]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RICH/AliRICHDetect.cxx
new Hits2SDigits.
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
CommitLineData
c1076715 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
88cb7938 16/* $Id$ */
c1076715 17
29803c51 18#include <stdlib.h>
19
c1076715 20
21#include "AliRICH.h"
22#include "AliRICHPoints.h"
23#include "AliRICHDetect.h"
237c933d 24#include "AliRICHDigit.h"
9c77ea58 25#include "AliRICHRawCluster.h"
ac6e04fc 26#include "AliRICHSegmentationV0.h"
c1076715 27#include "AliRun.h"
28#include "TParticle.h"
94de3818 29#include "TTree.h"
c1076715 30#include "TMath.h"
31#include "TRandom.h"
ac6e04fc 32#include "TH3.h"
33#include "TH2.h"
34#include "TCanvas.h"
9c77ea58 35#include <TStyle.h>
36
c1076715 37
c1076715 38
39ClassImp(AliRICHDetect)
40//___________________________________________
41AliRICHDetect::AliRICHDetect() : TObject()
42{
237c933d 43
44// Default constructor
45
2685bf00 46 fc1 = 0;
47 fc2 = 0;
48 fc3 = 0;
49
c1076715 50}
51
52//___________________________________________
53AliRICHDetect::AliRICHDetect(const char *name, const char *title)
54 : TObject()
55{
237c933d 56
9c77ea58 57 TStyle *mystyle=new TStyle("Plain","mystyle");
58 mystyle->SetPalette(1,0);
59 mystyle->cd();
60
ac6e04fc 61
62 fc1= new TCanvas("c1","Reconstructed points",50,50,300,350);
63 fc1->Divide(2,2);
9c77ea58 64 fc2= new TCanvas("c2","Reconstructed points after SPOT",370,50,300,350);
ac6e04fc 65 fc2->Divide(2,2);
9c77ea58 66 fc3= new TCanvas("c3","Used Digits",690,50,300,350);
67 fc4= new TCanvas("c4","Mesh activation data",50,430,600,350);
68 fc4->Divide(2,1);
69
ac6e04fc 70
71}
72
73//___________________________________________
74AliRICHDetect::~AliRICHDetect()
75{
c1076715 76
ac6e04fc 77// Destructor
78
c1076715 79}
80
81
9c77ea58 82void AliRICHDetect::Detect(Int_t nev, Int_t type)
c1076715 83{
84
237c933d 85//
86// Detection algorithm
87
88
c1076715 89 //printf("Detection started!\n");
9c77ea58 90 Float_t omega,omega1,theta1,phi_relative,steptheta,stepphi,x,y,q=0,z,cx,cy,l,aux1,aux2,aux3,max,radius=0,meanradius=0;
ac6e04fc 91 Int_t maxi,maxj,maxk;
9c77ea58 92 Float_t originalOmega, originalPhi, originalTheta;
ac6e04fc 93 Float_t binomega, bintheta, binphi;
94 Int_t intomega, inttheta, intphi;
c1076715 95 Int_t i,j,k;
ac6e04fc 96
97 AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH");
98 AliRICHSegmentationV0* segmentation;
99 AliRICHChamber* iChamber;
100 AliRICHGeometry* geometry;
101
102 iChamber = &(pRICH->Chamber(0));
103 segmentation=(AliRICHSegmentationV0*) iChamber->GetSegmentationModel(0);
104 geometry=iChamber->GetGeometryModel();
ceccff49 105
c1076715 106
ac6e04fc 107 //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points
108 //const Float_t t=0.6; //Softening of Noise Correction (factor)
c1076715 109
ac6e04fc 110 const Float_t kPi=TMath::Pi();
c1076715 111
ac6e04fc 112 const Float_t kHeight=geometry->GetRadiatorToPads(); //Distance from Radiator to Pads in centimeters
113 //printf("Distance to Pads:%f\n",kHeight);
ceccff49 114
ac6e04fc 115 const Int_t kSpot=0; //number of passes with spot algorithm
c1076715 116
9c77ea58 117 const Int_t kDimensionTheta=100; //Matrix dimension for angle Detection
118 const Int_t kDimensionPhi=100;
ac6e04fc 119 const Int_t kDimensionOmega=100;
c1076715 120
9c77ea58 121 const Float_t SPOTp=.25; //Percentage of spot action
122 const Float_t kMinOmega=.4;
123 const Float_t kMaxOmega=.7; //Maximum Cherenkov angle to identify
ac6e04fc 124 const Float_t kMinTheta=0;
9c77ea58 125 const Float_t kMaxTheta=10*kPi/180;
ac6e04fc 126 const Float_t kMinPhi=0;
127 const Float_t kMaxPhi=360*kPi/180;
128
ac6e04fc 129 Float_t rechit[6]; //Reconstructed point data
130
