]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PYTHIA8/pythia8145/phpdoc/Diffraction.php
New pythia8 version
[u/mrichter/AliRoot.git] / PYTHIA8 / pythia8145 / phpdoc / Diffraction.php
CommitLineData
9419eeef 1<html>
2<head>
3<title>Diffraction</title>
4<link rel="stylesheet" type="text/css" href="pythia.css"/>
5<link rel="shortcut icon" href="pythia32.gif"/>
6</head>
7<body>
8
9<script language=javascript type=text/javascript>
10function stopRKey(evt) {
11var evt = (evt) ? evt : ((event) ? event : null);
12var node = (evt.target) ? evt.target :((evt.srcElement) ? evt.srcElement : null);
13if ((evt.keyCode == 13) && (node.type=="text"))
14{return false;}
15}
16
17document.onkeypress = stopRKey;
18</script>
19<?php
20if($_POST['saved'] == 1) {
21if($_POST['filepath'] != "files/") {
22echo "<font color='red'>SETTINGS SAVED TO FILE</font><br/><br/>"; }
23else {
24echo "<font color='red'>NO FILE SELECTED YET.. PLEASE DO SO </font><a href='SaveSettings.php'>HERE</a><br/><br/>"; }
25}
26?>
27
28<form method='post' action='Diffraction.php'>
29
30<h2>Diffraction</h2>
31
32<h3>Introduction</h3>
33
34Diffraction is not well understood, and several alternative approaches
35have been proposed. Here we follow a fairly conventional Pomeron-based
36one, in the Ingelman-Schlein spirit [<a href="Bibliography.php" target="page">Ing85</a>],
37but integrated to make full use of the standard PYTHIA machinery
38for multiple interactions, parton showers and hadronization
39[<a href="Bibliography.php" target="page">Nav10,Cor10a</a>]. This is the approach pioneered in the PomPyt
40program by Ingelman and collaborators [<a href="Bibliography.php" target="page">Ing97</a>].
41
42<p/>
43For ease of use (and of modelling), the Pomeron-specific parts of the
44generation are subdivided into three sets of parameters that are rather
45independent of each other:
46<br/>(i) the total, elastic and diffractive cross sections are
47parametrized as functions of the CM energy, or can be set by the user
48to the desired values, see the
49<?php $filepath = $_GET["filepath"];
50echo "<a href='TotalCrossSections.php?filepath=".$filepath."' target='page'>";?>Total Cross Sections</a> page;
51<br/>(ii) once it has been decided to have a diffractive process,
52a Pomeron flux parametrization is used to pick the mass of the
53diffractive system(s) and the <i>t</i> of the exchanged Pomeron,
54see below;
55<br/>(iii) a diffractive system of a given mass is classified either
56as low-mass unresolved, which gives a simple low-<i>pT</i> string
57topology, or as high-mass resolved, for which the full machinery of
58multiple interactions and parton showers are applied, making use of
59<?php $filepath = $_GET["filepath"];
60echo "<a href='PDFSelection.php?filepath=".$filepath."' target='page'>";?>Pomeron PDFs</a>.
61<br/>The parameters related to multiple interactions, parton showers
62and hadronization are kept the same as for normal nondiffractive events,
63with only one exception. This may be questioned, especially for the
64multiple interactions, but we do not believe that there are currently
65enough good diffractive data that would allow detailed separate tunes.
66
67<p/>
68The above subdivision may not represent the way "physics comes about".
69For instance, the total diffractive cross section can be viewed as a
70convolution of a Pomeron flux with a Pomeron-proton total cross section.
71Since neither of the two is known from first principles there will be
72a significant amount of ambiguity in the flux factor. The picture is
73further complicated by the fact that the possibility of simultaneous
74further multiple interactions ("cut Pomerons") will screen the rate of
75diffractive systems. In the end, our set of parameters refers to the
76effective description that emerges out of these effects, rather than
77to the underlying "bare" parameters.
78
79<h3>Pomeron flux</h3>
80
81As already mentioned above, the total diffractive cross section is fixed
82by a default energy-dependent parametrization or by the user, see the
83<?php $filepath = $_GET["filepath"];
84echo "<a href='TotalCrossSections.php?filepath=".$filepath."' target='page'>";?>Total Cross Sections</a> page.
