1</ei>,
282<ei>2 -> 2</ei> and <ei>2 -> 3</ei> processes in some of the options above.
283</parm>
284
285</chapter>
286
287<!-- Copyright (C) 2008 Torbjorn Sjostrand -->