ac6e04fc 131 Int_t ***point = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
132 Int_t ***point1 = i3tensor(0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
c1076715 133
ac6e04fc 134 steptheta=(kMaxTheta-kMinTheta)/kDimensionTheta;
135 stepphi=(kMaxPhi-kMinPhi)/kDimensionPhi;
136
137 static TH3F *Points = new TH3F("Points","Reconstructed points 3D",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
138 static TH2F *ThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
139 static TH2F *OmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
140 static TH2F *OmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
141 static TH3F *SpotPoints = new TH3F("Points","Reconstructed points 3D, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
142 static TH2F *SpotThetaPhi = new TH2F("ThetaPhi","Theta-Phi projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionPhi,0,kDimensionPhi);
143 static TH2F *SpotOmegaTheta = new TH2F("OmegaTheta","Omega-Theta projection, spot",kDimensionTheta,0,kDimensionTheta,kDimensionOmega,0,kDimensionOmega);
144 static TH2F *SpotOmegaPhi = new TH2F("OmegaPhi","Omega-Phi projection, spot",kDimensionPhi,0,kDimensionPhi,kDimensionOmega,0,kDimensionOmega);
145 static TH2F *DigitsXY = new TH2F("DigitsXY","Pads used for reconstruction",150,-25,25,150,-25,25);
9c77ea58 146 static TH1F *AngleAct = new TH1F("AngleAct","Activation per angle",100,.45,1);
147 static TH1F *Activation = new TH1F("Activation","Activation per ring",100,0,25);
ac6e04fc 148 Points->SetXTitle("theta");
149 Points->SetYTitle("phi");
150 Points->SetZTitle("omega");
151 ThetaPhi->SetXTitle("theta");
152 ThetaPhi->SetYTitle("phi");
153 OmegaTheta->SetXTitle("theta");
154 OmegaTheta->SetYTitle("omega");
155 OmegaPhi->SetXTitle("phi");
156 OmegaPhi->SetYTitle("omega");
157 SpotPoints->SetXTitle("theta");
158 SpotPoints->SetYTitle("phi");
159 SpotPoints->SetZTitle("omega");
160 SpotThetaPhi->SetXTitle("theta");
161 SpotThetaPhi->SetYTitle("phi");
162 SpotOmegaTheta->SetXTitle("theta");
163 SpotOmegaTheta->SetYTitle("omega");
164 SpotOmegaPhi->SetXTitle("phi");
165 SpotOmegaPhi->SetYTitle("omega");
9c77ea58 166 AngleAct->SetFillColor(5);
167 AngleAct->SetXTitle("rad");
168 AngleAct->SetYTitle("activation");
169 Activation->SetFillColor(5);
170 Activation->SetXTitle("activation");
ac6e04fc 171
88cb7938 172 Int_t ntracks = (Int_t)pRICH->TreeH()->GetEntries();
173
c1076715 174 Float_t trackglob[3];
175 Float_t trackloc[3];
176
c1076715 177 //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
9c77ea58 178
4a5c8776 179 Int_t track;
c1076715 180
4a5c8776 181 for (track=0; track<ntracks;track++) {
c1076715 182 gAlice->ResetHits();
88cb7938 183 pRICH->TreeH()->GetEvent(track);
3a3df9e3 184 TClonesArray *pHits = pRICH->Hits();
185 if (pHits == 0) return;
186 Int_t nhits = pHits->GetEntriesFast();
c1076715 187 if (nhits == 0) continue;
2966f600 188 //Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
853634d3 189 AliRICHhit *mHit = 0;
c1076715 190 //Int_t npoints=0;
191
ac6e04fc 192 Int_t counter=0, counter1=0;
c1076715 193 //Initialization
3a3df9e3 194 for(i=0;i<kDimensionTheta;i++)
c1076715 195 {
3a3df9e3 196 for(j=0;j<kDimensionPhi;j++)
c1076715 197 {
3a3df9e3 198 for(k=0;k<kDimensionOmega;k++)
c1076715 199 {
200 counter++;
3a3df9e3 201 point[i][j][k]=0;
202 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
c1076715 203 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
3a3df9e3 204 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
205 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
c1076715 206 }
207 }
208 }
c1076715 209
9c77ea58 210 Int_t ncerenkovs = pRICH->Cerenkovs()->GetEntriesFast();
211
212
213 originalOmega = 0;
214 counter = 0;
