]> git.uio.no Git - u/mrichter/AliRoot.git/blame - PYTHIA8/pythia8145/src/SigmaTotal.cxx
Coverity fixes
[u/mrichter/AliRoot.git] / PYTHIA8 / pythia8145 / src / SigmaTotal.cxx
CommitLineData
9419eeef 1// SigmaTotal.cc is a part of the PYTHIA event generator.
2// Copyright (C) 2010 Torbjorn Sjostrand.
3// PYTHIA is licenced under the GNU GPL version 2, see COPYING for details.
4// Please respect the MCnet Guidelines, see GUIDELINES for details.
5
6// Function definitions (not found in the header) for the SigmaTotal class.
7
8#include "SigmaTotal.h"
9
10namespace Pythia8 {
11
12//==========================================================================
13
14// The SigmaTotal class.
15
16// Formulae are taken from:
17// G.A. Schuler and T. Sjostrand, Phys. Rev. D49 (1994) 2257,
18// Z. Phys. C73 (1997) 677
19// which borrows some total cross sections from
20// A. Donnachie and P.V. Landshoff, Phys. Lett. B296 (1992) 227.
21
22// Implemented processes with their process number iProc:
23// = 0 : p + p; = 1 : pbar + p;
24// = 2 : pi+ + p; = 3 : pi- + p; = 4 : pi0/rho0 + p;
25// = 5 : phi + p; = 6 : J/psi + p;
26// = 7 : rho + rho; = 8 : rho + phi; = 9 : rho + J/psi;
27// = 10 : phi + phi; = 11 : phi + J/psi; = 12 : J/psi + J/psi.
28// = 13 : Pom + p (preliminary).
29
30//--------------------------------------------------------------------------
31
32// Definitions of static variables.
33// Note that a lot of parameters are hardcoded as const here, rather
34// than being interfaced for public change, since any changes would
35// have to be done in a globally consistent manner. Which basically
36// means a rewrite/replacement of the whole class.
37
38// Minimum threshold below which no cross sections will be defined.
39const double SigmaTotal::MMIN = 2.;
40
41// General constants in total cross section parametrization:
42// sigmaTot = X * s^epsilon + Y * s^eta (pomeron + reggeon).
43const double SigmaTotal::EPSILON = 0.0808;
44const double SigmaTotal::ETA = -0.4525;
45const double SigmaTotal::X[] = { 21.70, 21.70, 13.63, 13.63, 13.63,
46 10.01, 0.970, 8.56, 6.29, 0.609, 4.62, 0.447, 0.0434};
47const double SigmaTotal::Y[] = { 56.08, 98.39, 27.56, 36.02, 31.79,
48 1.51, -0.146, 13.08, -0.62, -0.060, 0.030, -0.0028, 0.00028};
49
50// Type of the two incoming hadrons as function of the process number:
51// = 0 : p/n ; = 1 : pi/rho/omega; = 2 : phi; = 3 : J/psi.
52const int SigmaTotal::IHADATABLE[] = { 0, 0, 1, 1, 1, 2, 3, 1, 1,
53 1, 2, 2, 3};
54const int SigmaTotal::IHADBTABLE[] = { 0, 0, 0, 0, 0, 0, 0, 1, 2,
55 3, 2, 3, 3};
56
57// Hadron-Pomeron coupling beta(t) = beta(0) * exp(b*t).
58const double SigmaTotal::BETA0[] = { 4.658, 2.926, 2.149, 0.208};
59const double SigmaTotal::BHAD[] = { 2.3, 1.4, 1.4, 0.23};
60
61// Pomeron trajectory alpha(t) = 1 + epsilon + alpha' * t
62const double SigmaTotal::ALPHAPRIME = 0.25;
63
64// Conversion coefficients = 1/(16pi) * (mb <-> GeV^2) * (G_3P)^n,
65// with n = 0 elastic, n = 1 single and n = 2 double diffractive.
66const double SigmaTotal::CONVERTEL = 0.0510925;
67const double SigmaTotal::CONVERTSD = 0.0336;
68const double SigmaTotal::CONVERTDD = 0.0084;
69
70// Diffractive mass spectrum starts at m + MMIN0 and has a low-mass
71// enhancement, factor cRes, up to around m + mRes0.
72const double SigmaTotal::MMIN0 = 0.28;
73const double SigmaTotal::CRES = 2.0;
74const double SigmaTotal::MRES0 = 1.062;
75
76// Parameters and coefficients for single diffractive scattering.
