]> git.uio.no Git - u/mrichter/AliRoot.git/blame - RICH/AliRICHDetect.cxx
Removed all functions responsible for multiple cathode handling.
[u/mrichter/AliRoot.git] / RICH / AliRICHDetect.cxx
CommitLineData
c1076715 1/**************************************************************************
2 * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. *
3 * *
4 * Author: The ALICE Off-line Project. *
5 * Contributors are mentioned in the code where appropriate. *
6 * *
7 * Permission to use, copy, modify and distribute this software and its *
8 * documentation strictly for non-commercial purposes is hereby granted *
9 * without fee, provided that the above copyright notice appears in all *
10 * copies and that both the copyright notice and this permission notice *
11 * appear in the supporting documentation. The authors make no claims *
12 * about the suitability of this software for any purpose. It is *
13 * provided "as is" without express or implied warranty. *
14 **************************************************************************/
15
16/*
17 $Log$
eb1ee126 18 Revision 1.8 2000/11/15 15:52:53 jbarbosa
19 Turned on spot algorithm.
20
ceccff49 21 Revision 1.7 2000/11/01 15:37:05 jbarbosa
22 Updated to use its own rec. point object.
23
4a5c8776 24 Revision 1.6 2000/10/02 21:28:12 fca
25 Removal of useless dependecies via forward declarations
26
94de3818 27 Revision 1.5 2000/06/30 16:30:28 dibari
28 Disabled writing to rechits.
29
a366fdbe 30 Revision 1.4 2000/06/15 15:46:59 jbarbosa
31 Corrected compilation errors on HP-UX (replaced pow with TMath::Power)
32
00df6e79 33 Revision 1.3 2000/06/13 13:15:41 jbarbosa
34 Still some code cleanup done (variable names)
35
3a3df9e3 36 Revision 1.2 2000/06/12 15:19:30 jbarbosa
37 Cleaned up version.
38
237c933d 39 Revision 1.1 2000/04/19 13:05:14 morsch
40 J. Barbosa's spot reconstruction algorithm.
41
c1076715 42*/
43
44
45#include "AliRICH.h"
46#include "AliRICHPoints.h"
47#include "AliRICHDetect.h"
237c933d 48#include "AliRICHHit.h"
49#include "AliRICHDigit.h"
c1076715 50#include "AliRun.h"
51#include "TParticle.h"
94de3818 52#include "TTree.h"
c1076715 53#include "TMath.h"
54#include "TRandom.h"
55
56
57
58ClassImp(AliRICHDetect)
59//___________________________________________
60AliRICHDetect::AliRICHDetect() : TObject()
61{
237c933d 62
63// Default constructor
64
c1076715 65 //fChambers = 0;
66}
67
68//___________________________________________
69AliRICHDetect::AliRICHDetect(const char *name, const char *title)
70 : TObject()
71{
72
237c933d 73// Constructor
74
c1076715 75 /*fChambers = new TObjArray(7);
76 for (Int_t i=0; i<7; i++) {
77
78 (*fChambers)[i] = new AliRICHchamber();
79
80 } */
81}
82
83
84void AliRICHDetect::Detect()
85{
86
237c933d 87//
88// Detection algorithm
89
90
c1076715 91 //printf("Detection started!\n");
3a3df9e3 92 Float_t omega,steptheta,stepphi,x,y,cx,cy,l,aux1,aux2,aux3,maxi,maxj,maxk,max;
c1076715 93 //Float_t theta,phi,realomega,realtheta;
94 Int_t i,j,k;
ceccff49 95
c1076715 96
eb1ee126 97 //const Float_t Noise_Level=0; //Noise Level in percentage of mesh points
c1076715 98 //const Float_t t=0.6; //Softening of Noise Correction (factor)
99
3a3df9e3 100 const Float_t kPi=3.1415927;
c1076715 101
eb1ee126 102 const Float_t kHeight=10; //Distance from Radiator to Pads in pads
ceccff49 103
eb1ee126 104 const Int_t kSpot=0; //number of passes with spot algorithm
c1076715 105
ceccff49 106 const Int_t kDimensionTheta=50; //Matrix dimension for angle Detection
107 const Int_t kDimensionPhi=50;
108 const Int_t kDimensionOmega=50;
c1076715 109
eb1ee126 110 const Float_t SPOTp=.2; //Percentage of spot action
111 //const Int_t np=500; //Number of points to reconstruct elipse
112 const Float_t kMinOmega=30*kPi/180;
3a3df9e3 113 const Float_t kMaxOmega=65*kPi/180; //Maximum Cherenkov angle to identify
eb1ee126 114
115 const Float_t kCorr=.5; //Correction factor, accounting for aberration, refractive index, etc.