215
216 for (Int_t hit=0;hit<ncerenkovs;hit++) {
217 AliRICHCerenkov* cHit = (AliRICHCerenkov*) pRICH->Cerenkovs()->UncheckedAt(hit);
218 Float_t loss = cHit->fLoss; //did it hit the CsI?
219 Float_t production = cHit->fProduction; //was it produced in freon?
220 Float_t cherenkov = cHit->fCerenkovAngle; //production cerenkov angle
221 if (loss == 4 && production == 1)
222 {
223 counter +=1;
224 originalOmega += cherenkov;
225 //printf("%f\n",cherenkov);
226 }
227 }
228
229 printf("Cerenkovs : %d\n",counter);
230
231 if(counter != 0) //if there are cerenkovs
232 {
233 originalOmega = originalOmega/counter;
234 printf("Original omega: %f\n",originalOmega);
235
ceccff49 236
c1076715 237
853634d3 238 mHit = (AliRICHhit*) pHits->UncheckedAt(0);
9c77ea58 239 Int_t nch = mHit->Chamber();
240 originalTheta = mHit->Theta();
241 originalPhi = mHit->Phi();
242 trackglob[0] = mHit->X();
243 trackglob[1] = mHit->Y();
244 trackglob[2] = mHit->Z();
245
246 printf("\n--------------------------------------\n");
247 printf("Chamber %d, track %d\n", nch, track);
c1076715 248
9c77ea58 249
250 iChamber = &(pRICH->Chamber(nch-1));
c1076715 251
9c77ea58 252 //printf("Nch:%d\n",nch);
c1076715 253
9c77ea58 254 iChamber->GlobaltoLocal(trackglob,trackloc);
c1076715 255
9c77ea58 256 iChamber->LocaltoGlobal(trackloc,trackglob);
257
258
259 cx=trackloc[0];
260 cy=trackloc[2];
c1076715 261
9c77ea58 262 AliRICHDigit *points = 0;
263 TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);
264
265 AliRICHRawCluster *cluster =0;
266 TClonesArray *pClusters = pRICH->RawClustAddress(nch-1);
c1076715 267
9c77ea58 268 Int_t maxcycle=0;
269
270 //digitize from digits
271
272 if(type==0)
273 {
274 gAlice->TreeD()->GetEvent(0);
275 Int_t ndigits = pDigits->GetEntriesFast();
276 maxcycle=ndigits;
277 printf("Got %d digits\n",ndigits);
278 }
279
280 //digitize from clusters
281
282 if(type==1)
283 {
284 Int_t nent=(Int_t)gAlice->TreeR()->GetEntries();
285 gAlice->TreeR()->GetEvent(nent-1);
286 Int_t nclusters = pClusters->GetEntriesFast();
287 maxcycle=nclusters;
288 printf("Got %d clusters\n",nclusters);
289 }
290
291
292
293
294 counter=0;
295 printf("Starting calculations\n");
296 printf(" Start Finish\n");
297 printf("Progress: ");
298 for(Float_t theta=0;theta<kMaxTheta;theta+=steptheta)
ac6e04fc 299 {
9c77ea58 300 printf(".");
301 for(Float_t phi=0;phi<=kMaxPhi;phi+=stepphi)
302 {
303 //printf("Phi:%3.1f\n", phi*180/kPi);
304 counter1=0;
305 for (Int_t cycle=0;cycle<maxcycle;cycle++)
306 {
c1076715 307
9c77ea58 308 if(type==0)
309 {
310 points=(AliRICHDigit*) pDigits->UncheckedAt(cycle);
311 segmentation->GetPadC(points->PadX(), points->PadY(),x, y, z);
312 }
313
314 if(type==1)
315 {
316 cluster=(AliRICHRawCluster*) pClusters->UncheckedAt(cycle);
317 x=cluster->fX;
318 y=cluster->fY;
319 q=cluster->fQ;
320 }
321
322 if(type ==0 || q > 100)
323
eb1ee126 324 {
ac6e04fc 325
9c77ea58 326 x=x-cx;
327 y=y-cy;
328 radius=TMath::Sqrt(TMath::Power(x,2)+TMath::Power(y,2));
ac6e04fc 329
9c77ea58 330 //calculation of relative phi angle of digit
ac6e04fc 331
9c77ea58 332 phi_relative = acos(y/radius);
333 phi_relative = TMath::Abs(phi_relative - phi);
ac6e04fc 334
ac6e04fc 335
9c77ea58 336 if(radius>4)
ac6e04fc 337 {
9c77ea58 338 meanradius+=radius;
339 counter++;
ac6e04fc 340
ac6e04fc 341