77const int SigmaTotal::ISDTABLE[] = { 0, 0, 1, 1, 1, 2, 3, 4, 5,
78 6, 7, 8, 9};
79const double SigmaTotal::CSD[10][8] = {
80 { 0.213, 0.0, -0.47, 150., 0.213, 0.0, -0.47, 150., } ,
81 { 0.213, 0.0, -0.47, 150., 0.267, 0.0, -0.47, 100., } ,
82 { 0.213, 0.0, -0.47, 150., 0.232, 0.0, -0.47, 110., } ,
83 { 0.213, 7.0, -0.55, 800., 0.115, 0.0, -0.47, 110., } ,
84 { 0.267, 0.0, -0.46, 75., 0.267, 0.0, -0.46, 75., } ,
85 { 0.232, 0.0, -0.46, 85., 0.267, 0.0, -0.48, 100., } ,
86 { 0.115, 0.0, -0.50, 90., 0.267, 6.0, -0.56, 420., } ,
87 { 0.232, 0.0, -0.48, 110., 0.232, 0.0, -0.48, 110., } ,
88 { 0.115, 0.0, -0.52, 120., 0.232, 6.0, -0.56, 470., } ,
89 { 0.115, 5.5, -0.58, 570., 0.115, 5.5, -0.58, 570. } };
90
91// Parameters and coefficients for double diffractive scattering.
92const int SigmaTotal::IDDTABLE[] = { 0, 0, 1, 1, 1, 2, 3, 4, 5,
93 6, 7, 8, 9};
94const double SigmaTotal::CDD[10][9] = {
95 { 3.11, -7.34, 9.71, 0.068, -0.42, 1.31, -1.37, 35.0, 118., } ,
96 { 3.11, -7.10, 10.6, 0.073, -0.41, 1.17, -1.41, 31.6, 95., } ,
97 { 3.12, -7.43, 9.21, 0.067, -0.44, 1.41, -1.35, 36.5, 132., } ,
98 { 3.13, -8.18, -4.20, 0.056, -0.71, 3.12, -1.12, 55.2, 1298., } ,
99 { 3.11, -6.90, 11.4, 0.078, -0.40, 1.05, -1.40, 28.4, 78., } ,
100 { 3.11, -7.13, 10.0, 0.071, -0.41, 1.23, -1.34, 33.1, 105., } ,
101 { 3.12, -7.90, -1.49, 0.054, -0.64, 2.72, -1.13, 53.1, 995., } ,
102 { 3.11, -7.39, 8.22, 0.065, -0.44, 1.45, -1.36, 38.1, 148., } ,
103 { 3.18, -8.95, -3.37, 0.057, -0.76, 3.32, -1.12, 55.6, 1472., } ,
104 { 4.18, -29.2, 56.2, 0.074, -1.36, 6.67, -1.14, 116.2, 6532. } };
105const double SigmaTotal::SPROTON = 0.880;
106
107//--------------------------------------------------------------------------
108
109// Store pointer to Info and initialize data members.
110
111void SigmaTotal::init(Info* infoPtrIn, Settings& settings,
112 ParticleData* particleDataPtrIn) {
113
114 // Store pointers.
115 infoPtr = infoPtrIn;
116 particleDataPtr = particleDataPtrIn;
117
118 // User-set values for cross sections.
119 setTotal = settings.flag("SigmaTotal:setOwn");
120 sigTotOwn = settings.parm("SigmaTotal:sigmaTot");
121 sigElOwn = settings.parm("SigmaTotal:sigmaEl");
122 sigXBOwn = settings.parm("SigmaTotal:sigmaXB");
123 sigAXOwn = settings.parm("SigmaTotal:sigmaAX");
124 sigXXOwn = settings.parm("SigmaTotal:sigmaXX");
125
126 // User-set values to dampen diffractive cross sections.
127 doDampen = settings.flag("SigmaDiffractive:dampen");
128 maxXBOwn = settings.parm("SigmaDiffractive:maxXB");
129 maxAXOwn = settings.parm("SigmaDiffractive:maxAX");
130 maxXXOwn = settings.parm("SigmaDiffractive:maxXX");
131
132 // User-set values for handling of elastic sacattering.
133 setElastic = settings.flag("SigmaElastic:setOwn");
134 bSlope = settings.parm("SigmaElastic:bSlope");
135 rho = settings.parm("SigmaElastic:rho");
136 lambda = settings.parm("SigmaElastic:lambda");
137 tAbsMin = settings.parm("SigmaElastic:tAbsMin");
138 alphaEM0 = settings.parm("StandardModel:alphaEM0");
139
140 // Parameter for diffractive systems.
141 sigmaPomP = settings.parm("Diffraction:sigmaPomP");
142
143}
144
145//--------------------------------------------------------------------------
146
147// Function that calculates the relevant properties.
148
149bool SigmaTotal::calc( int idA, int idB, double eCM) {
150
151 // Derived quantities.