116
3a3df9e3 117 Int_t point[kDimensionTheta][kDimensionPhi][kDimensionOmega];
ceccff49 118 Int_t point1[kDimensionTheta][kDimensionPhi][kDimensionOmega];
c1076715 119
3a3df9e3 120 steptheta=kPi/kDimensionTheta;
121 stepphi=kPi/kDimensionPhi;
c1076715 122
123 AliRICHChamber* iChamber;
124
3a3df9e3 125 AliRICH *pRICH = (AliRICH*)gAlice->GetDetector("RICH");
c1076715 126 Int_t ntracks = (Int_t)gAlice->TreeH()->GetEntries();
127 //Int_t ntrks = gAlice->GetNtrack();
128
129 Float_t trackglob[3];
130 Float_t trackloc[3];
131
132 //printf("Got ntracks:%d\n",ntracks);
133 /*TVector *xp = new TVector(1000);
134 TVector *yp = new TVector(1000);
135 TVector *zp = new TVector(1000);
136 TVector *ptrk = new TVector(1000);
137 TVector *phit = new TVector(1000);*/
138
139 //printf("Area de uma elipse com teta 0 e Omega 45:%f",Area(0,45));
140
4a5c8776 141 Int_t track;
c1076715 142
4a5c8776 143 for (track=0; track<ntracks;track++) {
c1076715 144 gAlice->ResetHits();
145 gAlice->TreeH()->GetEvent(track);
3a3df9e3 146 TClonesArray *pHits = pRICH->Hits();
147 if (pHits == 0) return;
148 Int_t nhits = pHits->GetEntriesFast();
c1076715 149 if (nhits == 0) continue;
150 Int_t nent=(Int_t)gAlice->TreeD()->GetEntries();
151 gAlice->TreeD()->GetEvent(nent-1);
152 AliRICHHit *mHit = 0;
153 AliRICHDigit *points = 0;
154 //Int_t npoints=0;
155
156 Int_t counter=0;
157 //Initialization
3a3df9e3 158 for(i=0;i<kDimensionTheta;i++)
c1076715 159 {
3a3df9e3 160 for(j=0;j<kDimensionPhi;j++)
c1076715 161 {
3a3df9e3 162 for(k=0;k<kDimensionOmega;k++)
c1076715 163 {
164 counter++;
3a3df9e3 165 point[i][j][k]=0;
166 //printf("Dimensions theta:%d, phi:%d, omega:%d",kDimensionTheta,kDimensionPhi,kDimensionOmega);
c1076715 167 //printf("Resetting %d %d %d, time %d\n",i,j,k,counter);
3a3df9e3 168 //-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension));
169 //printf("n-%f",-Noise_Level*(Area(i*kPi/(18*dimension),k*kMaxOmega/dimension)-Area((i-1)*kPi/(18*dimension),(k-1)*kMaxOmega/dimension)));
c1076715 170 }
171 }
172 }
3a3df9e3 173 mHit = (AliRICHHit*) pHits->UncheckedAt(0);
c1076715 174 //printf("Aqui vou eu\n");
175 Int_t nch = mHit->fChamber;
176 //printf("Aqui fui eu\n");
94de3818 177 trackglob[0] = mHit->X();
178 trackglob[1] = mHit->Y();
179 trackglob[2] = mHit->Z();
c1076715 180
181 cx=trackglob[0];
182 cy=trackglob[2];
183
184
185 //printf("Chamber processed:%d\n",nch);
ceccff49 186
187 printf("\nChamber %d, particle at: %3.1f %3.1f,\n",nch,trackglob[0],trackglob[2]);
c1076715 188
3a3df9e3 189 iChamber = &(pRICH->Chamber(nch-1));
c1076715 190