9c77ea58 342 //if (radius < (2*kHeight*tan(theta+kMaxOmega)))
343 if (radius < (2*kHeight*tan(kMaxOmega)))
344 //if(Fiducial(x,y,theta,phi,kHeight,kMaxOmega,kMinOmega))
345 {
346
347 if(phi==0)
348 {
349 //printf("Radius: %f, Max Radius: %f\n",radius,2*kHeight*tan(theta+kMaxOmega)*3/4);
350 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
351 //printf("Using digit %d, for theta %f\n",dig,theta);
352 }
353
354 counter1++;
355
356 l=kHeight/cos(theta);
357
358 //main calculation
359
360 DigitsXY->Fill(x,y,(float) 1);
361
362 theta1=SnellAngle(theta);
363
364 aux1=-y*sin(phi)+x*cos(phi);
365 aux2=y*cos(phi)+x*sin(phi);
366 aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta1)*aux2 ,2))/TMath::Power(sin(theta1)*aux2+l,2);
367 omega=atan(sqrt(aux3));
368
369 //omega is distorted, theta1 is distorted
370
371 if(InvSnellAngle(omega+TMath::Abs(cos(phi_relative))*theta1)<999)
372 {
373 omega1=InvSnellAngle(omega+TMath::Abs(cos(phi_relative))*theta);
374 theta1=InvSnellAngle(theta1);
375
376 }
377 else
378 {
379 omega1=0;
380 theta1=0;
381 }
382
383 if(omega1<kMaxOmega && omega1>kMinOmega)
384 {
385 //printf("Omega found:%f\n",omega);
386 omega1=omega1-kMinOmega;
387
388 //printf("Omega: %f Theta: %3.1f Phi:%3.1f\n",omega, theta*180/kPi, phi*180/kPi);
389
390 bintheta=theta1*kDimensionTheta/kMaxTheta;
391 binphi=phi*kDimensionPhi/kMaxPhi;
392 binomega=omega1*kDimensionOmega/(kMaxOmega-kMinOmega);
393
394 if(Int_t(bintheta+0.5)==Int_t(bintheta))
395 inttheta=Int_t(bintheta);
396 else
397 inttheta=Int_t(bintheta+0.5);
398
399 if(Int_t(binomega+0.5)==Int_t(binomega))
400 intomega=Int_t(binomega);
401 else
402 intomega=Int_t(binomega+0.5);
403
404 if(Int_t(binphi+0.5)==Int_t(binphi))
405 intphi=Int_t(binphi);
406 else
407 intphi=Int_t(binphi+0.5);
408
409 //printf("Point added at %d %d %d\n",inttheta,intphi,intomega);
410
411 if(type==0)
412 point[inttheta][intphi][intomega]+=1;
413 if(type==1)
414 point[inttheta][intphi][intomega]+=(Int_t)(q);
415
416 //printf("Omega stored:%d\n",intomega);
417 Points->Fill(inttheta,intphi,intomega,(float) 1);
418 ThetaPhi->Fill(inttheta,intphi,(float) 1);
419 OmegaTheta->Fill(inttheta,intomega,(float) 1);
420 OmegaPhi->Fill(intphi,intomega,(float) 1);
421 //printf("Filling at %d %d %d\n",Int_t(theta*kDimensionTheta/kMaxTheta),Int_t(phi*kDimensionPhi/kMaxPhi),Int_t(omega*kDimensionOmega/kMaxOmega));
422 }
423 //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
424 }
ac6e04fc 425 }
eb1ee126 426 }
9c77ea58 427
c1076715 428 }
9c77ea58 429 //printf("Used %d digits for theta %3.1f\n",counter1, theta*180/kPi);
ac6e04fc 430 }
9c77ea58 431
c1076715 432 }
ac6e04fc 433
9c77ea58 434 printf("\n");
ac6e04fc 435
9c77ea58 436 meanradius=meanradius/counter;
437 //printf("Mean radius:%f, counter:%d\n",meanradius,counter);
438 rechit[5]=meanradius;
439 //printf("Used %d digits\n",counter1);
440 //printf("\n");
441
442 if(nev<2)
ac6e04fc 443 {
9c77ea58 444 if(nev==0)
445 {
446 fc1->cd(1);
447 Points->Draw("colz");
448 fc1->cd(2);
449 ThetaPhi->Draw("colz");
450 fc1->cd(3);
451 OmegaTheta->Draw("colz");
452 fc1->cd(4);
453 OmegaPhi->Draw("colz");
454 fc3->cd();
455 DigitsXY->Draw("colz");
456 }
457 else
458 {
459 //fc1->cd(1);
460 //Points->Draw("same");
461 //fc1->cd(2);
462 //ThetaPhi->Draw("same");
463 //fc1->cd(3);
464 //OmegaTheta->Draw("same");
465 //fc1->cd(4);