152 alP2 = 2. * ALPHAPRIME;
153 s0 = 1. / ALPHAPRIME;
154
155 // Reset everything to zero to begin with.
156 isCalc = false;
157 sigTot = sigEl = sigXB = sigAX = sigXX = sigND = bEl = s = bA = bB = 0.;
158
159 // Order flavour of incoming hadrons: idAbsA < idAbsB (restore later).
160 int idAbsA = abs(idA);
161 int idAbsB = abs(idB);
162 bool swapped = false;
163 if (idAbsA > idAbsB) {
164 swap( idAbsA, idAbsB);
165 swapped = true;
166 }
167 double sameSign = (idA * idB > 0);
168
169 // Find process number.
170 int iProc = -1;
171 if (idAbsA > 1000) {
172 iProc = (sameSign) ? 0 : 1;
173 } else if (idAbsA > 100 && idAbsB > 1000) {
174 iProc = (sameSign) ? 2 : 3;
175 if (idAbsA/10 == 11 || idAbsA/10 == 22) iProc = 4;
176 if (idAbsA > 300) iProc = 5;
177 if (idAbsA > 400) iProc = 6;
178 if (idAbsA > 900) iProc = 13;
179 } else if (idAbsA > 100) {
180 iProc = 7;
181 if (idAbsB > 300) iProc = 8;
182 if (idAbsB > 400) iProc = 9;
183 if (idAbsA > 300) iProc = 10;
184 if (idAbsA > 300 && idAbsB > 400) iProc = 11;
185 if (idAbsA > 400) iProc = 12;
186 }
187 if (iProc == -1) return false;
188
189 // Primitive implementation of Pomeron + p.
190 if (iProc == 13) {
191 s = eCM*eCM;
192 sigTot = sigmaPomP;
193 sigND = sigTot;
194 isCalc = true;
195 return true;
196 }
197
198 // Find hadron masses and check that energy is enough.
199 // For mesons use the corresponding vector meson masses.
200 int idModA = (idAbsA > 1000) ? idAbsA : 10 * (idAbsA/10) + 3;
201 int idModB = (idAbsB > 1000) ? idAbsB : 10 * (idAbsB/10) + 3;
202 double mA = particleDataPtr->m0(idModA);
203 double mB = particleDataPtr->m0(idModB);
204 if (eCM < mA + mB + MMIN) {
205 infoPtr->errorMsg("Error in SigmaTotal::calc: too low energy");
206 return false;
207 }
208
209 // Evaluate the total cross section.
210 s = eCM*eCM;
211 double sEps = pow( s, EPSILON);
212 double sEta = pow( s, ETA);
213 sigTot = X[iProc] * sEps + Y[iProc] * sEta;
214
215 // Slope of hadron form factors.
216 int iHadA = IHADATABLE[iProc];
217 int iHadB = IHADBTABLE[iProc];
218 bA = BHAD[iHadA];
219 bB = BHAD[iHadB];
220
221 // Elastic slope parameter and cross section.
222 bEl = 2.*bA + 2.*bB + 4.*sEps - 4.2;
223 sigEl = CONVERTEL * pow2(sigTot) / bEl;
224
225 // Lookup coefficients for single and double diffraction.
226 int iSD = ISDTABLE[iProc];
227 int iDD = IDDTABLE[iProc];
228 double sum1, sum2, sum3, sum4;
229
230 // Single diffractive scattering A + B -> X + B cross section.
231 mMinXBsave = mA + MMIN0;
232 double sMinXB = pow2(mMinXBsave);
233 mResXBsave = mA + MRES0;
234 double sResXB = pow2(mResXBsave);
235 double sRMavgXB = mResXBsave * mMinXBsave;
236 double sRMlogXB = log(1. + sResXB/sMinXB);
237 double sMaxXB = CSD[iSD][0] * s + CSD[iSD][1];
238 double BcorrXB = CSD[iSD][2] + CSD[iSD][3] / s;
239 sum1 = log( (2.*bB + alP2 * log(s/sMinXB))
240 / (2.*bB + alP2 * log(s/sMaxXB)) ) / alP2;
241 sum2 = CRES * sRMlogXB / (2.*bB + alP2 * log(s/sRMavgXB) + BcorrXB) ;
242 sigXB = CONVERTSD * X[iProc] * BETA0[iHadB] * max( 0., sum1 + sum2);
243
244 // Single diffractive scattering A + B -> A + X cross section.