191 //printf("Nch:%d\n",nch);
192
193 iChamber->GlobaltoLocal(trackglob,trackloc);
194
3a3df9e3 195 //printf("Transformation 1: %3.1f %3.1f %3.1f\n",trackloc[0],trackloc[1],trackloc[2]);
c1076715 196
197
198 iChamber->LocaltoGlobal(trackloc,trackglob);
199
3a3df9e3 200 //printf("Transformation 2: %3.1f %3.1f %3.1f\n",trackglob[0],trackglob[1],trackglob[2]);
c1076715 201
202
203
204
3a3df9e3 205 TClonesArray *pDigits = pRICH->DigitsAddress(nch-1);
206 Int_t ndigits = pDigits->GetEntriesFast();
c1076715 207
208 //printf("Got %d digits\n",ndigits);
209
210 //printf("Starting calculations\n");
211
3a3df9e3 212 for(Float_t theta=0;theta<kPi/18;theta+=steptheta)
c1076715 213 {
3a3df9e3 214 for(Float_t phi=0;phi<=kPi/3;phi+=stepphi)
c1076715 215 {
216 for (Int_t dig=0;dig<ndigits;dig++)
217 {
3a3df9e3 218 points=(AliRICHDigit*) pDigits->UncheckedAt(dig);
c1076715 219
220 x=points->fPadX-cx;
221 y=points->fPadY-cy;
222 //printf("Loaded digit %d with coordinates x:%f, y%f\n",dig,x,y);
223 //cout<<"x="<<x<<" y="<<y<<endl;
eb1ee126 224
00df6e79 225 if (sqrt(TMath::Power(x,2)+TMath::Power(y,2))<kHeight*tan(theta+kMaxOmega)*3/4)
c1076715 226 {
227
eb1ee126 228
3a3df9e3 229 l=kHeight/cos(theta);
c1076715 230
231 aux1=-y*sin(phi)+x*cos(phi);
232 aux2=y*cos(phi)+x*sin(phi);
00df6e79 233 aux3=( TMath::Power(aux1,2)+TMath::Power(cos(theta)*aux2 ,2))/TMath::Power(sin(theta)*aux2+l,2);
eb1ee126 234 //cout<<"aux1="<<aux1<<" aux2="<<aux2<<" aux3="<<aux3;
235
3a3df9e3 236 omega=atan(sqrt(aux3));
237 //printf("Omega: %f\n",omega);
c1076715 238
3a3df9e3 239 //cout<<"\ni="<<i<<" theta="<<Int_t(2*theta*dimension/kPi)<<" phi="<<Int_t(2*phi*dimension/kPi)<<" omega="<<Int_t(2*omega*dimension/kPi)<<endl<<endl;
c1076715 240 //{Int_t lixo;cin>>lixo;}
eb1ee126 241 if(omega<kMaxOmega && omega>kMinOmega)
242 {
243 omega=omega-kMinOmega;
244 //point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*2*omega*kDimensionOmega/kMaxOmega)]+=1;
245 point[Int_t(2*theta*kDimensionTheta/kPi)][Int_t(2*phi*kDimensionPhi/kPi)][Int_t(kCorr*(omega/(kMaxOmega-kMinOmega)*kDimensionOmega))]+=1;
246 }
3a3df9e3 247 //if(omega<kMaxOmega)point[Int_t(theta)][Int_t(phi)][Int_t(omega)]+=1;
c1076715 248 }
249 }
250 }
251 }
252
253
c1076715 254 //SPOT execute twice
ceccff49 255 for(Int_t s=0;s<kSpot;s++)
c1076715 256 {
ceccff49 257 printf(" Applying Spot algorithm, pass %d\n", s);
258
c1076715 259 //buffer copy
3a3df9e3 260 for(i=0;i<=kDimensionTheta;i++)
ceccff49 261 {
262 for(j=0;j<=kDimensionPhi;j++)
263 {
264 for(k=0;k<=kDimensionOmega;k++)
265 {
266 point1[i][j][k]=point[i][j][k];
267 }
268 }