466 //OmegaPhi->Draw("same");
467 }
ac6e04fc 468 }
ac6e04fc 469
c1076715 470
9c77ea58 471 //SPOT execute twice
472 for(Int_t s=0;s<kSpot;s++)
473 {
474 printf(" Applying Spot algorithm, pass %d\n", s);
ceccff49 475
c1076715 476 //buffer copy
3a3df9e3 477 for(i=0;i<=kDimensionTheta;i++)
ceccff49 478 {
479 for(j=0;j<=kDimensionPhi;j++)
480 {
481 for(k=0;k<=kDimensionOmega;k++)
482 {
483 point1[i][j][k]=point[i][j][k];
484 }
485 }
486 }
487
c1076715 488 //SPOT algorithm
ac6e04fc 489 for(i=1;i<kDimensionTheta-1;i++)
ceccff49 490 {
ac6e04fc 491 for(j=1;j<kDimensionPhi-1;j++)
c1076715 492 {
ac6e04fc 493 for(k=1;k<kDimensionOmega-1;k++)
c1076715 494 {
ceccff49 495 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
496 (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
497 (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
498 {
499 //cout<<"SPOT"<<endl;
500 //Execute SPOT on point
501 point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));
502 point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
503 point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
504 point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
505 point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
506 point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
507 point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
508 }
c1076715 509 }
510 }
ceccff49 511 }
512
c1076715 513 //copy from buffer copy
ac6e04fc 514 counter1=0;
3a3df9e3 515 for(i=1;i<kDimensionTheta;i++)
ceccff49 516 {
517 for(j=1;j<kDimensionPhi;j++)
518 {
519 for(k=1;k<kDimensionOmega;k++)
520 {
521 point[i][j][k]=point1[i][j][k];
ac6e04fc 522 if(nev<20)
523 {
524 if(s==kSpot-1)
525 {
526 if(point1[i][j][k] != 0)
527 {
528 SpotPoints->Fill(i,j,k,(float) point1[i][j][k]);
529 //printf("Random number %f\n",random->Rndm(2));
530 //if(random->Rndm() < .2)
531 //{
532 SpotThetaPhi->Fill(i,j,(float) point1[i][j][k]);
533 SpotOmegaTheta->Fill(i,k,(float) point1[i][j][k]);
534 SpotOmegaPhi->Fill(j,k,(float) point1[i][j][k]);
535 counter1++;
536 //}
537 //printf("Filling at %d %d %d value %f\n",i,j,k,(float) point1[i][j][k]);
538 }
539 }
540 }
ceccff49 541 //if(point1[i][j][k] != 0)
542 //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
543 }
544 }
545 }
546 }
c1076715 547
ac6e04fc 548 //printf("Filled %d cells\n",counter1);
549
9c77ea58 550 if(nev<2)
ac6e04fc 551 {
9c77ea58 552 if(nev==0)
553 {
554 fc2->cd(1);
555 SpotPoints->Draw("colz");
556 fc2->cd(2);
557 SpotThetaPhi->Draw("colz");
558 fc2->cd(3);
559 SpotOmegaTheta->Draw("colz");
560 fc2->cd(4);
561 SpotOmegaPhi->Draw("colz");
562 }
563 else
564 {
565 //fc2->cd(1);
566 //SpotPoints->Draw("same");
567 //fc2->cd(2);
568 //SpotThetaPhi->Draw("same");
569 //fc2->cd(3);
570 //SpotOmegaTheta->Draw("same");
571 //fc2->cd(4);
572 //SpotOmegaPhi->Draw("same");
573 }
ac6e04fc 574 }
c1076715 575
c1076715 576
9c77ea58 577 //Identification is equivalent to maximum determination
578 max=0;maxi=0;maxj=0;maxk=0;
579
580 printf(" Proceeding to identification");
581
582 for(i=0;i<kDimensionTheta;i++)
583 for(j=0;j<kDimensionPhi;j++)
584 for(k=0;k<kDimensionOmega;k++)
585 if(point[i][j][k]>max)
586 {
587 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
ceccff49 588 maxi=i;maxj=j;maxk=k;
589 max=point[i][j][k];
590 printf(".");
ac6e04fc 591 //printf("Max Omega %d, Max Theta %d, Max Phi %d (%d counts)\n",maxk,maxi,maxj,max);