85Therefore we do not attribute any significance to the absolute
86normalization of the Pomeron flux. The choice of Pomeron flux model
87still will decide on the mass spectrum of diffractive states and the
88<i>t</i> spectrum of the Pomeron exchange.
89
90<br/><br/><table><tr><td><strong>Diffraction:PomFlux </td><td> &nbsp;&nbsp;(<code>default = <strong>1</strong></code>; <code>minimum = 1</code>; <code>maximum = 4</code>)</td></tr></table>
91Parametrization of the Pomeron flux <ei>f_Pom/p( x_Pom, t)</ei>.
92<br/>
93<input type="radio" name="1" value="1" checked="checked"><strong>1 </strong>: Schuler and Sj&ouml;strand <ref>Sch94</ref>: based on a critical Pomeron, giving a mass spectrum roughly like <ei>dm^2/m^2</ei>; a mass-dependent exponential <ei>t</ei> slope that reduces the rate of low-mass states; partly compensated by a very-low-mass (resonance region) enhancement. Is currently the only one that contains a separate <ei>t</ei> spectrum for double diffraction and separate parameters for pion beams.<br/>
94<input type="radio" name="1" value="2"><strong>2 </strong>: Bruni and Ingelman <ref>Bru93</ref>: also a critical Pomeron giving close to <ei>dm^2/m^2</ei>, with a <ei>t</ei> distribution the sum of two exponentials. <br/>
95<input type="radio" name="1" value="3"><strong>3 </strong>: a conventional Pomeron description, in the RapGap manual <ref>Jun95</ref> attributed to Berger et al. and Streng <ref>Ber87a</ref>, but there (and here) with values updated to a supercritical Pomeron with <ei>epsilon &gt; 0</ei> (see below), which gives a stronger peaking towards low-mass diffractive states, and with a mass-dependent (the <ei>alpha'</ei> below) exponential <ei>t</ei> slope.<br/>
96<input type="radio" name="1" value="4"><strong>4 </strong>: a conventional Pomeron description, attributed to Donnachie and Landshoff <ref>Don84</ref>, again with supercritical Pomeron, with the same two parameters as option 3 above, but this time with a power-law <ei>t</ei> distribution.<br/>
97
98<p/>
99In the last two options above, the Pomeron Regge trajectory is
100parametrized as
101<br/><i>
102alpha(t) = 1 + epsilon + alpha' t
103</i><br/>
104The <i>epsilon</i> and <i>alpha'</i> parameters can be set
105separately:
106
107<br/><br/><table><tr><td><strong>Diffraction:PomFluxEpsilon </td><td></td><td> <input type="text" name="2" value="0.085" size="20"/> &nbsp;&nbsp;(<code>default = <strong>0.085</strong></code>; <code>minimum = 0.02</code>; <code>maximum = 0.15</code>)</td></tr></table>
108The Pomeron trajectory intercept <i>epsilon</i> above. For technical
109reasons <i>epsilon &gt; 0</i> is necessary in the current implementation.
110
111<br/><br/><table><tr><td><strong>Diffraction:PomFluxAlphaPrime </td><td></td><td> <input type="text" name="3" value="0.25" size="20"/> &nbsp;&nbsp;(<code>default = <strong>0.25</strong></code>; <code>minimum = 0.1</code>; <code>maximum = 0.4</code>)</td></tr></table>
112The Pomeron trajectory slope <i>alpha'</i> above.
113
114
115<h3>Separation into low and high masses</h3>
116
117Preferably one would want to have a perturbative picture of the
118dynamics of Pomeron-proton collisions, like multiple interactions
119provide for proton-proton ones. However, while PYTHIA by default
120will only allow collisions with a CM energy above 10 GeV, the
121mass spectrum of diffractive systems will stretch to down to
122the order of 1.2 GeV. It would not be feasible to attempt a
123perturbative description there. Therefore we do offer a simpler
124low-mass description, with only longitudinally stretched strings,
125with a gradual switch-over to the perturbative picture for higher
126masses. The probability for the latter picture is parametrized as
127<br/><i>
128P_pert = 1 - exp( (m_diffr - m_min) / m_width )
129</i><br/>
130which vanishes for the diffractive system mass
131<i>m_diffr &lt; m_min</i>, and is <i>1 - 1/e = 0.632</i> for
132<i>m_diffr = m_min + m_width</i>.