269 }
270
c1076715 271 //SPOT algorithm
3a3df9e3 272 for(i=1;i<kDimensionTheta;i++)
ceccff49 273 {
274 for(j=1;j<kDimensionPhi;j++)
c1076715 275 {
ceccff49 276 for(k=1;k<kDimensionOmega;k++)
c1076715 277 {
ceccff49 278 if((point[i][k][j]>point[i-1][k][j])&&(point[i][k][j]>point[i+1][k][j])&&
279 (point[i][k][j]>point[i][k-1][j])&&(point[i][k][j]>point[i][k+1][j])&&
280 (point[i][k][j]>point[i][k][j-1])&&(point[i][k][j]>point[i][k][j+1]))
281 {
282 //cout<<"SPOT"<<endl;
283 //Execute SPOT on point
284 point1[i][j][k]+=Int_t(SPOTp*(point[i-1][k][j]+point[i+1][k][j]+point[i][k-1][j]+point[i][k+1][j]+point[i][k][j-1]+point[i][k][j+1]));
285 point1[i-1][k][j]=Int_t(SPOTp*point[i-1][k][j]);
286 point1[i+1][k][j]=Int_t(SPOTp*point[i+1][k][j]);
287 point1[i][k-1][j]=Int_t(SPOTp*point[i][k-1][j]);
288 point1[i][k+1][j]=Int_t(SPOTp*point[i][k+1][j]);
289 point1[i][k][j-1]=Int_t(SPOTp*point[i][k][j-1]);
290 point1[i][k][j+1]=Int_t(SPOTp*point[i][k][j+1]);
291 }
c1076715 292 }
293 }
ceccff49 294 }
295
c1076715 296 //copy from buffer copy
3a3df9e3 297 for(i=1;i<kDimensionTheta;i++)
ceccff49 298 {
299 for(j=1;j<kDimensionPhi;j++)
300 {
301 for(k=1;k<kDimensionOmega;k++)
302 {
303 point[i][j][k]=point1[i][j][k];
304 //if(point1[i][j][k] != 0)
305 //printf("Last transfer point: %d, point1, %d\n",point[i][j][k],point1[i][j][k]);
306 }
307 }
308 }
309 }
c1076715 310
311
312 //Identification is equivalent to maximum determination
313 max=0;maxi=0;maxj=0;maxk=0;
314
ceccff49 315 printf(" Proceeding to identification");
c1076715 316
3a3df9e3 317 for(i=1;i<kDimensionTheta-3;i++)
318 for(j=1;j<=kDimensionPhi-3;j++)
319 for(k=0;k<=kDimensionOmega;k++)
ceccff49 320 if(point[i][j][k]>max)
321 {
322 //cout<<"maxi="<<i*90/dimension<<" maxj="<<j*90/dimension<<" maxk="<<k*kMaxOmega/dimension*180/kPi<<" max="<<max<<endl;
323 maxi=i;maxj=j;maxk=k;
324 max=point[i][j][k];
325 printf(".");
326 //printf("Max Omega %f, Max Theta %f, Max Phi %f\n",maxk,maxi,maxj);
327 }
328 printf("\n");
c1076715 329
eb1ee126 330 maxk=maxk*(kMaxOmega-kMinOmega)/kDimensionOmega + kMinOmega;
331
332
3a3df9e3 333 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",h,cx,cy,maxk*kPi/(kDimensionTheta*4));
eb1ee126 334 printf(" Indentified cerenkov angle: %f\n", maxk);
3a3df9e3 335 //printf("Detected angle for height %3.1f and for center %3.1f %3.1f:%f\n",kHeight,cx,cy,maxk);
c1076715 336
337
338 //fscanf(omegas,"%f",&realomega);
339 //fscanf(thetas,"%f",&realtheta);
340 //printf("Real Omega: %f",realomega);