245 mMinAXsave = mB + MMIN0;
246 double sMinAX = pow2(mMinAXsave);
247 mResAXsave = mB + MRES0;
248 double sResAX = pow2(mResAXsave);
249 double sRMavgAX = mResAXsave * mMinAXsave;
250 double sRMlogAX = log(1. + sResAX/sMinAX);
251 double sMaxAX = CSD[iSD][4] * s + CSD[iSD][5];
252 double BcorrAX = CSD[iSD][6] + CSD[iSD][7] / s;
253 sum1 = log( (2.*bA + alP2 * log(s/sMinAX))
254 / (2.*bA + alP2 * log(s/sMaxAX)) ) / alP2;
255 sum2 = CRES * sRMlogAX / (2.*bA + alP2 * log(s/sRMavgAX) + BcorrAX) ;
256 sigAX = CONVERTSD * X[iProc] * BETA0[iHadA] * max( 0., sum1 + sum2);
257
258 // Order single diffractive correctly.
259 if (swapped) {
260 swap( bB, bA);
261 swap( sigXB, sigAX);
262 swap( mMinXBsave, mMinAXsave);
263 swap( mResXBsave, mResAXsave);
264 }
265
266 // Double diffractive scattering A + B -> X1 + X2 cross section.
267 double y0min = log( s * SPROTON / (sMinXB * sMinAX) ) ;
268 double sLog = log(s);
269 double Delta0 = CDD[iDD][0] + CDD[iDD][1] / sLog
270 + CDD[iDD][2] / pow2(sLog);
271 sum1 = (y0min * (log( max( 1e-10, y0min/Delta0) ) - 1.) + Delta0)/ alP2;
272 if (y0min < 0.) sum1 = 0.;
273 double sMaxXX = s * ( CDD[iDD][3] + CDD[iDD][4] / sLog
274 + CDD[iDD][5] / pow2(sLog) );
275 double sLogUp = log( max( 1.1, s * s0 / (sMinXB * sRMavgAX) ));
276 double sLogDn = log( max( 1.1, s * s0 / (sMaxXX * sRMavgAX) ));
277 sum2 = CRES * log( sLogUp / sLogDn ) * sRMlogAX / alP2;
278 sLogUp = log( max( 1.1, s * s0 / (sMinAX * sRMavgXB) ));
279 sLogDn = log( max( 1.1, s * s0 / (sMaxXX * sRMavgXB) ));
280 sum3 = CRES * log(sLogUp / sLogDn) * sRMlogXB / alP2;
281 double BcorrXX = CDD[iDD][6] + CDD[iDD][7] / eCM + CDD[iDD][8] / s;
282 sum4 = pow2(CRES) * sRMlogAX * sRMlogXB
283 / max( 0.1, alP2 * log( s * s0 / (sRMavgAX * sRMavgXB) ) + BcorrXX);
284 sigXX = CONVERTDD * X[iProc] * max( 0., sum1 + sum2 + sum3 + sum4);
285
286 // Option with user-requested damping of diffractive cross sections.
287 if (doDampen) {
288 sigXB = sigXB * maxXBOwn / (sigXB + maxXBOwn);
289 sigAX = sigAX * maxAXOwn / (sigAX + maxAXOwn);
290 sigXX = sigXX * maxXXOwn / (sigXX + maxXXOwn);
291 }
292
293 // Option with user-set values for total and partial cross sections.
294 // (Is not done earlier since want diffractive slopes anyway.)
295 double sigNDOwn = sigTotOwn - sigElOwn - sigXBOwn - sigAXOwn - sigXXOwn;
296 double sigElMax = sigEl;
297 if (setTotal && sigNDOwn > 0.) {
298 sigTot = sigTotOwn;
299 sigEl = sigElOwn;
300 sigXB = sigXBOwn;
301 sigAX = sigAXOwn;
302 sigXX = sigXXOwn;
303 sigElMax = sigEl;
304
305 // Sub-option to set elastic parameters, including Coulomb contribution.
306 if (setElastic) {
307 bEl = bSlope;
308 sigEl = CONVERTEL * pow2(sigTot) * (1. + rho*rho) / bSlope;
309 sigElMax = 2. * (sigEl * exp(-bSlope * tAbsMin)
310 + alphaEM0 * alphaEM0 / (4. * CONVERTEL * tAbsMin) );
311 }
312 }
313
314 // Inelastic nondiffractive by unitarity.
315 sigND = sigTot - sigEl - sigXB - sigAX - sigXX;
316 if (sigND < 0.) infoPtr->errorMsg("Error in SigmaTotal::init: "
317 "sigND < 0");
318 else if (sigND < 0.4 * sigTot) infoPtr->errorMsg("Warning in "
319 "SigmaTotal::init: sigND suspiciously low");
320
321 // Upper estimate of elastic, including Coulomb term, where appropriate.
322 sigEl = sigElMax;
323
324 // Done.
325 isCalc = true;
326 return true;
327
328}
329
330//==========================================================================
331
332} // end namespace Pythia8