9c77ea58 592 }
593 printf("\n");
c1076715 594
9c77ea58 595 Float_t FinalOmega = maxk*(kMaxOmega-kMinOmega)/kDimensionOmega;
596 Float_t FinalTheta = maxi*kMaxTheta/kDimensionTheta;
597 Float_t FinalPhi = maxj*kMaxPhi/kDimensionPhi;
eb1ee126 598
9c77ea58 599 FinalOmega += kMinOmega;
eb1ee126 600
9c77ea58 601 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
602 printf(" Indentified angles: cerenkov - %f, theta - %3.1f, phi - %3.1f (%f activation)\n", FinalOmega, FinalTheta*180/kPi, FinalPhi*180/kPi, max);
603 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
604
605 AngleAct->Fill(FinalOmega, (float) max);
606 Activation->Fill(max, (float) 1);
607
608 if(nev==0)
609 {
610 fc4->cd(1);
611 AngleAct->Draw();
612 fc4->cd(2);
613 Activation->Draw();
614 }
615 else
616 {
617 fc4->cd(1);
618 AngleAct->Draw("same");
619 fc4->cd(2);
620 Activation->Draw("same");
621 }
622
623
624 //fscanf(omegas,"%f",&realomega);
625 //fscanf(thetas,"%f",&realtheta);
626 //printf("Real Omega: %f",realomega);
627 //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;
c1076715 628
9c77ea58 629 //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
c1076715 630
631 /*for(j=0;j<np;j++)
3a3df9e3 632 pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/
c1076715 633
634
635 //Start filling rec. hits
636
ac6e04fc 637 rechit[0] = FinalTheta;
9c77ea58 638 rechit[1] = FinalPhi - 90*kPi/180;
ac6e04fc 639 rechit[2] = FinalOmega;
c1076715 640 rechit[3] = cx;
641 rechit[4] = cy;
ac6e04fc 642
643 //CreatePoints(FinalTheta, 270*kPi/180 + FinalPhi, FinalOmega, kHeight);
644
9c77ea58 645 printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1]*180/kPi,rechit[2]);
c1076715 646
647 // fill rechits
9c77ea58 648 pRICH->AddRecHit3D(nch-1,rechit,originalOmega, originalTheta, originalPhi);
ac6e04fc 649 //printf("rechit %f %f %f %f %f\n",rechit[0],rechit[1],rechit[2],rechit[3],rechit[4]);
ceccff49 650 //printf("Chamber:%d",nch);
9c77ea58 651 }
652
653 else //if no cerenkovs
654
655 {
656
657 rechit[0] = 0;
658 rechit[1] = 0;
659 rechit[2] = 0;
660 rechit[3] = 0;
661 rechit[4] = 0;
662
663 }
664
665 }
666
667 if(type==1) //reco from clusters
668 {
669 pRICH->ResetRawClusters();
670 //Int_t nent=(Int_t)gAlice->TreeR()->GetEntries();
671 //gAlice->TreeR()->GetEvent(track);
672 //printf("Going to branch %d\n",track);
673 //gAlice->GetEvent(nev);
674 }
675
676
677 //printf("\n\n\n\n");
678 gAlice->TreeR()->Fill();
c1076715 679 TClonesArray *fRec;
237c933d 680 for (i=0;i<kNCH;i++) {
4a5c8776 681 fRec=pRICH->RecHitsAddress3D(i);
c1076715 682 int ndig=fRec->GetEntriesFast();
ac6e04fc 683 printf ("Chamber %d, rings %d\n",i+1,ndig);
c1076715 684 }
4a5c8776 685 pRICH->ResetRecHits3D();
ac6e04fc 686
687 free_i3tensor(point,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
688 free_i3tensor(point1,0,kDimensionTheta,0,kDimensionPhi,0,kDimensionOmega);
c1076715 689}
690
ac6e04fc 691
692
3a3df9e3 693Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
c1076715 694{
237c933d 695
696//
697// Calculates area of an ellipse for given incidence angles
698
699
c1076715 700 Float_t area;
3a3df9e3 701 const Float_t kHeight=9.25; //Distance from Radiator to Pads in pads
c1076715 702
00df6e79 703 area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
c1076715 704
705 return (area);