3a3df9e3 341 //cout<<"Detected:theta="<<maxi*90/kDimensionTheta<<"phi="<<maxj*90/kDimensionPhi<<"omega="<<maxk*kMaxOmega/kDimensionOmega*180/kPi<<" OmegaError="<<fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega)<<" ThetaError="<<fabs(maxi*90/kDimensionTheta-realtheta)<<endl<<endl;
c1076715 342
3a3df9e3 343 //fprintf(results,"Center Coordinates, cx=%6.2f cy=%6.2f, Real Omega=%6.2f, Detected Omega=%6.2f, Omega Error=%6.2f Theta Error=%6.2f\n",cx,cy,realomega,maxk*kMaxOmega/kDimensionOmega*180/kPi,fabs(maxk*kMaxOmega/kDimensionOmega*180/kPi-realomega),fabs(maxi*90/kDimensionTheta-realtheta));
c1076715 344
345 /*for(j=0;j<np;j++)
3a3df9e3 346 pointpp(maxj*90/kDimensionTheta,maxi*90/kDimensionPhi,maxk*kMaxOmega/kDimensionOmega*180/kPi,cx,cy);//Generates a point on the elipse*/
c1076715 347
348
349 //Start filling rec. hits
350
a366fdbe 351 Float_t rechit[6];
c1076715 352
3a3df9e3 353 rechit[0] = (Float_t)( maxi*kPi/(kDimensionTheta*4));
354 rechit[1] = (Float_t)( maxj*kPi/(kDimensionPhi*4));
eb1ee126 355 rechit[2] = (Float_t)( maxk);
c1076715 356 //rechit[0] = (Float_t)( maxi);
357 //rechit[1] = (Float_t)( maxj);
358 //rechit[2] = (Float_t)( maxk);
359 rechit[3] = cx;
360 rechit[4] = cy;
a366fdbe 361 rechit[5] = 0.5;
c1076715 362
363 //printf ("track %d, theta %f, phi %f, omega %f\n\n\n",track,rechit[0],rechit[1],rechit[2]);
364
365 // fill rechits
4a5c8776 366 pRICH->AddRecHit3D(nch-1,rechit);
ceccff49 367 //printf("Chamber:%d",nch);
c1076715 368 }
369 //printf("\n\n\n\n");
370 gAlice->TreeR()->Fill();
371 //TTree *TR=gAlice->TreeR();
372 //Stat_t ndig=TR->GetEntries();
373 TClonesArray *fRec;
237c933d 374 for (i=0;i<kNCH;i++) {
4a5c8776 375 fRec=pRICH->RecHitsAddress3D(i);
c1076715 376 int ndig=fRec->GetEntriesFast();
377 printf ("Chamber %d, rings %d\n",i,ndig);
378 }
379 //printf("Number of rec. hits: %d",ndig);
4a5c8776 380 pRICH->ResetRecHits3D();
c1076715 381 //char hname[30];
382 //sprintf(hname,"TreeR%d",track);
383 //gAlice->TreeR()->Write(hname);
384
385}
386
3a3df9e3 387Float_t AliRICHDetect:: Area(Float_t theta,Float_t omega)
c1076715 388{
237c933d 389
390//
391// Calculates area of an ellipse for given incidence angles
392
393
c1076715 394 Float_t area;
3a3df9e3 395 const Float_t kHeight=9.25; //Distance from Radiator to Pads in pads
c1076715 396
00df6e79 397 area=TMath::Pi()*TMath::Power(kHeight*tan(omega),2)/TMath::Power(TMath::Power(cos(theta),2)-TMath::Power(tan(omega)*sin(theta),2),3/2);
c1076715 398
399 return (area);
400}
401
402/*Int_t ***AliRICHDetect::i3tensor(long nrl, long nrh, long ncl, long nch, long ndl, long ndh)
403// allocate a Float_t 3tensor with range t[nrl..nrh][ncl..nch][ndl..ndh]