133
134<br/><br/><table><tr><td><strong>Diffraction:mMinPert </td><td></td><td> <input type="text" name="4" value="10." size="20"/> &nbsp;&nbsp;(<code>default = <strong>10.</strong></code>; <code>minimum = 5.</code>)</td></tr></table>
135The abovementioned threshold mass <i>m_min</i> for phasing in a
136perturbative treatment. If you put this parameter to be bigger than
137the CM energy then there will be no perturbative description at all,
138but only the older low-<i>pt</i> description.
139
140
141<br/><br/><table><tr><td><strong>Diffraction:mWidthPert </td><td></td><td> <input type="text" name="5" value="10." size="20"/> &nbsp;&nbsp;(<code>default = <strong>10.</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
142The abovementioned threshold width <i>m_width.</i>
143
144
145<h3>Low-mass diffraction</h3>
146
147When an incoming hadron beam is diffractively excited, it is modeled
148as if either a valence quark or a gluon is kicked out from the hadron.
149In the former case this produces a simple string to the leftover
150remnant, in the latter it gives a hairpin arrangement where a string
151is stretched from one quark in the remnant, via the gluon, back to the
152rest of the remnant. The latter ought to dominate at higher mass of
153the diffractive system. Therefore an approximate behaviour like
154<br/><i>
155P_q / P_g = N / m^p
156</i><br/>
157is assumed.
158
159<br/><br/><table><tr><td><strong>Diffraction:pickQuarkNorm </td><td></td><td> <input type="text" name="6" value="5.0" size="20"/> &nbsp;&nbsp;(<code>default = <strong>5.0</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
160The abovementioned normalization <i>N</i> for the relative quark
161rate in diffractive systems.
162
163
164<br/><br/><table><tr><td><strong>Diffraction:pickQuarkPower </td><td></td><td> <input type="text" name="7" value="1.0" size="20"/> &nbsp;&nbsp;(<code>default = <strong>1.0</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
165The abovementioned mass-dependence power <i>p</i> for the relative
166quark rate in diffractive systems.
167
168
169<p/>
170When a gluon is kicked out from the hadron, the longitudinal momentum
171sharing between the the two remnant partons is determined by the
172same parameters as above. It is plausible that the primordial
173<i>kT</i> may be lower than in perturbative processes, however:
174
175<br/><br/><table><tr><td><strong>Diffraction:primKTwidth </td><td></td><td> <input type="text" name="8" value="0.5" size="20"/> &nbsp;&nbsp;(<code>default = <strong>0.5</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
176The width of Gaussian distributions in <i>p_x</i> and <i>p_y</i>
177separately that is assigned as a primordial <i>kT</i> to the two
178beam remnants when a gluon is kicked out of a diffractive system.
179
180
181<br/><br/><table><tr><td><strong>Diffraction:largeMassSuppress </td><td></td><td> <input type="text" name="9" value="2." size="20"/> &nbsp;&nbsp;(<code>default = <strong>2.</strong></code>; <code>minimum = 0.</code>)</td></tr></table>
182The choice of longitudinal and transverse structure of a diffractive
183beam remnant for a kicked-out gluon implies a remnant mass
184<i>m_rem</i> distribution (i.e. quark plus diquark invariant mass
185for a baryon beam) that knows no bounds. A suppression like
186<i>(1 - m_rem^2 / m_diff^2)^p</i> is therefore introduced, where
187<i>p</i> is the <code>diffLargeMassSuppress</code> parameter.
188
189
190<h3>High-mass diffraction</h3>
191
192The perturbative description need to use parton densities of the
193Pomeron. The options are described in the page on
194<?php $filepath = $_GET["filepath"];
195echo "<a href='PDFSelection.php?filepath=".$filepath."' target='page'>";?>PDF Selection</a>. The standard
196perturbative multiple interactions framework then provides
197cross sections for parton-parton interactions. In order to
198turn these cross section into probabilities one also needs an
199ansatz for the Pomeron-proton total cross section. In the literature
200one often finds low numbers for this, of the order of 2 mb.
201These, if taken at face value, would give way too much activity
202per event. There are ways to tame this, e.g. by a larger <i>pT0</i>
203than in the normal pp framework. Actually, there are many reasons
204to use a completely different set of parameters for MI in
205diffraction than in pp collisions, e.g. with respect to the
206impact-parameter picture. A lower number in some frameworks could
207alternatively be regarded as a consequence of screening, with
208a larger "bare" number.