706}
707
c1076715 708
ac6e04fc 709Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
710// allocate a Int_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh]
711{
712 long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
713 Int_t ***t;
714
715 int NR_END=1;
c1076715 716
ac6e04fc 717 // allocate pointers to pointers to rows
718 t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
719 if (!t) printf("allocation failure 1 in f3tensor()");
720 t += NR_END;
721 t -= nrl;
722
723 // allocate pointers to rows and set pointers to them
724 t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
725 if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
726 t[nrl] += NR_END;
727 t[nrl] -= ncl;
c1076715 728
ac6e04fc 729 // allocate rows and set pointers to them
730 t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
731 if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
732 t[nrl][ncl] += NR_END;
733 t[nrl][ncl] -= ndl;
c1076715 734
ac6e04fc 735 for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
736 for(i=nrl+1;i<=nrh;i++) {
737 t[i]=t[i-1]+ncol;
738 t[i][ncl]=t[i-1][ncl]+ncol*ndep;
739 for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
c1076715 740 }
ac6e04fc 741
742 // return pointer to array of pointers to rows
743 return t;
744}
745
746void AliRICHDetect::free_i3tensor(int ***t, long nrl, long nrh, long ncl, long nch,long ndl, long ndh)
747// free a Int_t f3tensor allocated by i3tensor()
748{
749 int NR_END=1;
750
751 free((char*) (t[nrl][ncl]+ndl-NR_END));
752 free((char*) (t[nrl]+ncl-NR_END));
753 free((char*) (t+nrl-NR_END));
754}
755
756
757Float_t AliRICHDetect:: SnellAngle(Float_t iangle)
758{
759
760// Compute the Snell angle
761
762 Float_t nfreon = 1.295;
763 Float_t nquartz = 1.585;
764 Float_t ngas = 1;
765
766 Float_t sinrangle;
767 Float_t rangle;
768 Float_t a1, a2;
769
770 a1=nfreon/nquartz;
771 a2=nquartz/ngas;
772
773 sinrangle = a1*a2*sin(iangle);
774
775 if(sinrangle>1.) {
776 rangle = 999.;
777 return rangle;
778 }
779
780 rangle = asin(sinrangle);
781 return rangle;
782}
783
784Float_t AliRICHDetect:: InvSnellAngle(Float_t rangle)
785{
786
787// Compute the inverse Snell angle
c1076715 788
ac6e04fc 789 Float_t nfreon = 1.295;
790 Float_t nquartz = 1.585;
791 Float_t ngas = 1;
c1076715 792
ac6e04fc 793 Float_t siniangle;
794 Float_t iangle;
795 Float_t a1,a2;
c1076715 796
ac6e04fc 797 a1=nfreon/nquartz;
798 a2=nquartz/ngas;
c1076715 799
ac6e04fc 800 siniangle = sin(rangle)/(a1*a2);
801 iangle = asin(siniangle);
802
803 if(siniangle>1.) {
804 iangle = 999.;
805 return iangle;
806 }
807
808 iangle = asin(siniangle);
809 return iangle;
810}
c1076715 811
812
ac6e04fc 813
814//________________________________________________________________________________
815void AliRICHDetect::CreatePoints(Float_t theta, Float_t phi, Float_t omega, Float_t h)
816{
817
818 // Create points along the ellipse equation
819
820 Int_t s1,s2;
821 Float_t fiducial=h*TMath::Tan(omega+theta), l=h/TMath::Cos(theta), xtrial, y=0, c0, c1, c2;
822 //TRandom *random=new TRandom();
823
824 static TH2F *REllipse = new TH2F("REllipse","Reconstructed ellipses",150,-25,25,150,-25,25);
825
826 for(Float_t i=0;i<1000;i++)
827 {
828
829 Float_t counter=0;
830
831 c0=0;c1=0;c2=0;
832 while((c1*c1-4*c2*c0)<=0 && counter<1000)
833 {
834 //Choose which side to go...