404{
405long i,j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
406Int_t ***t;
407
408// allocate pointers to pointers to rows
409t=(Int_t ***) malloc((size_t)((nrow+NR_END)*sizeof(Int_t**)));
410if (!t) printf("allocation failure 1 in f3tensor()");
411t += NR_END;
412t -= nrl;
413
414// allocate pointers to rows and set pointers to them
415t[nrl]=(Int_t **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(Int_t*)));
416if (!t[nrl]) printf("allocation failure 2 in f3tensor()");
417t[nrl] += NR_END;
418t[nrl] -= ncl;
419
420// allocate rows and set pointers to them
421t[nrl][ncl]=(Int_t *) malloc((size_t)((nrow*ncol*ndep+NR_END)*sizeof(Int_t)));
422if (!t[nrl][ncl]) printf("allocation failure 3 in f3tensor()");
423t[nrl][ncl] += NR_END;
424t[nrl][ncl] -= ndl;
425
426for(j=ncl+1;j<=nch;j++) t[nrl][j]=t[nrl][j-1]+ndep;
427for(i=nrl+1;i<=nrh;i++) {
428t[i]=t[i-1]+ncol;
429t[i][ncl]=t[i-1][ncl]+ncol*ndep;
430for(j=ncl+1;j<=nch;j++) t[i][j]=t[i][j-1]+ndep;
431}
432
433// return pointer to array of pointers to rows
434return t;
435}*/
436
3a3df9e3 437/*void pointpp(Float_t alfa,Float_t theta,Float_t omega,Float_t cx,Float_t cy)
c1076715 438 {
439 Int_t s;
3a3df9e3 440 Float_t fiducial=h*tan((omega+theta)*kPi/180),l=h/cos(theta*kPi/180),xtrial,y,c0,c1,c2;
c1076715 441
442 //cout<<"fiducial="<<fiducial<<endl;
443
444 c0=0;c1=0;c2=0;
445 while((c1*c1-4*c2*c0)<=0)
446 {
447 //Choose which side to go...
448 if(aleat(1)>.5) s=1; else s=-1;
449 //Trial a y
450 y=s*aleat(fiducial);
3a3df9e3 451 Float_t alfa1=alfa*kPi/180;
452 Float_t theta1=theta*kPi/180;
453 Float_t omega1=omega*kPi/180;
c1076715 454 //Solve the eq for a trial x
00df6e79 455 c0=-TMath::Power(y*cos(alfa1)*cos(theta1),2)-TMath::Power(y*sin(alfa1),2)+TMath::Power(l*tan(omega1),2)+2*l*y*cos(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+TMath::Power(y*cos(alfa1)*sin(theta1)*tan(omega1),2);
456 c1=2*y*cos(alfa1)*sin(alfa1)-2*y*cos(alfa1)*TMath::Power(cos(theta1),2)*sin(alfa1)+2*l*sin(alfa1)*sin(theta1)*TMath::Power(tan(omega1),2)+2*y*cos(alfa1)*sin(alfa1)*TMath::Power(sin(theta1),2)*TMath::Power(tan(omega1),2);
457 c2=-TMath::Power(cos(alfa1),2)-TMath::Power(cos(theta1)*sin(alfa1),2)+TMath::Power(sin(alfa1)*sin(theta1)*tan(omega1),2);
c1076715 458 //cout<<"Trial: y="<<y<<"c0="<<c0<<" c1="<<c1<<" c2="<<c2<<endl;
459 }
460 //Choose which side to go...
461 if(aleat(1)>.5) s=1; else s=-1;
462 xtrial=cx+(-c1+s*sqrt(c1*c1-4*c2*c0))/(2*c2);
463 //cout<<"x="<<xtrial<<" y="<<cy+y<<endl;
464 fprintf(final,"%f %f\n",xtrial,cy+y);
465 }*/
466
467
468
469
470
471