209
210<p/>
211For now, however, an attempt at the most general solution would
212carry too far, and instead we patch up the problem by using a
213larger Pomeron-proton total cross section, such that average
214activity makes more sense. This should be viewed as the main
215tunable parameter in the description of high-mass diffraction.
216It is to be fitted to diffractive event-shape data such as the average
217charged multiplicity. It would be very closely tied to the choice of
218Pomeron PDF; we remind that some of these add up to less than unit
219momentum sum in the Pomeron, a choice that also affect the value
220one ends up with.
221
222<br/><br/><table><tr><td><strong>Diffraction:sigmaPomP </td><td></td><td> <input type="text" name="10" value="10." size="20"/> &nbsp;&nbsp;(<code>default = <strong>10.</strong></code>; <code>minimum = 2.</code>; <code>maximum = 40.</code>)</td></tr></table>
223The assumed Pomeron-proton effective cross section, as used for
224multiple interactions in diffractive systems. A larger value gives
225less MI activity per event.
226
227
228There is no point in making the cross section too big, however, since
229then <i>pT0</i> will be adjusted downwards to ensure that the
230integrated perturbative cross section stays above this assumed
231total cross section. (The requirement of at least one perturbative
232interaction per event.)
233
234<p/>
235Also note that, even for a fixed CM energy of events, the diffractive
236subsystem will range from the abovementioned threshold mass
237<i>m_min</i> to the full CM energy, with a variation of parameters
238such as <i>pT0</i> along this mass range. Therefore multiple
239interactions are initialized for a few different diffractive masses,
240currently five, and all relevant parameters are interpolated between
241them to obtain the behaviour at a specific diffractive mass.
242Furthermore, <i>A B -&gt;X B</i> and <i>A B -&gt;A X</i> are
243initialized separately, to allow for different beams or PDF's on the
244two sides. These two aspects mean that initialization of MI is
245appreciably slower when perturbative high-mass diffraction is allowed.
246
247<input type="hidden" name="saved" value="1"/>
248
249<?php
250echo "<input type='hidden' name='filepath' value='".$_GET["filepath"]."'/>"?>
251
252<table width="100%"><tr><td align="right"><input type="submit" value="Save Settings" /></td></tr></table>
253</form>
254
255<?php
256
257if($_POST["saved"] == 1)
258{
259$filepath = $_POST["filepath"];
260$handle = fopen($filepath, 'a');
261
262if($_POST["1"] != "1")
263{
264$data = "Diffraction:PomFlux = ".$_POST["1"]."\n";
265fwrite($handle,$data);
266}
267if($_POST["2"] != "0.085")
268{
269$data = "Diffraction:PomFluxEpsilon = ".$_POST["2"]."\n";
270fwrite($handle,$data);
271}
272if($_POST["3"] != "0.25")
273{
274$data = "Diffraction:PomFluxAlphaPrime = ".$_POST["3"]."\n";
275fwrite($handle,$data);
276}
277if($_POST["4"] != "10.")
278{
279$data = "Diffraction:mMinPert = ".$_POST["4"]."\n";
280fwrite($handle,$data);
281}
282if($_POST["5"] != "10.")
283{
284$data = "Diffraction:mWidthPert = ".$_POST["5"]."\n";
285fwrite($handle,$data);
286}
287if($_POST["6"] != "5.0")
288{
289$data = "Diffraction:pickQuarkNorm = ".$_POST["6"]."\n";
290fwrite($handle,$data);
291}
292if($_POST["7"] != "1.0")
293{
294$data = "Diffraction:pickQuarkPower = ".$_POST["7"]."\n";
295fwrite($handle,$data);
296}
297if($_POST["8"] != "0.5")
298{
299$data = "Diffraction:primKTwidth = ".$_POST["8"]."\n";
300fwrite($handle,$data);
301}
302if($_POST["9"] != "2.")
303{
304$data = "Diffraction:largeMassSuppress = ".$_POST["9"]."\n";
305fwrite($handle,$data);
306}
307if($_POST["10"] != "10.")
308{
309$data = "Diffraction:sigmaPomP = ".$_POST["10"]."\n";
310fwrite($handle,$data);
311}
312fclose($handle);
313}
314
315?>
316</body>
317</html>
318
319<!-- Copyright (C) 2010 Torbjorn Sjostrand -->