835 if(i>250 && i<750) s1=1;
836 //if (gRandom->Rndm(1)>.5) s1=1;
837 else s1=-1;
838 //printf("s1:%d\n",s1);
839 //Trial a y
840 y=s1*i*gRandom->Rndm(Int_t(fiducial/50));
841 //printf("Fiducial %f for omega:%f theta:%f phi:%f\n",fiducial,omega,theta,fphi);
842 Float_t alfa1=theta;
843 Float_t theta1=phi;
844 Float_t omega1=omega;
845
846 //Solve the eq for a trial x
847 c0=-TMath::Power(y*TMath::Cos(alfa1)*TMath::Cos(theta1),2)-TMath::Power(y*TMath::Sin(alfa1),2)+TMath::Power(l*TMath::Tan(omega1),2)+2*l*y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+TMath::Power(y*TMath::Cos(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2);
848 c1=2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)-2*y*TMath::Cos(alfa1)*TMath::Power(TMath::Cos(theta1),2)*TMath::Sin(alfa1)+2*l*TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Power(TMath::Tan(omega1),2)+2*y*TMath::Cos(alfa1)*TMath::Sin(alfa1)*TMath::Power(TMath::Sin(theta1),2)*TMath::Power(TMath::Tan(omega1),2);
849 c2=-TMath::Power(TMath::Cos(alfa1),2)-TMath::Power(TMath::Cos(theta1)*TMath::Sin(alfa1),2)+TMath::Power(TMath::Sin(alfa1)*TMath::Sin(theta1)*TMath::Tan(omega1),2);
850 //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
851 //printf("Result:%f\n\n",c1*c1-4*c2*c0);
852 //i+=.01;
853 counter +=1;
854 }
855
856 if (counter>=1000)
857 y=0;
858
859 //Choose which side to go...
860 //if(gRandom->Rndm(1)>.5) s=1;
861 //else s=-1;
862 if(i>500) s2=1;
863 //if (gRandom->Rndm(1)>.5) s2=1;
864 else s2=-1;
865 xtrial=(-c1+s2*TMath::Sqrt(c1*c1-4*c2*c0))/(2*c2);
866 //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
867 //printf("Coordinates: %f %f\n",xtrial,fCy+y);
868
869 REllipse->Fill(xtrial,y);
870
871 //printf("Coordinates: %f %f %f\n",vectorGlob[0],vectorGlob[1],vectorGlob[2]);
872 }
873
874 fc3->cd(2);
875 REllipse->Draw();
876}
9c77ea58 877
878Int_t AliRICHDetect::Fiducial(Float_t rotx, Float_t roty, Float_t theta, Float_t phi, Float_t height, Float_t maxOmega, Float_t minOmega)
879{
880
881 Float_t x,y,y1,h,omega1,omega2;
882
883 Float_t a,b, offset;
884 Float_t a1,b1, offset1;
885
886 h = height;
887
888 //refraction calculation
889
890 theta = SnellAngle(theta);
891 phi = phi - TMath::Pi();
892 omega1 = SnellAngle(maxOmega);
893 omega2 = SnellAngle(minOmega);
894
895 //maximum zone
896 a = h*(tan(omega1+theta)+tan(omega1-theta))/2;
897 b = h*tan(omega1);
898
899 offset = h*(tan(omega1+theta)-tan(omega1-theta))/2;
900
901
902 //minimum zone
903 a1 = h*(tan(omega2+theta)+tan(omega2-theta))/2;
904 b1 = h*tan(omega2);
905
906 offset1 = h*(tan(omega2+theta)-tan(omega2-theta))/2;
907
908
909 //rotation to phi=0
910 x = rotx*cos(phi)+roty*sin(phi);
911 y = -rotx*sin(phi)+roty*cos(phi) - offset;
912 y1 = -rotx*sin(phi)+roty*cos(phi) - offset1;
913
914
915 if(x*x/a+y*y/b<1 && x*x/a1+y1*y1/b1>1)
916 return 1;
917 else
918 return 0;
919
920}